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Abstract

QUAL2Kw is a framework for the simulation of water quality in streams and rivers. Dynamic diel heat budget and water quality

kinetics are calculated for one-dimensional steady-flow systems. The framework includes a genetic algorithm to facilitate the cali-
bration of the model in application to particular waterbodies. The genetic algorithm is used to find the combination of kinetic rate
parameters and constants that results in a best fit for a model application compared with observed data. The user has the flexibility

to select any combination of parameters for the optimization and specify any appropriate function for goodness-of-fit.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer models are used extensively for water-qual-
ity management of rivers and streams (see Thomann and
Mueller, 1987; Chapra, 1997 for reviews). These models
must typically be calibrated by adjusting a large number
of parameters to attain optimal agreement between model
output and field measurements. Such calibration is often
performed by the time-consuming process of manual tri-
al-and-error. The present paper describes a new river
model that includes automatic calibration.

The advantages of global optimization algorithms for
calibration of water quality models have been noted by
many authors (e.g. Zou and Lung, 2004; Mulligan and
Brown, 1998). Several alternative tools are available
for automatic calibration of models (e.g. UCODE by
Poeter and Hill, 1998, or PEST by Scientific Software
Group). However, the present model is not compatible
with the requirements of tools such as UCODE and
PEST, and a customized function optimization algo-
rithm was required.

http://www.ecy.wa.gov/programs/eap/models/
http://www.ecy.wa.gov/programs/eap/models/
mailto:gpel461@ecy.wa.gov
http://www.elsevier.com/locate/envsoft
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Genetic algorithms (hereafter GAs) are a class of
search techniques analogous to the process of natural
selection during evolution (see Goldberg, 1989 for
reviews). GAs have been used in many types of models
(e.g. Gupta et al., 1999; Wang, 1997). The GA used in
QUAL2Kw is the PIKAIA algorithm (Charbonneau
and Knapp, 1995). PIKAIA has been applied successfully
in other modeling applications (Metcalfe, 2001).

2. Overview of the water quality model in QUAL2Kw

QUAL2Kw is a modeling framework that is intended
to represent a modernized version of the U.S. Environ-
mental Protection Agency’s standard river water-quality
model: QUAL2E (Brown and Barnwell, 1987). In addi-
tion to incorporating more current science, the frame-
work also includes several new features that allow it to
be applied to shallow, upland streams.

As with QUAL2E, QUAL2Kw simulates the trans-
port and fate of conventional (i.e., non-toxic) pollutants.
The framework represents the river as a one-dimensional
channel with non-uniform, steady flow, and simulates
the impact of both point and non-point pollutant load-
ings. The model simulates changes within the daily cycle
with a user-selected time step of less than 1 h.

The model simulates the transport and fate of a
number of constituents such as temperature, carbona-
ceous biochemical oxygen demand, dissolved oxygen,
phytoplankton and several forms of the nutrients phos-
phorus and nitrogen (Table 1). It also simulates several
other constituents that are not typically included in
generally-available software. In particular, the model
simulates pH, alkalinity, inorganic suspended solids,
pathogenic bacteria, and bottom algae. The inclusion

Table 1

State variables in QUAL2Kw

Variable Unitsa

Temperature �C

Conductivity mmhos

Inorganic suspended solids mg D/L

Dissolved oxygen mg O2/L

Slowly reacting CBOD mg O2/L

Fast reacting CBOD mg O2/L

Organic nitrogen mg N/L

Ammonia nitrogen mg N/L

Nitrate nitrogen mg N/L

Organic phosphorus mg P/L

Inorganic phosphorus mg P/L

Phytoplankton mg A/L

Detritus mg D/L

Pathogen cfu/100 mL

Alkalinity mg CaCO3/L

Total inorganic carbon mole/L

Bottom algae biomass g D/m2

Bottom algae nitrogen mg N/m2

Bottom algae phosphorus mg P/m2

a mg/Lh g/m3, DZ dry weight, AZ chlorophyll a.
of bottom algae is essential for simulating shallow
streams. These algae have the novel feature of variable
stoichiometry of the nutrients nitrogen and phosphorus.

The model has two other features that distinguish it
from other frameworks. First, sedimentewater fluxes
of dissolved oxygen and nutrients are simulated inter-
nally rather than being prescribed. That is, oxygen and
nutrient fluxes are computed as a function of settling
particulate organic matter, reactions within the sedi-
ments, and the concentrations of soluble forms in the
overlying waters. Second, the hyporheic zone is mod-
eled. This is the area below the streambed where water
percolates through spaces between the rocks and cob-
bles. This is another feature that is necessary in order
to simulate shallow streams.

QUAL2Kw is implemented within Microsoft Excel.
It is programmed in Visual Basic for Applications
(VBA). Excel is used as the graphical user interface for
input, running the model, and viewing of output. The
numerical integration during a model run is performed
by a compiled Fortran 95 program that is run by the
Excel VBA program.

A general mass balance for a constituent concentra-
tion (ci) in the water column of a reach (excluding hypo-
rheic exchange) is written as (Fig. 1):
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where QiZ flow [m3/d, abZ abstraction], ViZ volume
(m3), E #iZ the bulk dispersion coefficient between rea-
ches i and iC 1 [m3/d], WiZ the external loading of
the constituent to reach i [g/d or mg/d], and SiZ sources
and sinks of the constituent due to reactions and mass
transfer mechanisms [g/m3/d or mg/m3/d]. For bottom
algae in the water column the transport and loading
terms are omitted from the mass balance differential
equations.
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Fig. 1. Mass balance for constituents in a reach segment ‘‘i ’’.
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The source/sink term (Si in Eq. (1)) requires specifica-
tion of a large number of parameters for each state vari-
able (e.g. maximum growth rate of bottom algae). The
user may select which parameters are held at constant
values and which are to be optimized by the GA.

A detailed description of the model is provided else-
where (http://www.ecy.wa.gov/programs/eap/models/).

3. The genetic algorithm for the calibration

of QUAL2Kw

A flowchart of the PIKAIA GA used in QUAL2Kw
is shown in Fig. 2. The GA maximizes the goodness-

Fig. 2. Flowchart for the genetic algorithm.
of-fit of the model results compared with measured
data. The GA carries out its maximization task on a
user-selected number of model runs to define a popula-
tion. The population size remains constant throughout
the evolutionary process. Rather than evolving the
population until some preset tolerance criterion is satis-
fied, the GA carries the evolution forward over a user-
specified number of generations.

Charbonneau and Knapp (1995) provide a tutorial
for GA concepts and comprehensive documentation
of the PIKAIA GA. The PIKAIA GA is adaptable
for use in a wide variety of modeling applications. The
original Fortran 77 code for PIKAIA was translated
to Excel VBA for use in QUAL2Kw.

The VBA code accounts for only a small fraction of
the computational time when the GA is run. Most of
the computational time is spent by the compiled Fortran
program that is driven by the GA to perform the numer-
ical integration of the water quality model each time the
fitness function is evaluated.

The user may select any combination of kinetic rate
parameters to include in the optimization. The user
also specifies the minimum and maximum values for
any kinetic rate parameters that are being optimized.

The GA maximizes the function f(x) in a bounded
n-dimensional space, for

xhðx1;x2;.;xnÞ xk˛½0:0;1:0� ð2Þ

where n is the number of parameters that are being
optimized. The parameters (x) are bounded in the range
of 0.0 to 1.0 in the GA. The kinetic rate parameters for
the model are scaled from the values of x according to
a linear interpolation between the specified minimum
and maximum value of each kinetic rate parameter
that is being optimized.

The value of the function f(x) corresponds to the fit-
ness of a particular model that is run with the set of
kinetic rate parameters that are scaled from x. For ex-
ample, the fitness may be determined as the reciprocal
of the root mean squared error (RMSE) of the difference
between the model predictions and the observed data for
water quality constituents. The reciprocal of the RMSE
is a better indicator of fitness than the RMSE because
the GA maximizes the function f(x). Specification of
the fitness function and inclusion of appropriate varia-
bles and data are crucial for the successful performance
of the GA.

A robust fitness function should represent all of the
state variables of the model (Table 1). An example of
a possible fitness function for multiple state variables
is the reciprocal of a weighted average of the normalized
RMSE, which can be estimated as follows,

http://www.ecy.wa.gov/programs/eap/models/
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where Oi,jZ observed value, Pi,jZ predicted value, mZ
number of pairs of predicted and observed values, wiZ
weighting factor, and qZ number of different state varia-
bles (e.g. dissolved oxygen, pH, nutrient concentrations,
etc.) included in the reciprocal of the weighted normalized
RMSE. The Excel framework provides flexibility to con-
struct any fitness function with any combination and
weighting of water quality constituents to control the
calibration results.

At the beginning of an evolutionary run, the initial
values for x for each individual model run in the popu-
lation are selected from a uniform random distribution
between 0 and 1. Most of the individual model runs in
the initial population have very poor fitness values.
However, some individuals have better fitness than
others, and the natural selection process during the
evolution favors those individuals.

A ‘‘roulette wheel’’ algorithm is used to select both
parents during the reproductive cycle. The relative fit-
ness based on rank is used as a measure of the selection
probability. The user specifies the fitness differential that
is used to translate the rank into the relative fitness.

A ‘‘chromosome’’ is created for each parent from the
n parameters in x. The GA encodes the values in x with
1-digit base 10 integers (0e9). Each digit represents
a ‘‘gene’’ in the ‘‘chromosome’’. The user specifies the
number of digits for the encoding. For example, if
nZ 2, x1Z 0.25034275, x2Z 0.6718247, and 5 digits
are used for encoding, then the encoded chromosome
would have a value of 2503467182. The GA also incor-
porates a mutation operator that may vary dynamically
over the course of the evolution to potentially alter the
values of each ‘‘gene’’.

Optional crossover modes are provided: one-point, two-
point, uniform, and arithmetic. The crossover operator
acts on a pair of parent chromosomes to produce a pair
of offspring chromosomes. For one-point and two-point
crossover, the break points are randomly selected along
the length of the chromosome. For example, if the
two parents have the encoded chromosome values
2503467182 and 4276986439, and one-point crossover
occurs at the 4th digit, then the offspring chromosomes
are 2503986439 and 4276467182. Crossover occurs if
a user-specified number is exceeded by a uniform random
number between 0 and 1, otherwise the offspring are
exact copies of the parents.

Two-point crossover is similar to one-point except
that the chromosome is randomly split into three seg-
ments and the middle segment is crossed. Uniform
crossover randomly crosses each gene. Arithmetic cross-
over decodes the parent chromosomes, randomly inter-
polates the real values in vector x between the parents,
and then encodes the interpolated vectors to create the
offspring chromosomes. Hybrid modes are also avail-
able for combinations of one-point, two-point, uniform,
and arithmetic crossover.

The offspring chromosomes are decoded back to real
values of x between 0.0 and 1.0, scaled between the
Fig. 3. An example calibration for dissolved oxygen in a small stream.
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specified minimum and maximum values for the kinetic
rate parameters, and the model is run with the new de-
coded and scaled kinetic rate parameters. The fitness value
of these new offspring model runs is then determined and
this process is repeated until the number of offspring
equals the number of model runs in the population.

Several optional reproduction plans are available to
control how the algorithm incorporates the offspring
into the population during the evolution. These include
(1) full generational replacement, (2) steady-state-
delete-random, and (3) steady-state-delete-worst. Under
the first plan the entire population is replaced by the off-
spring as soon as the number of offspring equals the
size of the population. Under the second and third, the
offspring are incorporated into the population as they
are produced. The second and third plans differ in terms
of which members of the population are deleted from
the population when the offspring are incorporated.

The GA incorporates an optional strategy of elitism
which allows the user to specify whether the fittest indi-
vidual in a population will be guaranteed to be passed
on to the next generation.

4. Example application

Application of a model generally includes calibration
and confirmation (e.g. Chapra, 2003). QUAL2Kw
Fig. 4. Results of various evolutionary strategies and options. A population size of 100 was used for a, b, and d. The same random number seed was

used for a, b, and c.
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Table 2

Variability of selected optimal parameters for bottom algae kinetics from 10 GA simulation runs (at final fitness shown in Fig. 4d)

Parameter Unitsa Mean Standard deviation Range of GA constraints

Maximum unlimited growth rate mg A/m2/d 472 23 (0e500)

Respiration day�1 at 20 �C 0.39 0.04 (0e0.5)

Excretion of N and P day�1 at 20 �C 0.39 0.07 (0e0.5)
Death day�1 at 20 �C 0.29 0.08 (0e0.5)

External N half saturation mg N/L 158 66 (0e300)

External P half saturation mg P/L 46 38 (0e100)

Subsistence quota for N mg N/mg A 0.30 0.24 (0.0072e7.2)
Subsistence quota for P mg P/mg A 0.031 0.029 (0.001e1)

Maximum uptake rate for N mg N/mg A/d 94 78 (1e500)

Maximum uptake rate for P mg P/mg A/d 17 12.3 (1e500)

a AZ chlorophyll a, assumed chlorophyll stoichiometry of 1% of dry weight.
allows for separate calibration and confirmation evalua-
tions, or simultaneous calibration of up to three data
sets. The following example of calibration would gener-
ally be followed by confirmation with independent data.

An example showing the results of an application of
the GA for calibration of a water quality model for dis-
solved oxygen in a small effluent-dominated stream
is presented in Fig. 3. The GA was able to accurately cal-
ibrate the model over a very wide diel range for dissolved
oxygen (Fig. 3). Fitness in this example was defined as the
reciprocal of a weighted average of the normalized root
mean squared errors of the differences between observed
and predicted concentrations of various water quality
constituents (Eq. (3)). Since the fitness function included
most of the state variables, the same calibration run also
resulted in accurate simultaneous calibration of the other
water quality constituents, including pH and nutrient
concentrations. Model run time for a population of 100
with 100 generations was approximately 6 h using
a 3.2 GHz Pentium 4 processor.

Fig. 4 shows the improvement in fitness over the course
of the evolution for various (a) evolutionary strategies, (b)
crossover methods, (c) populations sizes, and (d) random
number seeds. Performance was diminished by using
steady state reproduction (Fig. 4a) and arithmetic cross-
over (Fig. 4b). The best strategy appears to include a com-
bination of elitism and full generational replacement
(Fig. 4a). Adjustable mutation and constant mutation
performed similarly in this example, although adjustable
mutation could be better in case convergence occurs
quickly. The best crossovermethod appears to be a hybrid
with equal probability of one-point or two-point, possibly
also including the uniformmethod (Fig. 4b). Apopulation
size of 100 performs better than smaller numbers and
nearly as well as a population of 500 (Fig. 4c).

The random number seed determines the sequence of
random numbers that are generated during the optimiza-
tion to create the initial population and control the genetic
operators. Each of the 10 GA optimizations in Fig. 4d
uses a different random number seed but are otherwise
identical, using a strategy of elitism, full generational re-
placement, adjustable mutation, and equal probability
of crossover with one-point, two-point, or uniform oper-
ators. Each of the 10GAoptimizations in Fig. 4d could be
acceptable for calibration even though eachhas adifferent
set of optimum values for the kinetic rates and constants.
Results of the GA allow exploration of the variability of
the optimum kinetic rate parameters (Table 2).

5. Conclusions and recommendations

The Excel framework performs well and allows
a great deal of flexibility with reasonable computational
speed. A hybrid method using one-point, two-point, and
uniform crossover combined with a full generational re-
placement strategy with adjustable mutation and elitism
is recommended. Future enhancements could include
additional GA methods for selection, crossover, and
mutation. Reasonable ranges for parameters and strate-
gies for selecting which parameters to include in the op-
timization should also be explored. Additional research
is also suggested for methods of calculating goodness-
of-fit and for the interpretation of the variability of
the optimum parameter set.
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