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Abstract. Indonesia has the largest mangrove forest in the world, around 3.3 million hectares or 19.5% of 
the entire mangrove’s world population. Mangroves have many ecological and economic benefits and are also 
threatened by several conditions, such as a decrease in area, land, degradation, and the health of mangrove 
vegetation. One of the methods in maintaining the sustainability of mangrove ecosystems is mapping the 
biophysical aspects of vegetation, namely mapping the percentage of mangrove canopy cover using field 
measurements or remote sensing. This study aims to compare the accuracy of Light Detection and Ranging 
(LiDAR) data based on All Return Cover Index (ARCI) and First Return Cover Index (FRCI) algorithms in 
mapping the percentage of mangrove canopy cover and analyzing its spatial distribution. The study area is a 
mangrove forest in Ratai Bay Pesawaran Lampung. This forest is dominated by a dense and evenly distributed 
canopy cover class with an average value of 78.24% which was acquired using the hemispherical photography 
method. ARCI and FRCI methods are dominated by the dense and evenly distributed cover class with an 
average percent cover value of 85.39% and 89.78%, respectively. The accuracy of mapping the percentage of 
mangrove canopy cover using FRCI is higher than ARCI, with a maximum accuracy value of 93.08% and 
a standard error of 5.95%. That value shows that using LiDAR data with the FRCI method for mapping the 
percentage of mangrove canopy cover produces a high accuracy value.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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1. 	 Introduction
A mangrove is a tree or shrub that generally has a height 

exceeding one and a half meters and usually grows above mean 
sea level in the coastal zone of the sea or at the boundary of 
the estuary (Robertson & Alongi, 1992). Mangroves are one of 
the forests rich in ecological and economic benefits, of which 
there are 3.3 million hectares of mangrove forests in Indonesia 
(Rahadian et al., 2019). Globally, Indonesia is listed as a country 
with the largest mangrove forest in the world where around 
19.5% of mangrove forests are in Indonesia (Bunting et al., 
2018). Although it has much wealth, mangrove forests can also 
experience threats, such as decreased mangrove areas, which 
natural conditions or anthropological activities can cause. 
Hamilton & Casey (2016) stated that as much as 4.36 km2 of 
mangrove forests in Indonesia experienced a decrease in area. 
This threat can undoubtedly disrupt the balance of ecosystems 
and biodiversity contained in mangrove forests, including 
wildlife habitat in it can also be eliminated. The condition 
of mangrove forests can be modeled using various methods, 
including mapping the percentage of mangrove canopy cover. 
In addition, mapping the percentage of mangrove canopy 
cover also plays an essential role in carbon stock estimation 
and simulation of wildfire estimation (Ma et al., 2017).

Information on mangrove canopy cover can be done 
through conventional mapping and remote sensing approaches. 
Conventional mapping of the percentage of mangrove canopy 
cover can use the hemispherical photography method, which 

requires a camera with good resolution (Korhonen et al., 
2006). In addition, other simple methods, such as the intersect 
method, require much human labor. However, both methods 
still need to be improved in terms of time and relatively higher 
costs, and it is not easy to get good field measurements in 
mapping the percentage of canopy cover in the broader area. 
The selection of a more efficient method is an alternative, 
especially in mangrove forests, which have unique terrain 
characteristics that make the remote sensing approach more 
suitable for obtaining mangrove canopy cover information. 

Remote sensing technology can be utilized to map the 
vegetation canopy cover percentage, especially using Light 
Detection and Ranging (LiDAR) data. The utilization of 
LiDAR data has been studied previously, as conducted by 
Ma et al. (2017), who compared methods in mapping the 
percentage of highland forest canopy cover between airborne 
LiDAR, aerial photographs, and satellite images. The results 
showed that using LiDAR based on the First Return Cover 
Index (FRCI) has a higher level of mapping accuracy than 
other remote sensing data. One of the advantages of LiDAR 
over other remote sensing data is that it is able to measure a 
geographical environment in three dimensions (3D). This is 
because LiDAR is able to record laser firing angle information 
so that the x, y, and z values of each return can be known, and 
LiDAR is also having accurate geometry or georeferencing 
accuracy. Another advantage of LiDAR is that the data can be 
acquired during the day or night as long as there is no thick fog 
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or high humidity levels such as rain or snow, making LiDAR 
more effective that other passive optical imagery. The most 
useful characteristic of LiDAR not found in other sensors in 
vegetation studies in particular is that is its laser energy or 
pulse can penetrate canopy gaps and measure the structural 
elevation of the canopy and terrain along the recorded area 
(Dong & Chen, 2018). 

The research was then tried to be applied by Azis (2019), 
which showed that LiDAR data based on the All Return Cover 
Index (ARCI) had better accuracy in mapping canopy cover 
in Central Kalimantan peat swamp forests. The utilization of 
LiDAR data in mapping the percentage of canopy cover based 
on ARCI and FRCI has yet to be consistent in forest vegetation 
in general. Therefore, it is necessary to apply the method in 
other vegetation forests, such as mangrove forests. Several 
studies related to the utilization of LiDAR data have reported 
that there are differences in accuracy between studies. As in 
the research of Wijaya et al. (2023), used airborne LiDAR to 
map mangrove vegetation structures in Ratai Bay, Lampung. 
Their canopy height model achieved an impressive accuracy 
of 82.3% to 88.6%, while the canopy cover percentage model 
ranged from 79.6% to 94.7%. Overall, their vegetation structure 
classification was 77% accurate. One of the other references 
in this study is research from Ma et al. (2017) systematically 
compared canopy cover estimations derived from LiDAR 
data, quick field measurements, aerial imagery, and satellite 
imagery using different algorithms. Although their study 
was not specific to mangroves, it provides valuable insights 
for applying similar methods to mangrove forests. Notably, 
their LiDAR-derived canopy cover estimates were marginally 
influenced by the estimation algorithms

However, one of the main issues is that the different 
objects mapped and the specifications of the LiDAR data used 
to make the mapping results obtained differ in accuracy. This 
research aims to develop LiDAR data utilization in mapping 
the percentage of ARCI and FRCI-based vegetation canopy 
cover applied in mangrove forests. Three objectives in this 
study: [1] analyze the distribution and data of the percentage of 
mangrove canopy cover from field measurements; [2] analyze 
the variation and spatial distribution of the percentage of 
ARCI and FRCI-based mangrove canopy cover using LiDAR 
data; and [3] calculating the accuracy of the results of mapping 
the percentage of ARCI and FRCI-based mangrove canopy 
cover using LiDAR data. In addition, in the context of research 
usefulness, this study is expected to provide knowledge to the 
broader community regarding a more accurate method of 
mapping the percentage of mangrove canopy cover to increase 
the effectiveness of monitoring or management of mangrove 
area management, especially for communities and managers 
in the local area.

2. 	 Methods
Study Area

The study area is in Ratai Bay (Figure 1), administratively 
located in two villages: Padang Cermin Village and Sanggi 
Village, Padang Cermin District, Pesawaran Regency, 
Lampung Province. Geographically, the boundaries of the 
study area are 5°34’45”-5°36’54” North and 105°9’35”-
105°10’48” East, with an area of 254.37 hectares. The selection 
of the research study area in Ratai Bay was based on several 
factors. First, the mangrove forest in this part of Ratai Bay is a 
natural mangrove forest and has not undergone much change. 

Figure 1. Study area and field sample distribution in Ratai Bay Mangrove Forest, Lampung, Indonesia
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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Second, the visible zonation of mangrove forests in some 
areas of Ratai Bay has the potential for mangrove biophysical 
measurements, such as the percentage of mangrove canopy 
cover, due to variations in height, canopy cover, and density.  
Based on direct observation in the field, the zonation of 
mangrove vegetation in Ratai Bay is homogeneously grouped. 
From sea to land the zoning layer starts from certain species 
such as Sonneratia alba, Avicennia marina to the center such 
as Rhizophora apiculata and Rhizophora stylosa. And there 
are also groups of Nypa fruticans that are quite colonized in 
some areas, especially around the Way Ratai river which is 
closer to non-mangrove vegetation. Third, the location has a 
varied mangrove ecosystem, especially at the species level, in 
which Rhizophora apiculata dominates. Other species that can 
be found at the site include Acanthus ilicifolius, Acrostichum 
aureum, Avicennia marina, Ceriops tagal, Nypa fruticans, 
Rhizophora stylosa, Sonneratia alba, Xylocarpus granatum, and 
Xylocarpus mollucensis (M, 2023).

Airborne LiDAR Datasets & LiDAR Pre-Processing
The data used in this study is airborne LiDAR to model 

the percentage of mangrove canopy cover. The data was 
obtained from the Geospatial Information Agency recorded 
on December 31, 2020, in Ratai Bay, Pesawaran, Lampung. 
The reason for using this LiDAR dataset is that it has a high 
laser point density of 20-30 points/m2, which is optimal for 
mapping the biophysical parameters of mangrove vegetation. 
In addition, this airborne LiDAR data has a scan angle of 40-
75˚ with a pulse rate of 1.0 MHz, which has the advantage of 
recording more comprehensive objects from various recording 
angles.  The value of the mapping mission is multifaceted, 
primarily determined by key parameters such as flight 
altitude and overlap settings. Flight altitude directly impacts 
the spatial resolution and point density of the resulting 
data, higher altitudes cover larger areas per point but reduce 
point density, while lower altitudes yield higher density but 
cover smaller areas per point. Similarly, overlap settings, 
both side and front, influence data quality and processing 
efficiency. Higher overlaps ensure redundancy in data 
capture, enhancing accuracy in 3D reconstruction and feature 
extraction but also increasing data volume and processing 
time. Therefore, optimizing these parameters is essential to 
strike a balance between data quality, resolution, coverage 
area, and operational efficiency, ensuring the successful and 

cost-effective execution of mapping missions. The LiDAR data 
was acquired on December 31, 2020, at 19.00 UTC at low tide 
conditions so that the recorded mangrove vegetation objects 
were optimal for study. 

Before being applied to the model, LiDAR data 
underwent pre-processing consisting of reclassification and 
rasterization processes.  In this study, the LiDAR data exhibits 
a geometric accuracy of 4 centimeters. The correction for 
geometry leverages DGNSS (Differential Global Navigation 
Satellite System), ensuring precise spatial alignment. This 
reclassification process aims to improve and correct the point 
cloud class according to the recorded object. In this research, 
the required data classification is in the form of vegetation 
classes with a maximum height of 50 meters in types 3 (low 
vegetation), 4 (medium vegetation), and 5 (high vegetation). 
Therefore, objects other than these data types were removed, 
such as pulse data detected as buildings, water, or other noise. 
It is to facilitate LiDAR data processing in obtaining mangrove 
canopy cover information accurately. The rasterization process 
is essential because it is one of the effective ways to calculate 
canopy cover by dividing the study area into several small 
units of the same size through this rasterization process. We 
rasterized the LiDAR point clouds into 10x10 meters pixels in 
this case. The choice of a 10x10 meter pixel size for LiDAR data 
rasterization represents a trade-off between capturing relevant 
ecological detail and computational efficiency. This scale aligns 
well with typical field sampling plot sizes used in ecological 
studies, facilitating a direct comparison between LiDAR-
derived canopy cover and ground measurements. Additionally, 
a 10x10 meter resolution reduces the visual impact of scan line 
artifacts present in smaller pixel sizes, leading to smoother 
visualizations and potentially mitigating autocorrelation issues 
in ecological modeling. Furthermore, a 10x10 meter pixel size 
helps balance the representation of canopy cover. Smaller 
pixels might overestimate cover due to capturing gaps within 
the canopy, while larger pixels might underestimate cover by 
smoothing over gaps entirely. This intermediate resolution 
provides a more accurate representation of the proportion of 
ground obscured by the tree canopy. This pixel size mimics 
the average size of the mangrove tree canopy in the study site. 

Field Measurement
Field canopy cover data were collected for the accuracy 

assessment purpose of the resulting maps. In this study, we 

Figure 2. Field sample plot scheme.
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took hemispherical photos vertically through a fisheye lens 
(180°) with a photo-taking height of about 1.5 meters from 
the ground. The results of the vertical shooting are further 
processed to calculate how much the percentage of canopy 
cover at each sample plot. The technique of taking hemisphere 
photos (Figure 2) considers several factors, namely identifying 
the distribution of canopy closure, determining the number of 
photos taken in each plot, determining the location of images 
in quadrants in the plot, the position of taking hemisphere 
photos, and finally taking hemisphere photos must meet valid 
requirements (Dharmawan, 2020).

The sample plot size of 10x10m was set up to consider 
the LiDAR raster pixel size. In this way, several point clouds 
on airborne LiDAR can represent the samples taken. In 
addition, this size also considers the optimum pixel size of the 
LiDAR data used to represent the condition of canopy cover 
in the field.  The selection of a 10x10 meter size for both the 
field sample plot and the LiDAR data pixel size in this study 
reflects a thoughtful consideration of several factors.  A crucial 
aspect is ensuring accurate overlay of field data with the high-
precision LiDAR point cloud.  Since GPS accuracy used for 
field plot positioning can be less precise, keeping the plot 
size smaller than the pixel size (10x10 meters) guarantees the 
entire plot falls within a single LiDAR pixel.  This minimizes 
the potential influence of GPS errors during data integration. 
Furthermore, maintaining logistical efficiency in field data 
collection is important.  Larger plot sizes would necessitate 
more time and resources for establishment and measurement.  
The chosen 10x10 meter plot size offers a practical balance, 
allowing for efficient field data collection while encompassing 
a representative area for analyzing canopy cover. Finally, 
the 10x10 meter pixel size likely emerged from a process of 
evaluating different resolutions during LiDAR data processing.  
Rasterization, the conversion of the raw point cloud into a 
gridded format, necessitates selecting a pixel size.  Smaller 
pixel sizes (e.g., 1x1m or 2x2m) might capture the scan line 
pattern of the LiDAR data too precisely, leading to a “stripy” 
effect that can complicate visualization and analysis of canopy 
cover. Conversely, larger pixel sizes could smooth over crucial 
details in the canopy structure.  Therefore, the 10x10 meter 
size represents a well-suited choice that minimizes noise 
introduced during rasterization while capturing an adequate 
area to represent the overall canopy cover for most ecological 
studies.  It is important to note that the specific plot size 
might be flexible depending on the research question.  Highly 
detailed studies of individual trees or specific canopy gaps 
might necessitate smaller plots with even higher GPS accuracy 

requirements. The features observed in the plot are the 
percentage of canopy cover using hemispherical photography, 
measurement of tree height, and observation of the dominance 
of existing mangrove species.

All Return Cover Index (ARCI) & First Return Cover Index 
(FRCI) Algorithm

Mapping the percentage of mangrove canopy cover 
using LiDAR can be done through an All Return Cover 
Index (ARCI) based approach (equation 1). This ARCI-based 
approach shows how much the ratio or comparison of all 
LiDAR returns intersects with the entire canopy recorded in 
the study area (Ma et al., 2017). The use of ARCI in mapping 
the percentage of canopy cover is based on its ability to extract 
more information, meaning that for shrubs or saplings, the 
percentage of canopy cover can also be calculated.

                                                                    (1)

                                     (2)

The First Return Cover Index (FRCI) for mapping the 
percentage of mangrove canopy cover only uses the first return 
in its information extraction (equation 2). FRCI shows the ratio 
or comparison value of the first return LiDAR or single return 
on a smaller canopy area or single canopy (Ma et al., 2017). 
Using the first return in the FRCI method emphasizes the 
assumption that intermediate returns and last returns provide 
little additional information about canopy cover estimation. 
FRCI considers all vegetation canopy cover as long as there 
are gaps in the area, including shrub mangroves. In contrast, 
ARCI only considers the peak canopy cover first recorded by 
LiDAR.

Based on Figure 3, when viewed from a horizontal 
perspective in the field, it is known that the ARCI method 
can cover all types of mangroves in the area ranging from 
large, medium, to small mangroves. However, this can be 
a weakness of this method because any object scanned by 
airborne LiDAR will have its information processed so that it 
can cause overestimation. The FRCI method only considers 
the first return of the entire return number from LiDAR, so 
the information obtained is a mangrove canopy that has been 
recorded and classified before.

Figure 3. Comparison of ARCI and FRCI methods illustration from a horizontal point of view.
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Accuracy Assessment of Percent Canopy Cover Estimation

This study was conducted to see the correlation between 
mangrove canopy cover values generated by LiDAR data and 
mangrove canopy cover measured in the field. First, the data 
obtained must go through several stages, including normality 
and regression tests, which are then selected as the best 
regression equation based on the coefficient of determination. 
The accuracy value is needed to determine the level of 
accuracy of the mangrove canopy cover map in describing 
how much percent of the actual canopy cover is in the field. 
This is done because of the limitations of the remote sensing 
approach itself. The accuracy test method used in measuring 
the accuracy value of the ARCI and FRCI estimation models is 
the Standard Error of Estimate (SEE). SEE is a value that shows 
the average distance of a population data to its regression line. 
It measures how precise the average value is obtained (Ghozali, 
2011). In addition to statistical descriptions and presentation 
in tabular form, the accuracy assessment also be visualized in 
a 1: 1 plot. According to Kamal et al. (2020), a 1:1 plot can 
provide an explicit overview of the accuracy of the model built 
in terms of over and under-estimation. They can visualize the 
mapping accuracy between the LiDAR data used against the 
acquired field data.

3. 	 Result and Discussion 
Mangrove Percent Canopy Cover from Field Measurement

Field data acquisition in the mangrove forest of Ratai Bay 
Pesawaran was conducted in October 2022. The difference 
between LiDAR recording time and fieldwork is 1.8 years (from 
2020 to December 2022). This time difference does not affect 
the condition of mangroves because, according to Verheyden 
et al. (2004), mangroves have a slow growth rate. In addition, 
no extreme natural disturbances or anthropogenic activities 
damaged the ecosystem. Except at some points, there were 
mangrove areas that experienced changes due to the lightning 
strikes, and there were several spots of mangrove planting 
areas. Data collection of mangrove percent canopy cover in 
the field using the hemispherical photography method with 52 
samples based on purposive transect sampling. Hemispherical 
measurements using a fisheye lens contained in a 10x10 meter 
sample plot, along with plotting the coordinates of the sample 
point center using a Garmin 62s handheld GPS. Measurements 

were in the form of vertical shots of the canopy with a breast 
height of about 1.5 meters from the ground. Post-processing is 
then carried out for data acquired using a Gap Light Analyzer 
(Frazer et al., 1999) to get the percentage value of the canopy 
cover of the Ratai Bay mangrove forest.

Ratai Bay mangrove forest has a high average percentage 
of canopy cover. Based on the results of field measurements 
of the 52 sample points acquired, the high canopy cover class 
tends to dominate, namely with a canopy cover range of 70-
100%, followed by a medium canopy cover class with a range 
of 35-70% and a low canopy cover class that tends to be rarely 
found (Figure 4). In addition, the average value of canopy 
cover of all samples acquired was 78.24%, which means that 
the Ratai Bay mangrove forest still has a reasonably high cover 
condition.

The high canopy cover class almost dominates all sample 
points, especially on the south side of the Ratai Bay mangrove 
forest, which has an average cover of >80%. The field’s low 
canopy cover class is often found around the Way Ratai River. 
There are two categories in this low canopy cover class; the first 
is often found in mangroves that experience natural processes 
such as being hit by lightning so that the mangroves in the area 
are burned and cause the area to be slightly open. Secondly, on 
the east side or towards the bay, there are mangrove planting 
areas with an average tree age of <2 years, and the distance 
between mangroves is still tenuous, so it has low canopy cover 
and density.

Mangrove Percent Canopy Cover Estimation using ARCI 
and FRCI Methods

The airborne LiDAR data used previously must go through 
a pre-processing stage, namely the reclassification process, 
which aims to correct the return class so that the resulting 
model is more optimal and represents field conditions. Before 
modeling, a statistical analysis is needed to correlate the data 
acquired in the field with the model built from the LiDAR data.

Several statistical analysis tests were conducted in this 
study, including the normality, correlation, and regression 
test. The results of this regression test will be used to build 
a model of the percentage of mangrove canopy cover using 
the ARCI and FRCI algorithms. The normality test in this 
research is based on Kolmogorov-Smirnov with a sample size 

Figure 4. Field mangrove canopy cover class distribution
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of 52 field data. According to Drezner & Turel (2011), data 
is said to be normally distributed if it has a significant value 
above 0.05, especially when using the Kolmogorov-Smirnov 
method. Based on the results of the normality test conducted, 
it is known that the data is normally distributed with a 
significance value of 0.268. Normally distributed field data 
is then classified into 2 (two) sample classes, namely model 
samples and validation samples. The division of this sample 
class aims for the following statistical analysis process. Field 
samples are then divided into 2 with a ratio of 7:3, or from 
100% of the sample, there are 70% model samples, and 30% are 
validation samples with details of 36 samples as model samples 
and 16 other samples for accuracy testing. Correlation test 
results using the Pearson method show a strong correlation 
between field mangrove cover data and ARCI and FRCI-based 
LiDAR mangrove cover data. This is indicated by the Pearson 
Correlation value obtained in the range of 0.80-1.00. Although 
each strongly correlates with field data, the ARCI model has a 
slightly higher correlation value of 0.883 than the FRCI model, 
with a correlation value of 0.859. 

The following statistical analysis was regression analysis. 
Regression is used to determine the causal relationship between 
one variable and another. In simple terms, regression analysis 
is a statistic that aims to visualize the statistical relationship 
between variables (Arkes, 2023). Visually, the scatter plot of 
the regression model in Figure 5 in this study has limitations. 
One of the limitations lies in the uneven distribution of data 
for some canopy cover classes, especially in the low cover 
class, and only some data for the medium canopy cover class. 
In this study, the ARCI method has a higher coefficient of 
determination of 0.7802 compared to FRCI, which only has 
a value of 0.7375 (Figure 5). Although different, both are still 
high for a model because if the R2 value is closer to 1, the 
influence between variables is stronger. In other words, the 
canopy cover model using LiDAR can represent the condition 
of mangrove canopy cover in the field. Regarding the 
coefficient of determination, this study is under the research of 
Smith et al. (2009) and Hopkinson & Chasmer (2009), which 
respectively have R2 values of 0.70 and 0.77 using the ARCI 
method. In addition, when compared to the research of Ma 
et al. (2017), this study has a higher R2 value which only has a 
coefficient of determination of 0.33 in the ARCI method and 
0.31 in the FRCI method.

Based on the results of canopy cover information 
obtained from LiDAR data extraction using the ARCI and 
FRCI methods, both highly correlate with the results observed 
through direct observation in the field. Visually, both maps 
show that the condition of the Ratai Bay mangrove forest is 
dominated by a dense and evenly distributed canopy cover 
class (Figure 6). This class of dense and evenly distributed 
canopy cover is almost spread throughout the mangrove forest 
area of Ratai Bay. This dense and evenly distributed canopy 
cover indicates the condition of the forest is still natural and 
has good vegetation health. The low anthropogenic activity in 
this Ratai Bay mangrove forest also supports this. In addition, 
the number of mangroves of the Rhizophoraceae family, which 
tends to be denser than other mangrove families, strengthens 
the results obtained from LiDAR data extraction in this study.

In addition to dense and evenly distributed canopy cover, 
there is another class based on the percentage canopy cover 
map above: the sparse and inconsistent canopy cover class. This 
sparse and inconsistent canopy cover class is usually found 
in mangrove forest areas affected by anthropogenic activities 
such as land conversion, logging, forest degradation, and 
other deforestation. In addition, sparse and inconsistent cover 
classes are also found at several points, especially mangrove 
areas damaged by natural degradation due to lightning strikes. 
The existence of these natural processes found during field data 
acquisition is closely related to the canopy cover percentage 
map obtained from LiDAR data. A burnt patch of Ceriops tagal 
due to a lightning strike was also detected on the percentage 
mangrove canopy cover map using ARCI and FRCI methods. 
This naturally degraded mangrove forest condition is mostly 
found on the western side of the Ratai Bay mangrove forest.

The percentage map of mangrove canopy cover obtained 
by both methods contains areas that do not have canopy cover 
information. It is due to the LiDAR data used in the area, 
especially on the northwest and north side of the Ratai Bay 
mangrove forest, which was not acquired during airborne 
LiDAR data collection. As a result, the mapped mangrove 
forest area only covers part of this study’s targeted area 
of interest. Despite these shortcomings, the canopy cover 
percentage map obtained still represents the actual conditions 
in the field. Table 1 shows that the Ratai Bay mangrove forest 
is dominated by high canopy cover from field sampling data 
and models built using LiDAR data. This is supported based 

Figure 5. Regression test results of mangrove canopy cover percentage based on (a) ARCI and (b) FRCI algorithms.
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on the mean and median values, where the field canopy cover 
has an average cover of 78.24%, while for ARCI and FRCI, it 
has an average of 85.39% and 89.78%, respectively. Although 
the mean and median are classified as one class, namely in 
the high canopy cover class, there are differences between the 
three based on the data distribution.

Accuracy Assessment of the Percent Canopy Cover 
Estimation

Statistical analysis is essential to see the mapping results’ 
accuracy level.  One of the objectives of this study is to 
determine which method has the best accuracy in mapping 
the percentage of mangrove canopy cover using LiDAR data 
between the ARCI and FRCI methods. Based on Table 2, the 
FRCI-based mangrove canopy cover percentage map has a 
minor standard error (SE) of 5.95 compared to ARCI, which 
has an error value of 7.25. The maximum error in mapping 
the percentage of mangrove canopy cover using FRCI-based 

Figure 6. Canopy cover percentage map produced from (a) ARCI and (b) FRCI of the LiDAR data.

Table 1. Descriptive statistics of mangrove canopy cover percentage data
Percent Cover n Average (%) Min (%) Max (%)

Field 52 78.24 12.51 90.82
ARCI 52 85.39 0.00 100.00
FRCI 52 89.78 0.00 100.00

Source: Data Processing Result

Table 2. Accuracy assessment results of mangrove canopy cover percentage
Component ARCI FRCI

Standard Error (SE) 7,252 5,957
Max. Error 9,345 7,676
Min. Error 8,421 6,917
Max. Accuracy 91,578 93,082
Min. Accuracy 90,654 92,323

Source: Data Processing Result

LiDAR data has a smaller value of 7.67% compared to ARCI of 
9.34%. The minor error or the slightest minimum error is also 
owned by the FRCI method, which is 6.91%. 

In addition to considering some of the previous 
components, there is a maximum accuracy value of 93.08% 
using the FRCI method and the lowest accuracy at 90.65% 
using the ARCI method. Maximum accuracy and minimum 
accuracy themselves represent how much accuracy of the 
resulting map. The greater the value, the greater the accuracy 
of the map, which is the output of this research. Based on the 
results obtained, both ARCI and FRCI methods are pretty 
good at mapping the percentage of mangrove canopy cover 
because both have an accuracy rate above 90%. However, if 
we go back to one of the objectives of this research, the FRCI 
method is the best method compared to ARCI in mapping 
the percentage of mangrove canopy cover using LiDAR data. 
Prasetyo et al. (2018)  conducted a study focused on  canopy 
cover mangrove estimation  using airborne LiDAR and 
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Landsat data. Their method, although not identical to ours, 
involved combining FRCI (Fractional Canopy Cover Index) 
with single-band Landsat imagery. The results from their study 
revealed a standard error value of 1.6%. However, it’s essential 
to recognize that their estimates tended to be underestimates. 
In contrast, Ma et al. (2017) achieved canopy cover estimation 
with a significantly higher standard error value of  20%. 
Notably, their study did not specifically target mangroves. Our 
current research, situated within the mangrove ecosystem, 
demonstrates a remarkable improvement in accuracy, yielding 
a standard error value of just  5.9%. This advancement is 
attributed to our method’s integration of LiDAR data. In 
summary, our study surpasses both Prasetyo et al.’s and Ma 
et al.’s accuracy levels, providing more reliable estimates for 
mangrove canopy cover. The combination of LiDAR data and 
our method has proven effective, even within the context of 
mangroves.

In our study, we investigated the differences between two 
commonly used canopy cover indices derived from LiDAR 
data: Single Echo Fractional Canopy Cover Index (SE FRCI) 
and All Returns Canopy Cover Index (ARCI). SE FRCI utilizes 
only the first return, representing the uppermost canopy layer, 
whereas ARCI incorporates all LiDAR returns, capturing 
information from various canopy layers. Consequently, ARCI 
tends to yield higher values due to its more comprehensive 
assessment of the canopy structure. However, SE FRCI may 
provide greater precision due to its reliance on a single return, 
potentially mitigating biases associated with subsequent 
echoes. This highlights a trade-off between comprehensiveness 
(ARCI) and precision (SE FRCI) that researchers should 
consider when interpreting these indices. Beyond the choice of 
index, several factors influence the overall accuracy of LiDAR-
derived canopy cover assessments. These include GPS metric 
errors, where precise georeferencing is crucial, hemispherical 
sampling strategy to ensure data representativeness, point 
density, where higher density improves accuracy but increases 
processing demands, LiDAR footprint size, as larger footprints 
may obscure fine canopy details, and scan angle and line scan 
pattern, which can affect the distribution of LiDAR returns. 
In conclusion, our study underscores the importance of a 
comprehensive approach when analyzing canopy cover indices 
derived from LiDAR data. By carefully considering potential 
biases, error propagation, and the interplay of various LiDAR 
parameters, researchers can enhance the robustness and 
reliability of their analyses.

Mapping accuracy can also be evaluated using the 1:1 
plot method by comparing the model and field conditions. 
It can be seen in Figure 7 that the conditions in the FRCI 

model tend to be overestimated, which shows that the plotted 
value is above the 1:1 line. Overestimation indicates that 
conditions are less suitable between LiDAR data and field 
data. Similar to the FRCI method, the 1:1 plot in the ARCI 
method also shows an overestimate, but some samples tend to 
underestimate it. Several factors can cause both overestimates 
and underestimates like this. One is the poor conditions when 
measuring or collecting canopy cover data using hemispherical 
photography in the field. Poor conditions can be light or photo 
exposure that tends to blur during measurement. Several factors 
can cause overestimates and underestimates like this. One is 
poor conditions when measuring or collecting canopy cover 
data using hemispherical photography in the field. These poor 
conditions include light or photo exposure that tends to blur 
during measurement. The canopy cover calculation software 
shows a denser or denser leaf structure, so the canopy cover 
tends to be higher than the actual condition, or the opposite 
can also occur. Uneven sample distribution also indicates why 
the data tend to underestimate or overestimate. The difficulty of 
finding evenly distributed sample areas or locations, especially 
for low canopy cover, is due to the difficult-to-access condition 
of the Ratai Bay mangrove forest. Accurate assessment of 
mangrove canopy cover is crucial for ecological studies and 
conservation efforts. LiDAR technology offers a powerful tool 
for this purpose, with various algorithms processing LiDAR 
data to estimate canopy cover. Two commonly used methods 
are the FRCI and the ARCI. FRCI demonstrates superior 
accuracy in modeling mangrove canopy cover compared to 
ARCI. This difference stems from how each method utilizes 
LiDAR data. LiDAR transmits light pulses and records the 
time for their return. The first return typically represents the 
highest point struck by the pulse, often the top of the mangrove 
canopy. FRCI capitalizes on this by solely considering the first 
return, effectively minimizing the influence of “noise” from 
objects below the canopy, such as understory vegetation and 
ground. In contrast, ARCI incorporates all return signals, 
including reflections from branches, shrubs, and even the 
ground. This inclusion, particularly in dense mangrove forests, 
can lead to an overestimation of canopy cover due to the 
additional points from lower vegetation layers. Therefore, by 
focusing on the first return and reducing the impact of these 
external factors, FRCI provides a more accurate representation 
of true mangrove canopy cover.

4. 	 Conclusion 
This study concluded that the results of field measurements 

in the form of hemispherical photography were dominated by 
the class of dense and evenly distributed canopy cover, which 

Figure 7. Plot 1:1 of mangrove canopy cover percentage (a) ARCI; (b) FRCI.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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was almost found at all sample points, especially on the south 
side of the Ratai Bay mangrove forest with an average cover 
value of 78.24%. Other classes, such as sparse and inconsistent 
canopy cover, were found on the west side of the mangrove 
forest, which experienced a natural degradation process 
due to lightning strikes, leaving the area open. Mapping the 
percentage of mangrove canopy cover of Ratai Bay using 
LiDAR data can be done through two approaches, namely 
ARCI and FRCI based. Both ARCI and FRCI-based mangrove 
canopy cover percentage maps are dominated by tight and 
evenly distributed canopy cover classes with an average value 
of 85.39% and 89.78%, respectively. The dense and evenly 
distributed canopy cover class is found on the north and south 
sides of the Ratai Bay mangrove forest, which is dominated by 
mangroves of the Rhizophoraceae family. The FRCI method 
applied in mapping the percentage of mangrove canopy cover 
of Ratai Bay has a better accuracy value than the ARCI method, 
with a maximum accuracy value of 93.08% and a standard 
error of only 5.95%. At the same time, the ARCI method has a 
maximum accuracy value of 91.57% and a standard error value 
of 7.25%. Accuracy of mapping the percentage of mangrove 
canopy cover based on ARCI and FRCI when viewed from a 
1: 1 plot shows a tendency to overestimate. However, a similar 
approach to this study can be applied to mangrove forests with 
different environmental settings, species composition, and 
zonation to verify the findings of this study.
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