
 IJITEE, Vol. 3, No. 1, March 2019

Relational into Non-Relational Database Migration with
Multiple-Nested Schema Methods on Academic Data

Teguh Bharata Adji1, Dwi Retno Puspita Sari2, Noor Akhmad Setiawan3

Abstract—The rapid development of internet technology has

increased the need of data storage and processing technology
application. One application is to manage academic data records
at educational institutions. Along with massive growth of
information, decrement in the traditional database performance
is inevitable. Hence, there are many companies choose to migrate
to NoSQL, a technology that is able to overcome the traditional
database shortcomings. However, the existing SQL to NoSQL
migration tools have not been able to represent SQL data relations
in NoSQL without limiting query performance. In this paper, a
relational database transformation system transforming MySQL
into non-relational database MongoDB was developed, using the
Multiple Nested Schema method for academic databases. The
development began with a transformation scheme design. The
transformation scheme was then implemented in the migration
process, using PDI/Kettle. The testing was carried out on three
aspects, namely query response time, data integrity, and storage
requirements. The test results showed that the developed system
successfully represented the relationship of SQL data in NoSQL,
provided complex query performance 13.32 times faster in the
migration database, basic query performance involving SQL
transaction tables 28.6 times faster on migration results, and basic
performance Queries without involving SQL transaction tables
were 3.91 times faster in the migration source. This shows that the
theory of the Multiple Nested Schema method, aiming to overcome
the poor performance of queries involving many JOIN operations,
is proved. In addition, the system is also proven to be able to
maintain data integrity in all tested queries. The space
performance test results indicated that the migrated database
transformed using the Multiple Nested Schema method showed a
storage requirement of 10.53 times larger than the migration
source database. This is due to the large amount of data
redundancy resulting from the transformation process. However,
at present, storage performance is not a top priority in data
processing technology, so large storage requirements are a
consequence of obtaining efficient query performance, which is
still considered as the first priority in data processing technology.

Keywords—Multiple Nested Schema, Data Transformation, Data
Migration, NoSQL, Big Data.

I. INTRODUCTION
The need for data storage and processing technology is

increasing along with the development of internet technology
that cannot be separated from everyday life. One of the
requirements for implementing database technology is to

support educational institutions in managing academic data
records.

Academic data record management activities cannot be
separated from the need for information system support as a
forum to collect, process, store, analyze, and disseminate
information [1]. The information existing in the system is often
used as a reference in the decision-making process, which is
often known as 'data-driven decision' [2], so it is a necessity to
provide a reliable system to support educational institutions in
managing academic data.

Statistics show that the data volume will increase by 40% per
year, and will grow by 44 times over the period between 2009
and 2020 [3]. The massive information growth produced along
with the ongoing academic activities poses challenges in the
form of system reliability. Traditional database technology
systems that have been used for more than three decades, face
the data heterogeneity challenges, which amounts is beyond the
ability of traditional databases management to record, store,
manage and analyze the data, which is known as Big Data [4].

Therefore, the emergence of increasingly developing
NoSQL technology, with its superior flexibility and scalability,
is considered the best alternative to overcome the shortcomings
found in traditional databases. In recent times, NoSQL
technology has been used in various large companies, such as
Facebook, Google, Twitter, and Yahoo [5], so that more and
more companies are choosing to migrate to the NoSQL
database.

Some of advantages in migrating data to the NoSQL
database are existence of various kinds of data models that can
be adjusted to the needs, scalability that is easier, faster, more
efficient, more flexible, and the presence of support for
hardware failure in certain NoSQL databases [6].

However, migrating data between databases with different
data models is not easy. One of the complexity factors is a need
to represent relations or association between tables which are
characters of relational databases, into a destination database
which is a non-relational database.

Some researchers have investigated the performance of the
NoSQL database. According to [7], NoSQL is not a 'one size
fits all' database that meets all needs in the database. Each type
of NoSQL database has its own characteristics. Cassandra is
more appropriate to use in applications requiring faster write
operations and high availability, HBase is suitable to be used
in applications requiring high performance in load and bulk
read operations, while MongoDB offers advantages in
document search and data aggregation functions [7].

In MongoDB, relationships representation between entities
or documents is divided into two, namely reference documents
and embedded documents. The reference document model
maps data into several separated documents, and represents

1,3 Lecturer, Department of Electrical and Information
Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln.
Grafika 2, UGM Yogyakarta 55281 (e-mail: adji@ugm.ac.id,
noorwewe@ugm.ac.id)

2 Department of Electrical and Information Engineering, Faculty
of Engineering, Universitas Gadjah Mada, Jln. Grafika 2, UGM
Yogyakarta 55281 (e-mail: dwi.retno.p@mail.ugm.ac.id)

ISSN 2550-0554 (Online) Teguh Bharata Adji: Relational into Non-Relational Database ...

16

mailto:noorwewe@ugm.ac.id

IJITEE, Vol. 3, No. 1, March 2019

relationships by storing links connecting one document to other
documents [8]. While the embedded document model
represents a relationship between documents by storing
interconnected data in a single document structure [7]. The
referred data is represented by forming an embedded document
as a sub-document, in a field or array in a document [9].
Therefore, to answer the need for interrelated data
representation, MongoDB is used as a destination database in
the development of this migration system.

In recent times, several tools have been developed to migrate
relational databases into the NoSQL database, such as Apache
Sqoop and JackHare. Apache Sqoop is a tool to effectively
transform large amounts of data from relational databases into
Hadoop [10]. Sqoop has successfully migrated SQL into
NoSQL. However, the existence of relations between tables
still causes limitations in query with a large number of JOIN
keys in transformation results table. While JackHare, a
framework for translating SQL into NoSQL using MapReduce
[11], has succeeded in converting all tables in a relational
database into a single table in HBase. However, a certain
additional column family is still needed to store foreign keys
from relational database, which causes poor performance
because it has to process a large number of JOIN operations [5].

In addition, in a research, a method has been introduced to
transform SQL databases into NoSQL [5]. The method was
based on the nesting table process, where a table A referenced
table B, and table B referenced table C, which was called a
multiple nested state. In this method, the SQL database schema
was transformed following a multiple nested process, thus
forming a single table in the NoSQL database. The test results
in the research indicated that the proposed method successfully
migrated SQL databases into NoSQL, and obtained query
performance in the NoSQL database faster than in SQL
databases [5]. Therefore, multiple nested methods were used in
the process of transforming SQL databases into NoSQL in this
work.

One aspect that needs to be considered in database migration
process is data integrity, which ensures data consistency in
database before and after migration process. Database
migration can be said to be successful when each document
model can represent the same data in both databases [12].
Therefore, in this database migration, it is necessary to test data
integrity, to ensure that designed migration system can
represent same data in database before and after migration.

II. DATABASE MIGRATION AND TRANSFORMATION
The core process of this work is to design a relational

database migration system into non-relational databases using
multiple nested methods. Therefore, it is necessary to review
previous research regarding database migration and database
schema transformation methods.

A. Database Migration Tools
Several tools have been developed to migrate relational

databases into non-relational databases.
Apache Sqoop [10] is a tool developed to efficiently migrate

bulk data between relational databases and non-relational

databases, namely Apache Hadoop. Sqoop is able to migrate
SQL databases into NoSQL. While JackHare [11] is a
framework for translating SQL databases into NoSQL using
MapReduce. JackHare successfully converts all tables from the
SQL database into a single table in HBase. According to [5],
although Sqoop and JackHare have successfully migrated SQL
databases into NoSQL, these two tools still show poor
performance, which is caused by the large number of foreign
keys in the migration results database.

Reference [13] developed NoSQLayer, a framework to
support the relational database migration process into NoSQL.
The way NoSQLayer works is divided into two parts, namely
the migration module and mapping module. In the migration
module, source database elements such as tables, attributes,
relations, and indices are automatically identified and then
migrated into NoSQL. Then, the mapping module which is the
application interface with the DBMS monitors all SQL
transactions from the application and translates and changes
operations into the NoSQL model that was created in the
previous module. The framework evaluation shows that
NoSQLayer can help migrate large amounts of data
automatically without losing data.

In another study, MigDB was developed, a tool for
automatically migrating MySQL databases into MongoDB [14].
MigDB divided the work process in several stages. Firstly,
MySQL was mapped into JSON. Then the relation mapping
module with the help of the neural network decided how to map
relations. The management module converted SQL queries,
generated MongoDB queries, and manipulated collections in
MongoDB database resulted from migration. The evaluation
results showed that MigDB was able to migrate tables, relations,
data, and queries into MongoDB without initially requiring
MongoDB knowledge.

B. Transformation Method
In addition to tools development, several studies were

conducted before to study process of transforming schemes
from relational databases into the NoSQL database.

In research, development of a database transformation
system was carried out in the MySQL database into MongoDB
by utilizing structure and relations between tables as main
parameters in model formation algorithm [12]. The system was
tested by data integrity testing and accessing query time that
was run on MySQL and MongoDB. The test results showed
that developed system could migrate database by making some
adjustments.

In other studies, a Graph method has been introduced to
convert SQL database schema into NoSQL [15]. The graph
method was designed based on nesting table process. Testing
conducted in the study resulted a finding that graph method
successfully transformed SQL databases into NoSQL without
losing data.

In another study, steps to change the relational scheme to the
Hbase scheme were discussed [16]. In the study, nested
conditions have been carried out, but it was not with multiple
nested conditions, which means that tables with multilevel
relations cannot be mapped to the HBase scheme.

Teguh Bharata Adji: Relational into Non-Relational Database ... ISSN 2550-0554 (Online)

17

 IJITEE, Vol. 3, No. 1, March 2019

Continuing the previous research that has not defined
relations transformation between tables in a specific relational
database, Multiple Nested Schema method was re-introduced
[5]. The method was based on the nesting table process, where
a table A referenced table B, and table B referenced table C,
which was called a multiple nested state. In this method, the
SQL database schema was transformed following a multiple
nested process, thus forming a single table in the NoSQL
database. The test results in the research indicated that the
proposed method successfully migrated SQL databases into
NoSQL, and obtained query performance in the NoSQL
database faster than in SQL databases.

Therefore, in this development, multiple nested schema
methods were applied in the process of transforming SQL
databases into NoSQL. This method was carried out and tested
on the academic data of the Darmajaya Institute of Informatics
and Business. This work is expected to be the first step for
designing data migration methods that are more effective and
efficient, and are expected to contribute to the development of
science.

III. SYSTEM DESIGN METHOD
Implementation procedure of this system design is divided

into three stages as follows.

A. Initial Processing

1) Confidential Data Incognito: This confidential data
incognito aimed to protect data owner's privacy. Data incognito
process was carried out by creating an incognito data formula,
which was then executed on the SQL query on table needed to
be disguised, i.e., ‘Mahasiswa’ Table. To disguise student's
name with NPM 04030348, a disguised data with a ‘namamhs’
+ NPM formula in SQL query, producing value
'namamhs04030348', was formulated. A similar thing was done
on these attributes: ‘alamat’, ‘telpon’, ‘namaortu’, ‘alamatortu’,
‘telponortu’, and ‘Nosttb’ in the ‘Mahasiswa’ Table.

2) Identification of Relations: Before starting the design of
SQL database transformation schemes into NoSQL, it was
necessary to identify relations or connections between entities
or tables from SQL databases. Obtained relations between
tables were used as a reference in the transformation process at
a later stage.

B. Design of Transformation Schemes
The design of SQL database transformation scheme into

NoSQL was conducted by referring to a Multiple-Nested
Schema method [5]. Steps of NoSQL schemes design are
shown in Fig. 1.

1) Single Nested Conversion: ‘Mahasiswa’ and ‘Jurusan’
Tables: In this single nested conversion, ‘Mahasiswa’ Tables
refer to ‘Jurusan’ Tables in SQL database. To convert those to
tables into one table in NoSQL, the following rules were
followed [5].
a. Table name in NoSQL was main table same as in SQL

database, namely ‘Mahasiswa’.

Fig. 1 Database scheme conversion steps.

b. Rowkey was primary key of ‘Mahasiswa’ Table in SQL
database, which was 'mNPM'.

c. Column family name was the name of the main table and
tables referenced in the SQL database, namely ‘Mahasiswa’
and ‘Jurusan’.

d. In the ‘Mahasiswa’ Table in the SQL database, a foreign
key ‘mKodeJurusan’ referenced the table to ‘Jurusan’
Table. In NoSQL, ‘Mahasiswa’ Table contained two
column families, the first was 'mahasiswa' containing all
attributes except the table's primary key in SQL database.
The second family column was 'jurusan' containing all
attributes of ‘Jurusan’ Table in SQL database.

Fig. 2 is the conversion of single nested schemes, namely
‘Mahasiswa’ Tables and ‘Jurusan’ in SQL database into
‘Mahasiswa’ Tables in NoSQL.

2) Single Nested Conversion: ‘Matakuliah’ and ‘Jurusan’
Tables: Following a same rules as single nested conversion in
previous section, ‘Matakuliah’ and ‘Jurusan’ Tables from SQL
database were converted into NoSQL ‘Matakuliah’ Table.

3) Multiple Nested Conversion: ‘Nilai’ Tables and Single
Nested ‘Mahasiswa’-‘Jurusan’: In this multiple nested scheme
conversion, results of single nested conversion in previous step
were nested in a ‘Nilai’ Table.

ISSN 2550-0554 (Online) Teguh Bharata Adji: Relational into Non-Relational Database ...

18

IJITEE, Vol. 3, No. 1, March 2019

Fig. 2 Single nested scheme conversion designs for ‘Mahasiswa’ and ‘Jurusan’

Tables.

4) Multiple Nested Conversion: Final: In this step, results
of multiple nested conversions in previous step were nested
with results of single nested ‘Matakuliah’-‘Jurusan’ conversion,
thus it formed a single table scheme in NoSQL.

C. Design Implementation
The created database schema conversion was then be

implemented in the transformation making process in
PDI/Kettle.

1) Single Nested Conversion: ‘Mahasiswa’ and ‘Jurusan’
Table: There are three steps in this process.
a. Table Input. The transformation process began by creating

table input steps on transformation canvas. In this step, the
utilized inputs were two tables from SQL database, namely
‘Mahasiswa’ Tables and ‘Jurusan’ Tables in the
Darmajaya database.

b. Sort Rows. This step was required as a condition to conduct
a merge join, that was tables to be merged had to be sorted
by the same key or key field. In ‘Mahasiswa’ and ‘Jurusan’
Tables, the same key field was ‘KodeJurusan’, which was
a primary key from ‘Jurusan’ Table, and foreign key in
‘Mahasiswa’ Table. Then, ‘KodeJurusan’ attribute was
selected as key field in Sort Rows step.

c. Merge Join. Merge join step was used to convert two single
nested SQL tables into one table, namely ‘Mahasiswa’
Table nest ‘Jurusan’ Table. In this conversion, the
‘Mahasiswa’ Table acted as the left table, and the ‘Jurusan’
Table acted as a right table, so to obtain all data from the

‘Mahasiswa’ Table along with data from the related
‘Jurusan’ Tables, LEFT JOIN operations were used to
conduct merge join.

2) Single Nested Conversion: ‘Matakuliah’ and ‘Jurusan’
Tables: With the same rules as the previous conversion process,
in this step, the ‘Matakuliah’ and ‘Jurusan’ Tables from the
SQL database were used in the input. Then sort rows used
‘KodeJurusan’ key field, and LEFT JOIN operation to conduct
merge joins

3) Multiple Nested Conversion: ‘Nilai Table and Single
Nested ‘Mahasiswa’-‘Jurusan’: In this step, the utilized inputs
were a ‘Nilai’ Table from SQL and a table, conversion result of
single nested ‘Mahasiswa’-‘Jurusan’. Sort rows stage used
NPM key field, and LEFT JOIN operation at the merge join
step.

4) Multiple Nested Conversion: Final: In this step, the
utilised input was derived from conversion results in the
previous stages, namely the multiple nested ‘Nilai’-
‘Mahasiswa’-‘Jurusan’ conversions results and single-nested of
‘Matakuliah’-‘Jurusan’ conversion results. Sort rows used
‘KodeMK’ key field and ‘KodeJurusan’, with LEFT JOIN
operation to merge joins.

5) MongoDB Output: The last step in this transformation
was loading process into the migration destination database,
namely MongoDB output. In this step, configuration of
MongoDB server connection, 'darmajaya' database connection,
‘nilai’ collection, and Mongo document path, as well as index
creation, which resulted in MongoDB document structure, were
carried out.

D. Testing
Testing was carried out on three aspects, namely data

integrity, query performance, and space performance. Testing
was carried out by comparing measurement results of the three
parameters in each database, namely MySQL as the source
database, and MongoDB as the destination database. Testing
scenario is shown in Fig. 3.

Source DB
MySQL

Schema Conversion
Design Migration

Destination DB
MongoDB

Data Integrity Test

Compare
Query Performance

Compare
Space Performance

Fig. 3 Testing scenario.

Teguh Bharata Adji: Relational into Non-Relational Database ... ISSN 2550-0554 (Online)

19

 IJITEE, Vol. 3, No. 1, March 2019

Fig. 4 Graph of basic query response time comparison in MySQL and

MongoDB.

IV. RESULTS AND DISCUSSION

A. Test Results for Query Response Time

1) Basic Query: Fig. 4 is a chart on comparison of basic
query testing result based on query response time on source
database and migration destination. At the same time, a
comparison summary of response time testing result on basic
query is shown in Table I.

From graph in Fig. 4 and Table I, it can be seen that Q1,
which is a query only involving one table, namely ‘Mahasiswa’
Table, with SELECT COUNT, WHERE, and AND operations,
MySQL migration source database actually shows faster
performance than migration result database in MongoDB,
which is equal to 0.1842 seconds for MySQL and 0.546
seconds for MongoDB. Or it can be said that MySQL is 2.96
times faster than MongoDB.

Similar to Q1, basic query Q2 is also a query that only
involves one master table in MySQL, with the SELECT
DISTINCT, WHERE, and AND operations, MySQL migration
source database showing performance of 5.72 times faster than
the migration results database.

This happens because in MySQL, basic queries Q1 and Q2
only access ‘Mahasiswa’ Tables, which are master tables, with
records number of 11,236 rows. Whereas in MongoDB, Q1 and
Q2 access ‘Nilai’ collection, containing entire master table and
transaction table from migration source database, with records
number of 401,712 documents, as shown in Table I. In other
words, computational process of queries Q1 and Q2 loaded to
each database is not balanced, causing faster query response
time in MySQL of 2.96 times and 5.72 times that of the
MongoDB database.

Furthermore, Q3, Q4, and Q5 are basic queries involving
only transaction tables, namely ‘Nilai’ Tables in MySQL, with
SELECT COUNT operations in Q3, SELECT DISTINCT and
WHERE in Q4, and SELECT COUNT and WHERE in Q5.
Testing results show that MongoDB migration results database
provide a faster query response time than migration source
database of 28,218 times for Q3, 20.79 times for Q4, and 19.91
times for Q5, as shown in Table I.

TABLE I
SUMMARY OF BASIC QUERY RESPONSE TIME TESTING RESULTS

 Involved
SQL Table

Number of
Records

Involved
MongoDB
Collection

Number of
Records

Comparison
Response

time
Q1 ‘Maha-

siswa’
11,236 ‘Nilai’ 401,712 MySQL

2.96 times
faster

Q2 ‘Maha-
siswa’

11,236 ‘Nilai’ 401,712 MySQL
5.72 times
faster

Q3 ‘Nilai’ 401,712 ‘Nilai’ 401,712 MongoDB
28,218
times
faster

Q4 ‘Nilai’ 401,712 ‘Nilai’ 401,712 MongoDB
20.79 times
faster

Q5 ‘Nilai’ 401,712 ‘Nilai’ 401,712 MongoDB
19.91 times
faster

Therefore, it can be said that in basic queries involving
transaction tables, MongoDB migration results database shows
query response time 28.6 times faster than MySQL's migration
source database. Vice versa, in basic queries that do not involve
transaction tables, MySQL shows query response time of 3.91
times faster than the migration results database.

From comparison of basic query test results, it was
discovered that total average response time for processing five
basic queries in source database was 19.8998 seconds, while
result of migration database was 1.7866 seconds. Therefore, it
was discovered that required total time to perform basic queries
on the migration results in MongoDB was 11.13 times faster
than migration source database in MySQL.

2) Complex Query: Fig. 5 is a comparison chart of complex
query testing results based on query response time in source
database and migration destination. A summary of comparison
of complex query response time testing results is shown in
Table II.

From graph in Fig. 5 and Table II, it can be noted that in Q1,
which is a query involving four SQL tables, with SELECT
DISTINCT operation, three JOIN operations, WHERE, and
three AND operations, migration results databases delivers
performance 7.041 times faster than source database. This
happens because the query process running on MySQL requires
system to find information on four tables combined through a
JOIN operation. Whereas when querying the same information
in migration results table in MongoDB, system only queries one
table that has been combined through a transformation process.

Likewise in Q2, which involves four SQL tables, with
SELECT operations, three JOIN operations, WHERE, AND,
SUBQUERY, and ORDER BY, MongoDB database provides
performance of 20.471 times faster than the MySQL database.
In Q3, which involves three SQL tables, with SELECT
operations and two LEFT JOIN operations, the MongoDB
database provides performance of 51.692 times faster than
MySQL. Then in Q4 and Q5 involving two SQL tables, with
SELECT DISTINCT, INNER JOIN, and WHERE operations,
and AND in Q4, MongoDB database provides 11.483 times
performance and 13.046 times faster than MySQL.

ISSN 2550-0554 (Online) Teguh Bharata Adji: Relational into Non-Relational Database ...

20

IJITEE, Vol. 3, No. 1, March 2019

Fig. 5 Graph on comparison of complex query response time in MySQL and

MongoDB.

TABLE II
SUMMARY OF COMPLEX QUERY RESPONSE TIME TESTING RESULT

 Involved
SQL Table

Number
of

Records

Involved
MongoDB
Collection

Number
of

Records

Comparison
Response

time
Q1 ‘Nilai’

‘Mahasiswa’
‘Matakuliah’
‘Jurusan’

401,712
11,236
1,678

9

‘Nilai’ 401,712 MongoDB
7.041x
faster

Q2 ‘Nilai’
‘Mahasiswa’
‘Matakuliah’
‘Jurusan’

401,712
11,236
1,678

9

‘Nilai’ 401,712 MongoDB
20.471x
faster

Q3 ‘Nilai’
‘Mahasiswa’
‘Jurusan’

401,712
11,236

9

‘Nilai’ 401,712 MongoDB
51.692x
faster

Q4 ‘Nilai’
‘Mahasiswa’

401,712
11,236

‘Nilai’ 401,712 MongoDB
11.483x
faster

Q5 ‘Nilai’
‘Matakuliah’

401,712
1,678

‘Nilai’ 401,712 MongoDB
13.046x
faster

This happens because MySQL database requires system to
look for required information on more than one table combined
with JOIN operations, which makes searching process takes
longer time [5]. Unlike the migration results table in MongoDB,
‘Nilai’ collection has provided all the data in one table, which
makes the search process proven faster in the five complex
queries tested, as shown in the summary in Table II.

From the comparison of complex query test results, it was
found that total average response time for processing five
complex queries in source database was 22.4814 seconds, while
migration result on database was 1.6874 seconds, so that
required total time to perform complex queries on migration
results in MongoDB was 13.32 times faster than migration
source database in MySQL.

Therefore, it can be said that, in MongoDB database the
database transformation result using multiple nested schema,
complex queries or queries involving the existence of relations
between tables or JOIN states, has a performance of 13.32 times
faster than MySQL database, at all tested complex queries.

TABLE III
SUMMARY OF DATA INTEGRITY TESTING RESULTS IN MYSQL AND

MONGODB

Query
Number of Query

Results (rows) Comparison of
Query Results MySQL MongoDB

Complex Q1 20 20 Identical
Complex Q2 39 39 Identical
Complex Q3 401,712 401,712 Identical
Complex Q4 837 837 Identical
Complex Q5 11 11 Identical

Basic Q1 476 476 Identical
Basic Q2 213 213 Identical
Basic Q3 401,712 401,712 Identical
Basic Q4 7 7 Identical
Basic Q5 1 1 Identical

TABLE IV
COMPARISON ON SPACE PERFORMANCE TESTING RESULT OF SOURCE AND

MIGRATION RESULTS DATABASES

Basis
Data Table Storage Size Total Storage

Size
Migration
Source

‘Nilai’
‘Matakuliah’
‘Mahasiswa’
‘Jurusan’

25.6 MB
336 KB
3.5 MB
16 KB

29,452 MB

Migration
Result

‘Nilai’ 310,833 MB 310,833 MB

B. Data Integrity Testing Results
Table III is a summary of data integrity testing result on

migration source and destination databases. From testing result
in Table III, it can be seen that both databases display same
query result, with same records number in every tested query,
both complex query and basic query. It shows that database
transformation process with multiple nested schema method is
able to maintain data integrity in all tested queries.

C. Space Performance Testing Result
Table IV shows comparison of space performance testing

result of source and migration result databases. Comparison on
space performance testing result in Table IV shows that
database resulted from transformation with multiple nested
schema method in MongoDB requires data storage 10.53 time
greater than migration source database in MySQL. This
happens because the MongoDB database stores all related
information in one record, resulting in a lot of data redundancy
in migration result collection. However, at present, storage
performance is not a top priority in data processing technology,
so large storage requirement is a consequence of obtaining
efficient query performance, which is still considered as the
first priority in data processing technology [5].

V. CONCLUSIONS
Based on the work that has been done, several conclusions

can be drawn as follows. A database transformation system
design with Multiple Nested Schema has been successfully
carried out. Relational database migration into non-relational
database has also been successfully carried out, from MySQL
into MongoDB. Result evaluation of database migration was

Teguh Bharata Adji: Relational into Non-Relational Database ... ISSN 2550-0554 (Online)

21

 IJITEE, Vol. 3, No. 1, March 2019

successfully carried out, with the following conclusions.
Complex queries or queries involving existence of a relation
between tables or JOIN state in SQL shows response time 13.32
times faster on migration results database in the MongoDB,
rather than MySQL migration source database. Then, basic
queries involving SQL transaction tables show response times
28.6 times faster in migration results database in MongoDB
than MySQL migration source database. In contrast, basic
queries that do not involve SQL transaction tables, MySQL
shows query response times 3.91 times faster than MongoDB.
Furthermore, database transformation process with Multiple
Nested Schema method is able to maintain data integrity on the
entire tested queries. Finally, database resulted from
transformation with Multiple Nested Schema in MongoDB
shows a storage requirement of 10.53 times greater than the
MySQL source migration database. This is due to the large
amount of data redundancy resulting from the transformation
process. However, at present, storage performance is not a top
priority in data processing technology, so large storage
requirement is a consequence of obtaining efficient query
performance, which is still considered as the first priority in
data processing technology.

REFERENCES
[1] R.M. Stair and G.W. Reynolds, Fundamentals of Information Systems,

Boston, USA: Courses Technology, 2008.
[2] K. Hallgren (2016) “How to Approach Data-Driven Decisions in

Education,” [Online] https://www.mathematica-mpr.com/commentary/
data-driven-decisions-in-education, access date: 08-Nov-2018.

[3] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A.H. Byers, “Big Data: The Next Frontier for Innovation, Competition,
and Productivity,” McKinsey Co. Tech. Report, pp. 1-156, 2011.

[4] S. Yin and O. Kaynak “Big Data for Modern Industry: Challenges and
Trends,” Proc. of the IEEE, Vol. 103, No. 2, pp. 143–146, 2015.

[5] G. Zhao, L. Li, Z. Li, and Q. Lin, “Multiple Nested Schema of Hbase for
Migration from SQL,” Proc. - 2014 9th Int. Conf. P2P, Parallel, Grid,
Cloud Internet Comput. 3PGCIC 2014, 2014, pp. 338–343.

[6] A. Nayak, A. Poriya, and D. Poojary, “Type of NOSQL Databases and
Its Comparison with Relational Databases,” Int. J. Appl. Inf. Syst., Vol. 5,
No. 4, pp. 16–19, 2013.

[7] V. Manoj, “Comparative Study of Nosql Document, Column Store
Databases and Evaluation of Cassandra,” Int. J. Database Manag. Syst.,
Vol. 6, No. 4, pp. 11–26, 2014.

[8] K. Chodorow, MongoDB: The Definitive Guide 2nd Edition. USA:
O’Reilly Media, Inc., 2013.

[9] J. Speelpenning, J. Lounsberry, and A. Price-budgen, “Data Modeling
and Relational Database Design Publishers,” Oracle, Student Guide, Vol.
1, pp. 1-320, July, 2001.

[10] M. Dagar, S. Mittal, and M. Singh, “Conversion from Relational-Based
Database to Column-Based Database,” Int. J. Sci. Res. Comput. Sci., Vol.
1, No. 1, pp. 29–35, 2013.

[11] W.C. Chung, H.P. Lin, S.C. Chen, M.F. Jiang, and Y.C. Chung,
“JackHare: a Framework for SQL to NoSQL Translation Using
MapReduce,” Autom. Softw. Eng., Vol. 21, No. 4, pp. 489–508, 2014.

[12] I.G. Winaya and A. Ashari, “Transformasi Skema Basis Data Relasional
Menjadi Model Data Berorientasi Dokumen pada Mongodb,” Indonesian
Journal of Computing and Cybernetics Systems (IJCCS), Vol. 10, No. 1,
2015.

[13] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourão, “A Framework
for Migrating Relational Datasets to NoSQL,” Procedia Comput. Sci.,
Vol. 51, No. 1, pp. 2593–2602, 2015.

[14] G. Liyanaarachchi, L. Kasun, M. Nimesha, K. Lahiru, and A. Karunasena,
“MigDB - Relational to NoSQL Mapper,” 2016 IEEE Int. Conf. Inf.
Autom. Sustain. Interoper. Sustain. Smart Syst. Next Gener. (ICIAfS
2016), 2016, pp. 1-6.

[15] G. Zhao, Q. Lin, L. Li, and Z. Li, “Schema Conversion Model of SQL
Database to NoSQL,” Proc. - 2014 9th Int. Conf. P2P, Parallel, Grid,
Cloud Internet Comput. 3PGCIC 2014, 2014, pp. 355–362.

[16] C. Li, “Transforming Relational Database into HBase: A Case Study,”
Proc. 2010 IEEE Int. Conf. Softw. Eng. Serv. Sci. (ICSESS 2010), 2010,
pp. 683–687.

ISSN 2550-0554 (Online) Teguh Bharata Adji: Relational into Non-Relational Database ...

22

