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Abstract Nowadays measuring national and regional development primarily relies on demographic and 
socio-economic indicators. An indicator in physical dimension e.g., areas of human settlements and their 
economic uses of lands is usually ignored due to unavailability of data in countries like Thailand. Remotely-
sensed derived built-up area was used, for the first time, as a physical indicator for studying Thailand’s 
regional development. Remote sensing - using the decision tree classifier with the combination indices of 
band ratios, NDVI, MNDWI, and NDBI - and GIS techniques were utilized to estimate the regional 
proportion of built-up area. The relationships between the percentage of the derived built-up area and the 
three development indicators - urbanization rate, Gross Regional Product, and Human Achievement Index - 
were analyzed. Resultantly, the estimate of the 2019 derived built-up area in Thailand was 2.46% with the 
average accuracy of 84.5%. Regional variation in development levels existed and relationships between the 
percentage of built-up area and the three development indicators for the regions were strong. However, 
there was no relationship after excluding the region having the effect of Bangkok. Therefore, remotely-
sensed derived built-up area gives new information and is suggested for use for the analysis of Thailand’s 
regional development. 

1. Introduction 
The existence of uneven regional development in a 

country remains an important issue for all nations. Thailand, 
for example, has been considered a great economic and 
social development success due to continued strong growth 
and its significant poverty reduction for over the last four 
decades (World Bank, 2022). However, the growth of the 
country has predominantly occurred in the region of 
Bangkok and Vicinities, leaving other regions lagging behind 
(Lang et al., 2021). Measuring the country’s regional 
development is thus necessary for related government 
policy decision makers to ensure that the distribution of 
resources and funds will be allocated to mitigate inequalities 
and promote development for each region appropriately 
(Wishlade and Yuill, 1997; Goletsis and Chletsos, 2011). Until 
now, Thailand’s national government has long attempted to 
develop coherent measurements with the key aim of 
evaluating the development level of each region. Data and 
indicators used for the measurement, as in other countries 
(Fedajey and Nikolic, 2012; Meyer et al., 2016), primarily 
rely on demographic and socio-economic components.  

Currently, there is growing interest in the sustainable 
regional development (SRD) issue. SRD is a new extended 
concept of regional development. It is usually defined as the 
integration of the sustainable development of three 
dimensions – economic, social, and environmental ones – on 
the regional level (Jovovic et al., 2017). Its main goal is to 
find a balance between economic development and 
environmental degradation within a region. As SRD gives a 

new perspective, it implies that the methods of 
measurement and evaluation of the development level of 
each region need to be adjusted in order that the regional 
variation in development of a country is truly reflected. 
While there is still a debate in implementing SRD in practice 
(Meyer et al., 2016; Jovovic et al., 2017), adding the 
environmental dimension into the analysis of regional 
development is a challenging task for regional planners and 
policy decision makers. In this regard, built-up area is 
considered as a potential indicator in the environmental 
dimension for the measurement of regional growth. Built-up 
area refers to developed areas on the earth’s surface, 
entirely dominated by all man-made structures such as 
roads, buildings, and bridges. It represents the physical 
dimension of human settlements and their economic uses of 
lands (Sabo et al., 2018). Its applications have been used to 
measure or analyze urban environments and environment 
quality in a variety of ways, taking into consideration urban 
density, urban air quality, urban green space, urban heat 
islands (UHI), and urban climate (Huang et al., 2015; 
Macarof and Statescu, 2017; Huang et al., 2021;  (Mu et al., 
2022).  Despite its advantages, built-up area has not been 
used in prior observations of Thailand’s regional 
development due to the high cost and labor intensive nature 
of conventional approaches such as aerial photography and 
field surveys. 

Satellite remote sensing is a cost-effective solution for 
land-cover observations. It offers an affordable approach to 
derive up-to-date and reliable information for a very large 
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area in a relatively short time (Zhang et al., 2014). Mapping 
urban built-up areas remains a challenge due to the mixed 
pixel problem (Zhang et al., 2014). Urban and developed 
land is heterogeneous in nature. An urban pixel always 
contains a mixture of several objects such as small buildings, 
trees, open spaces, and roads. A considerable number of 
techniques have therefore been developed and applied for 
mapping built-up areas. They can be broadly grouped into 
two categories. Each category has its own advantages and 
limitations.  

The first category is to classify the input imagery. The 
pixel-based classification using spectral and/or textual 
properties (e.g., Liu and Yang, 2013; Zhang et al., 2014; 
Adam et al., 2016; Hu et al., 2016; Tariq et al., 2021) falls 
into this category. Until now this approach, particularly the 
classification of multi-spectral bands of medium resolution 
imagery (e.g., 15-30 m/pixel) with the supervised 
classification method, has generally been used for land use/
land cover (LULC) mapping purpose (As-syakur et al., 2012) 
(Liu and Yang, 2013) (Adam et al., 2016). With this approach, 
pure pixels containing sole reflectance or textual properties 
of elements, e.g., lakes or paddy fields, are visibly 
distinguishable and can be separable from other land cover 
types. However, in urban areas where the mixed pixels 
generally occur, this approach tends to produce 
misclassification, particularly for the mixing of built-up land 
with other land cover types (Zhang et al., 2014; Hidayati et 
al., 2018). Improving the classification results due to the 
mixed pixel problem could be achieved by using high 
resolution images (e.g., 0.8 m/pixel) (Zhou et al., 2018; Qu et 
al., 2021) or by incorporating with other techniques in the 
analysis (Imran et al., 2021; Yin et al., 2021). Besides, in the 
last few decades, another possible solution which has 
gained popularity in deriving land use classifications with 
higher accuracy is the object-based classification technique 
using high resolution imagery, as seen in the work of (Weih 
and Riggan, 2010; Estoque et al., 2015; Qu et al., 2021).  

The second category is to extract specific properties of 
the land cover types of interest based on direct 
segmentation of the image into indices. Until now, a variety 
of indices have been formulated, modified, and assessed for 
mapping built-up areas. Overall, these indices are more 
popular for mapping built-up areas than the first approach 
due to their ease of use, simplicity, automatic and rapid 
mapping, and higher accuracy (Zha et al., 2003; Bhatti and 
Tripathi, 2014). To enhance the extraction of built-up areas, 
the Normalized Difference Vegetation Index (NDVI) 
developed by Rouse et al. (1974) has been commonly used 
for the separation of vegetation from other land cover types 
(Xue and Su, 2017; Hidayati et al., 2018; Ghazaryan et al., 
2021). The Normalized Difference Built-up Index (NDBI) 
proposed by Zha et al. (2003) was developed by analyzing 
the spectral response of built-up elements in different bands 
of the Landsat TM image. Due to its simple mathematical 
computation and quick mapping, the index has been widely 
used for automatically mapping urban built-up areas from 
Landsat TM imagery (Zha et al., 2003; Mwakapuja et al., 
2013; Khan et al., 2019; Hidayati et al., 2018). The 
Normalized Difference Water Index (NDWI) and the 
Modified Normalized Difference Water Index (MNDWI) 
formulated by McFeeters (1996) and Xu (2006) respectively, 
were based on the principle that built-up areas (impervious 

surfaces) are prone to have a lower moisture or water 
content than barren areas (pervious surfaces). The indices 
were reported in many applications to reduce the spectral 
confusion between built-up and barren areas (Mwakapuja et 
al., 2013; Hidayati et al., 2018; Ghazaryan et al., 2021). 
These indices were applied in many areas to test their 
applicability and accuracy. For example, Hidayati et al (2018) 
merged several indices - NDBI, NDVI, MNDWI, NDWI, and 
SAVI (Soil-Adjusted Vegetation Index) - by using four stages: 
merging of two indices, three indices, four indexes, and five 
indices to test the accuracy of the built up area extraction in 
Yogyakarta. The results showed that among several tests, 
the merging of NDBI and MNDWI produced the highest 
accuracy of 90.3%. Khan et al (2019) compared the results of 
the NDBI index and the Built-up Area Extraction Method 
(BAEM) index through the mapping of built-up areas of 
Kolkata Megacity in India. The BAEM index, developed by 
Bhatti and Tripathi (2014), is an amalgamation and 
integration of Land Surface Temperature (LST), NDVI, and 
MNDWI. Results of the study showed that those built-up 
areas derived by the BAEM index had a higher accuracy 
(89.33%) than achieved by NDBI (83.67%). 

Despite all efforts, misclassification due to the mixed 
pixel problem is still the major challenge. All in all, none of 
the current available methods, techniques, and indices have 
reported complete separation between built-up areas and 
barren land. The accuracy in the extraction of built-up areas 
from satellite imagery still requires improvements. Noted by 
Khan et al (2019), there has not been a single technique to 
classify the built-up areas. Integrating the intrinsic aspect of 
two or more techniques to build a hybrid approach is one 
solution. Improving the spatial resolution (i.e., high 
resolution images) as well as the techniques (i.e., the object-
based analysis) as previously mentioned may be alternatives 
to increase the extraction accuracy. 

Up to now, the applications of remotely-sensed derived 
built-up areas have been extensive, particularly in the 
studies of urban extent, urban expansion, and urban 
population (World Bank Group, 2015; Al-Bilbisi, 2019; 
Ghazaryan et al., 2021). Another recent dimension is to 
apply derived built-up areas for socio-economic studies. In 
these studies, the relationships between built-up areas and 
socio-economic indicators were investigated for different 
purposes in different scales of study – city, provincial, 
regional, or national levels (e.g., Ma & Xu, 2010; Ma et al., 
2012; Propastin & Kappas, 2012; Wang et al., 2012; Li et al., 
2013; Yue et al., 2014; Faisal & Shaker, 2014; Faisal et al., 
2016; Chen et al., 2020).  

At the city level, for example, Ma and Xu (2010) 
conducted research in Guangzhou in China with three main 
goals. They aimed 1) to monitor the urban expansion of the 
built-up area of the city over the period of 23 years lasting 
from 1979 to 2002, 2) to model its urban expansion, and 3) 
to analyze the driving forces for urban expansion by 
investigating the relationships between the extracted built-
up area of the city and three indicators – Gross Domestic 
Product (GDP), total population, and urban resident income 
and urban traffic of the city map. The results showed that 1) 
Guangzhou was extended by about 4.5 times from the year 
1979 to 2002, 2) the model of urban expansion in 
Guangzhou is characterized by radial expansion centered on 
the old town, which takes the form of expansion in rings and 
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along major traffic routes, and 3) the built-up area of 
Guangzhou is highly correlated with GDP (R2 = 0.99), total 
population (R2 = 0.98), urban resident income (R2 = 0.98), 
and urban traffic of the city (R2 = 0.96), which are considered 
the dominating driving factors for expansion of the urban 
built-up area of Guangzhou. Another research study, Faisal 
et al. (2016), aimed to predict the GDP of seven major cities 
in Canada between 2005 and 2010 by using remotely-sensed 
derived built-up area. Their work investigated the 
relationship between the extracted built-up area and three 
socio-economic parameters – the real GDP, total population, 
and total employment. These parameters, provided by 
Canada’s national housing agency (Canada’s Mortgage and 
Housing Corporation (CMHC)), were chosen because they 
are currently used by federal/municipal authorities to 
measure the economic growth of the city and country.  The 
results showed that the built-up area of the seven cities is 
highly correlated with the real GDP (R2 = 0.80), total 
population (R2 = 0.82), and total employment (R2 = 0.83). 
Their findings suggest that these results can be used as a 
generic indicator for targeting a specific real GDP with 
respect to the planned industrial areas for any new city 
development and regional planning. 

In an example of regional study, the research work of Li 
et al. (2013) aimed to investigate the potential of nighttime 
light (NTL) imagery in modeling a regional economy in China, 
with a comparative analysis between two NTL sensors – the 
DMSP-OLS and the NPP-VIIRS. The research was based on 
the concept that artificial nighttime light can reflect the use 
of public lighting and commercial lighting, which are strongly 
associated with the state of the economy. In the study, linear 
regression was used to investigate the relationship between 
built-up areas (through satellite nighttime light) and Gross 
Regional Product (GRP). The results showed that GRP was 
highly correlated with both NTL sensors, but the high 
correlation with NPP-VIIRS imagery (R2 values of 0.94 with 
the county GRP) was greater than that of DMSP-OLS/F18 
imagery (R2 values of 0.85 with the county GRP). The finding 
provides an alternative to model the global and regional 
economy at very low cost by using NTL imagery, especially in 
the regions where economic census data are difficult to 
access. In another research study, Chen et al. (2020) 
proposed a method for analyzing regional economic 
situations using remotely-sensed images to extract land use 
and land cover change (LUCC) information. The approach 
was tested and validated with experiments in Zhoushan City 
in China. The research investigated the ability of LUCC 
information to estimate economic indices. The LUCC 
information was extracted from Landsat images, taking the 
area of construction land as the explanatory variable after 
correlation analysis. Eleven economic indices, including GDP, 
value-added of primary industry (VPI), fixed assets 
investment (FAI), total tourist income (TTI), and gross 
industrial output value (GIOV), etc. were incorporated. The 
results showed that the economic statistical index is the 
most sensitive to the construction land area with the 
average correlation coefficient of 0.949. The results also 
prove that LUCC information could be used as an 
explanatory indicator for estimating economic development 
at the regional level. 

Regarding these past research, the role of remotely-
sensed derived built-up area data is obvious. It provides 
timely and up-to-date information, reflecting urban extent 

and urban expansion. All studies also show that built-up 
areas and socio-economic activities are closely related. Built-
up area can reflect the role of socio-economic indicators 
(e.g., GDP, the measurement of urban residents’ income) as 
driving factors for urban expansion (Ma and Xu, 2010). It can 
be used to predict GRP (Li et al., 2013) and real GDP (Faisal 
et al., 2016), and can be incorporated with other socio-
economic indicators for the analysis and modelling of 
regional economic development (Chen et al., 2020). 
Therefore, built-up area is a direct reflection of economic 
activity. Since the monitoring of socio-economic activities is 
very important for understanding regional economic 
development levels and policymaking, built-up area is thus 
considered very useful information for the municipal 
authorities and helps facilitate regional development and 
planning. These exemplified studies also imply that built-up 
area is a potential indicator for the regional study. 

With inspiration from the above applications, this study 
aims to investigate and assess the relationships between the 
percentage of built-up area and the development indicators 
of three dimensions – demographic (urbanization rate), 
economic (Gross Regional Product), and social (Human 
Achievement Index) indicators. These three dimensions 
were chosen because they are currently used by Thai 
government – the Office of the National Economic and 
Social Development Council (NESDC) – to evaluate the level 
of development of the country. The analysis was conducted 
based on the availability of multi-source data in 2019. 
Satellite remote sensing and GIS techniques were utilized to 
extract and estimate the regional proportion of built-up area 
of the whole country. The output of remotely-sensed 
derived built-up area is reported and proposed in this study 
as an alternative indicator, adding in the physical dimension 
to allow deeper exploration of regional variation in 
development. 

Thailand is a tropical area, located in the heart of the 
mainland Southeast Asia between latitudes 5o 37¢ N to 20o 
27¢ N and longitudes 97 o 22¢ E to 105 o 37¢ E. It covers an 
approximate area of 513,000 square kilometers (Figure 1). 
The country nowadays comprises 76 provinces plus 
Bangkok. In 2019 when the analysis of the study was carried 
out, Thailand 's total population was approximately 69 
million and the urbanization rate was 35% (NSO, 2020). 
Economically, the country had a GDP of 50,187 billion Baht 
(or about US$ 724 billion) (NESDC, 2021). According to the 
social development measure, Thailand’s Human 
Achievement Index (HAI) was 0.62 out of 1.00 (NESDC, 2019) 
while the HDI was scored 0.78 (UNDP, 2020). The HAI was 
developed by Thailand’s Office of the National Economic 
and Social Development Council (NESDC). The index is a 
social measure which is like that of the HDI developed by 
the United Nations, but HAI has more measurement details 
adopted to best fit to the data available in Thailand. 

 

2. The Methods 
Datasets 

Dataset in the study includes three types of data – 
Landsat 8 satellite images, a provincial boundary GIS layer, 
and socio-economic data. 

A total of 38 scenes of Landsat 8 OLI satellite images 
between path 126 - 132 and row 46 - 56 covering the whole 
country in 2019 were downloaded from the United States 
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Geological Survey (USGS) Earth Explorer. All scenes were in 
the Universal Transverse Mercator (UTM) coordinate system 
with zone 48 North and WGS84 datum. A provincial 
boundary GIS layer data is available in shape file format, 
acquired from the Department of Transportation, Thailand. 
Demographic and socio-economic data (Table 1) are 
available in the text-based format, provided by the Office of 
the National Economic and Social Development Council 
(NESDC) and National Statistical Office (NSO). Nowadays 
these data have been analyzed and used to measure the 
development of the country at the regional level.  

 
Methodology 

The methodological flow of this research (Figure 2) is 
summarized into two main processes – remote sensing and 
GIS.  
 
Remote sensing process 

The satellite remote sensing process for built-up area 
extraction was carried out by using ENVI 5.2 software. 
Firstly, all Landsat 8 images were pre-processed by the 
atmospheric correction method to eliminate the influence 
of atmospheric scattering. The 38 reflectance images were 
thus created. Secondly, the investigation of bio-physical 
characteristics of land cover types was performed. Fine level 
classes for image classification (Table 2) were assigned to 
help better understand the bio-physical characteristics of 
land cover types. Training samples or ‘Region of 
Interest’ (ROI) of eighth image scenes were chosen as the 
training sites of the study. Selection of these scenes was 
intended to cover the differentiation of physical 
characteristics – topography and climate - of the whole 
country. The exemplified graph in Figure 3 compares the 
observed values of the built-up class by using different 

measurement techniques derived from the same training 
samples of the eight selected scenes. The finding was that 
spectral reflectance of bands, band ratios, and automated 
built-up indices - NDVI, NDBI, MNDWI – were potentially 
used for the separation between the designated land cover 
classes in the study site. Spectral reflectance alone could be 
used to separate cloud from other land cover types. Some 
band ratios (e.g., the ratio of Blue/SWIR band), to some 
degree, was able to separate built-up area from bare area. 
Amongst the tested indices applied to Landsat 8 images, the 
NDVI index (Eq. 1) worked well in separation of vegetation 
and other land cover types. The NDBI index (Eq. 2) was used 
in separating built-up area/bare land from other land cover 
types. The MNDWI index (Eq. 3) improved basically the 
separation of built-up area and bare land in most areas.     

NDVI =   …………….Eq. 1 
where NIR = near infrared band (Band 5 of Landsat 8 image), 
R = red band (Band 4 of Landsat 8 image) 

 

NDBI = ………...Eq.2 
where SWIR_1 = short wave infrared band (Band 6 of 
Landsat 8 image), NIR = near infrared band (Band 5 of 
Landsat 8 image) 

MNDWI = …………..Eq.3  
where G = green band (Band 3 of Landsat 8 image), SWIR_1 
= short wave infrared band (Band 6 of Landsat 8 image) 

Thirdly, images of the 9 land cover classes (Class Level 1) 
were classified by using the supervised classification 
technique of decision tree classifier. Decision tree classifier 
has been evidenced in many remote sensing research to 
facilitate the extraction of a huge amount of information 

Types of 
indicators 

Data Year of data 
compilation 

Source 

1. Demo-
graphic 

Urbaniza-
tion rate 

2019 Population 
Cen-
sus   (NSO, 
2020) 

2. Economic Gross Re-
gional Prod-
uct (GRP) 

2019 Report 
(NESDC, 
2021) 

3. Social Human 
Achieve-
ment Index 
(HAI)1 

2019 Report 
(NESDC, 
2019b) 

Figure 1. Thailand and neighboring countries 

Table 1. Demographic and Socio-economic Data Used in The 
Study 

Remark : 1 HAI, developed by NESDC, is a social indicator. 
The score ranges from 0 – 1, ranging from the lowest to the 
highest. HAI comprises 6 key indicators. They comprise : 1) 
well-being of Thai people and society, 2) national competi-
tiveness, economic growth, and income distribution, 3) de-
velopment of human capital, 4) social equality and equity, 5) 
sustainability of national biodiversity, environmental quality, 
and natural resources, and 6) government efficiency and 
better access to public services.  
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from images by using simple and flexible computing and 
give higher classification accuracies when compared to 
some classification techniques (Lu and Weng, 2006; Suarez-
Rubio et al., 2012; Sharma et al., 2013). The technique is 
also considered the most suitable one to integrate many 
types of data - spectral and non-spectral data - during image 
classification (Pooja et al., 2011). Decision tree is multistage 
classifications hierarchically constructed by using a series of 
(binary) decision rules, based on knowledge of the spectral 
properties of each class, to place pixels into land cover 
classes (Tso and Mather, 2016). The 9-class classification 
image created by the decision tree classification technique 
was then combined into the 5-class classification image 
(Class Level 2).  

Fourthly, confusion matrix was used for accuracy 
assessment. The technique is commonly used for assessing 
the classification accuracy by comparing the results of 
classification against the reference data obtained from the 
field survey or high-spatial resolution images (Congalton and 
Green, 2009). For each scene, the comparison between the 

5-class classification image and high-spatial resolution 
satellite images available in Google Earth Pro was made over 
the area by means of random sampling method. The 
minimum accuracy assessment of built-up class in this study 
was set at 70%, otherwise threshold values in those scenes 
were readjusted and image re-classification in the previous 
step was performed until reached its determined minimum 
accuracy value. In this regard, the accuracy assessment of 
the built-up class of all 38 scenes yielded on average an 
accuracy of 84.50%. Accuracy details are given in Table 3. A 
few scenes, however, had much less accuracy than others 
(approximately 70%).  Misclassification in these few scenes 
was typically occurred in mountainous and coastal areas 
because these scenes were frequently covered with mixed 
clouds and fogs. Another problematic area was the bare 
lands in mountains which were exposed to strong sunlight. 
These areas usually had the observed values in all measured 
techniques quite the same as those of the built-up class on 
the flat areas. Finally, for each scene the 5-class 
classification image was combined into 2 classes – built-up 

Figure 2. The Overall Workflow 

Class Level 1 (9 classes) Class Level 2 (5 classes) Class Level 3 (2 classes) 

1. Built-up 1. Built-up 1. Built-up 

2. Bare land 2. Bare land   

  

  

2. Non-built-up 

3. Dense vegetation 3. Vegetation 

4. Sparse vegetation 

5. Water 4. Water 

6. Mixed water (e.g., water mixed with other land 

cover types) 

7. Cloud 5. Cloud 

8. Mixed cloud / Sparse cloud / Fog / Smog 

9. Shadow (cloud shadow) 

Table 2. Land cover nomenclature classes 
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and non-built-up area, so-called “Built-up area” image (Class 
Level 3). Extraction of built-up area for the entire country 
was thus complete. The final step was to mosaic all 38 built-
up area images together and import it to the GIS 
environment. 

 
GIS process  

Handling GIS data was performed using ArcGIS 10.7.1 
software. Firstly, the provincial records in the provincial 
layer data were dissolved into the regional layer data 
(Figure 4). Secondly, the derived built-up area image was 
clipped by the region. Then, the built-up area was extracted. 
Its regional proportion, or the percentage of built-up area 
per region, was calculated. Thirdly, the demographic and 
socio-economic data was incorporated in the GIS 
environment. These data were coded and transformed to be 
used as GIS layer, so called “development” layer. The layer 
comprises urbanization rate, GRP, and HAI. Finally, for each 
region the built-up area was correlated with these 
development indicators to reveal the relationship. The 
scatterplot was utilized to depict the relationship between 
the percentage of built-up area and these indicators. The 
linear regression analysis and the coefficient of 
determination (R2), similar to the statistical techniques used 
in the previous works (Ma and Xu, 2010; Li et al., 2013; 
Faisal and Shaker, 2014; Faisal et al., 2016), were built to 
analyze the relationship between any of these two 
indicators. R2 values scale from 0.0 to 1.0. By following the 
previous studies’ criteria, in this study the correlation is 
considered high (R2  0.8), moderate (0.5 > R2 < 0.8), and low 
(R2  0. 5) respectively.  

 
4. Results and Discussion  
Result  

Results of the study, the derived built-up area and its 
regional proportion as well as the relationships between the 
percentage of built-up area and the development indicators, 
are reported. 

 
Built-up area and its regional proportion 

The classification results of the study are demonstrated 
as a graph showing the percentage of built-up area for each 
region and a map showing the built-up area image overlaid 
with the regions in Figure 5 and Figure 6 respectively. The 
derived built-up area in 2019 was 12,695 sq. km from the 
total of 515,876 sq. km. In equivalence, built-up area in the 
country amounts to 2.46% of the total. Thailand, mainly 
divided by the NESDC based on its geographical and socio-
economic development conditions, comprises seven 
regions. These include (1) Bangkok and Vicinities, (2) the 
Central region, (3) the North region, (4) the Northeast 
region, (5) the East region, (6) the South region, and (7) the 
West region. A brief description of the regions 
(Encyclopædia Britannica, 2022) and the regional variation 
in percentage of built-up area (Figure 5) is given. 

Bangkok and Vicinities and the Central region are 
predominantly a lowland area, primarily drained by the 
Chao Phraya River. The region of Bangkok and Vicinities – 
Samut Prakan, Pathum Thani, Samut Sakhon, Nakhon 
Pathom, and Nonthaburi – is separated from the Central 
region as the area is notable for the concentration of 
commercial, industrial, and transport activities. Economic 
growth of the region has taken place more rapidly than 
elsewhere and has attracted people from other parts of the 
country. Nowadays, this region remains the predominant 
urban center in the country. Based on the classification 
results, Bangkok and Vicinities has the highest percentage of 
built-up area (29.49% of the total region).  

The Central region, dominated by its fertile floodplain 
and wet-rice cultivation, is currently one of the most 
productive agricultural regions in the country. The Central 
region also has the second-highest percentage of built-up 
area (7.07% of the total).  

The North region, sharing borders with Myanmar, is 
predominantly a mountainous area while the middle and 
southern parts are predominantly plains. Surrounded by 
several mountain ranges, the region is cooler than other 
parts of the country and is popular to visit in December and 
January. The North has almost the smallest percentage of 
built-up area (1.89% of the total).  

Figure 3. Comparison of the average index values (NDVI, NDBI, MNDWI) of built-up class (mean and S.D.) 
derived from the training samples of the 8 selected scenes 
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The Northeast region is characterized by the Khorat 
plateau. Farming is poor in this region due to its arid land 
and long dry season. The Mekong River flows past much of 
the northern and eastern edge of the region. The region has 
a built-up area amounting to 2.41% of the total.  

The East region extends to the border of the 
northeastern plateau to the north, and the Gulf of Thailand 
to the south. This region is where the Eastern Seaboard 
Development Program (ESB) is located. Today, the ESB has 
been developed to become the most important port and 
industrial area of Thailand and it attracts large numbers of 
migrants. While fruit and tourism in this region are popular 
among Thais, the main contribution to GRP of this region 
comes from the industrial sector. The region is ranked third 
in terms of built-up area (2.46% of the total).  

The South region consists of a peninsula with a 
mountainous spine and sandy coastline. This region is well-
known as a tourist destination, and its income is derived 
mainly from the tourism and service sectors. However, the 
region has the lowest percentage of built-up area (0.45% of 
the total) compared to other regions.  

The West region, consisting mostly of green 
mountainous ranges along the Myanmar border, is lightly 
populated. The region comprised the smallest built-up area 
(1.66% of the total).  

Based on the spatial observation (Figure 6), the 
concentration and distribution of the built-up area can 
clearly be detected. The distribution patterns varied across 
regions. The concentration of built-up pixels was at its 
greatest for Bangkok and Vicinities. The density generally 
declined across the Central region in the north-south 

direction. Another high concentration area is detected in the 
North where Chiang Mai – one of the top tourist cities of 
Thailand – is located. In the Central region and the 
Northeast, built-up pixels were generally in a random 
dispersion pattern. In the East, the built-up pixels were 
located mainly in the provinces along the coastline, whereas 
built-up pixels were hardly seen at all in the South. In the 
West, the built-up pixels were found to be dispersed mainly 
in the provinces close to the Central region.  

Some considerations according to the regional variation 
in distribution patterns should be mentioned. The factors 
influencing the distribution patterns across regions, such as 
topographical conditions, transportation, socio-economic 
activities, distribution of infrastructural facilities and social 
amenities, are diverse. The causes of their distribution are 
questionable and further analysis is required to explain 
these distribution patterns. Further, the effects of some 
distribution patterns such as the over-concentration of 
economic and/or industrial activities in some locations in a 
region are the main concern for urban and regional 
planners, particularly in terms of energy consumption or air 
pollution issues. In this regard, there are explicit advantages 
of remotely-sensed derived built-up area evaluation, which 
can give useful information both in terms of quantity and 
spatial domain. Built-up area information and its distribution 
patterns can be useful in several applications in regional 
study. Results of the study thus imply that built-up area can 
serve as an indicator in the physical and/or environmental 
dimension for the measurement of regional development. 
 
Relationships between the percentage of built-up area and 
the development indicators 

Although the built-up area and its regional proportion 
(Figure 5 and Figure 6) can reveal their variations in regions, 
relationships between the percentage of built-up area and 
the three development indicators gave more interesting 
results. According to the regions, the three development 
indicators (urbanization rate, GRP, HAI) generally have a 
positive correlation with the percentage of built-up area in 
different degrees (Figure 7 - 9). The highest correlation (R2) 
was with urbanization rate (0.88), followed by that of GRP 
(0.85), and HAI (0.66) respectively. In other words, the 
higher the percentage of built-up area results in a higher the 
urbanization rate, a higher the GRP, and a higher the HAI. 
The results thus indicate that the regional proportion of 
built-up area can be used to predict urbanization rate, GRP 
and HAI. 

Figure 4. The NESDC’s regions, namely (1) the Bangkok and 
Vicinities, (2) the Central, (3) the North, (4) the Northeast, 

(5) the East, (6) the South, and 
 (7) the West  Figure 5. Percentage of built-up area in regions in 2019  
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Despite the positive relationships mentioned above, 
outliers in Figure 7 - 9 which were mainly contributed by the 
Bangkok and Vicinities were questionable and led to further 
investigation. Additional analysis was done to observe the 
effect of Bangkok which was included in the Bangkok and 
Vicinities. The Bangkok and Vicinities was thus eliminated 
from the analysis for further investigation. The correlations 
between the percentage of built-up area and the three 
development indicators were re-examined. Results show 
that there was no relationship between the percentage of 
built-up area and any of the three indicators after excluding 
the Bangkok and Vicinities (Figure 10 - 12). Compared with 
the previous analysis (Figure 7 - 9), the R2 between the 
percentage of built-up area and urbanization rate reduced 
sharply from 0.88 to 0.04. The R2 between the percentage 
of built-up area and GRP reduced steeply from 0.85 to 0.04.  

As well the R2 between the percentage of built-up area and 
HAI noticeably reduced from 0.66 to 0.16. The results thus 
indicate that inclusion and exclusion of the Bangkok and 
Vicinities had a considerable impact on the regions. 
Assessment of the study is discussed in the next section. 

 

Discussion 
 Thailand’s national motto of “Security, Prosperity and 

Sustainability” is currently the country’s vision stipulated in 
the National Strategy (2018 – 2037) (NESDC, 2019a). In 
pursuit of sustainability, the National Strategy focuses on 
creation of a balance between economy, environment, and 
quality of life for future generations. The sustainability 
strategy has been applied to all development aspects 
including the sustainable regional development (SRD). With 

Landsat Scene no. 
Path 

  
Row 

  Built-up Accuracy (%) Commission Error (%) Omission Error (%) 

1 126 49 82.41 9.19 17.59 

2 126 50 85.34 2.83 14.66 

3 127 48 85.07 11.68 14.93 

4 127 49 86.52 0.96 13.48 

5 127 50 85.85 0.00 14.15 

6 127 52 85.21 9.96 25.09 

7 127 56 89.02 1.18 10.98 

8 128 47 72.05 0.92 27.95 

9 128 48 79.81 35.68 20.19 

10 128 49 83.61 21.01 16.39 

11 128 50 81.24 20.62 18.76 

12 128 51 88.16 36.26 11.84 

13 128 55 78.53 11.90 21.47 

14 128 56 94.31 14.62 5.69 

15 129 47 73.89 36.23 26.11 

16 129 48 75.21 22.56 24.79 

17 129 49 83.06 41.49 16.94 

18 129 50 84.49 20.00 15.51 

19 129 51 81.50 15.06 18.50 

20 129 52 81.48 2.75 18.52 

21 129 53 85.20 3.28 14.8 

22 129 54 84.80 4.01 15.20 

23 129 55 82.12 2.58 17.88 

24 130 46 92.12 55.61 7.88 

25 130 47 88.74 64.75 11.26 

26 130 48 87.28 7.10 12.72 

27 130 49 85.16 76.04 14.84 

28 130 50 85.36 71.97 14.64 

29 130 51 81.57 34.42 18.43 

30 130 52 92.53 17.47 7.47 

31 130 53 89.85 30.40 10.15 

32 130 54 89.44 2.89 10.56 

33 131 46 89.28 12.24 10.72 

34 131 47 72.87 13.48 27.13 

35 131 48 81.55 8.80 18.45 

36 131 49 92.87 4.17 7.13 

37 131 50 89.16 48.14 10.84 

38 132 47 80.14 11.94 19.86 

Table 3. Classification accuracies of the 38 Landsat scenes 
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an aim to implement SRD in practice, each region requires 
management to balance the effects of increasing economic 
growth, improved social welfare and quality of life, an 
increasing urban population (urbanization), the appropriate 
expansion of urbanized areas, energy efficiency, and so 

forth. To monitor and measure the success of SRD, 
indicators of economic, social, demographic, and physical 
and/or environmental dimensions are necessary, and their 
interactions and relationships should be observed. In the 
present study, remotely-sensed derived built-up area is the 
focus of an approach which captures up-to-date human 
settlement data and observes the effects of the associated 
economic activities across the global surface.  

The strengths of this study are as follows. 1) This study 
created the remotely-sensed derived built-up area, serving 
as a missing-data indicator to monitor Thailand’s regional 
development in the spatial domain. 2) This study provided 
the relationship measurement of the above four dimensions 
- demographic (urbanization rate), economic (GRP), social 
(HAI), and physical (derived built-up area). In this regard, the 
present study differs from other works in that the previous 
works measured only the relationships between one or two 
dimensions e.g. the research of (Spiezia, 2003; Ma and Xu, 
2010; Fedajey and Nikolic, 2012; Li et al., 2013; Faisal and 
Shaker, 2014; Yue et al., 2014; Faisal et al., 2016). Therefore, 
this study is considered a pioneer work, proposing the four 
dimensions for Thailand’s regional study. 

Assessment of the present study was through the 
investigation of the regional variation (Figure 5 and Figure 6) 
and the correlation (R2) results between the percentage of 
derived built-up area and the development indicators 
(Figure 7 - 12). The main point is that inclusion and exclusion 
of the Bangkok and Vicinities had a considerable impact on 
the analysis as it made the correlation results (Figure 7 - 12) 
largely differ as summarized in Table 4. The finding is unique 
to Thailand which is, in my opinion, affected by the effect of 
Bangkok’s urban primacy. Bangkok has long been 
considered as a primate city - being two or more times the 
population of the second-largest city in a country (Lang et 

Figure 6. Built-up area image overlaid with regions, namely 
(1) Bangkok and Vicinities, (2) the Central, (3) the North, (4) 
the Northeast, (5) the East, (6) the South and (7) the West 

Figure 7. Percentage of Built-up Area Versus Urbanization Rate 

Figure 8. Percentage of built-up area versus GRP 
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Figure 9. Percentage of built-up area versus HAI 

Figure 10. Percentage of built-up area versus urbanization rate (exclusion of the Bangkok and Vicinities) 

Figure 11. Percentage of built-up area versus GRP (exclusion of the Bangkok and Vicinities) 

Figure 12. Percentage of built-up area versus HAI (exclusion of the Bangkok and Vicinities) 
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al., 2021). It has a 100% urbanization rate, has a primacy 
rate today of about 5 times compared with the next largest 
cities of the country, and had the highest (34%) share of the 
overall GPP (Gross Provincial Product) in 2019 according to 
the latest NSO and NESDC report (NSO, 2020; NESDC, 2021).  

While several studies researched Bangkok’s primate city 
in different aspects (Ayal, 1992; Murayama et al., 2017; Lang 
et al., 2021), the merit of the built-up area in this study is 
that it can reveal new information - the comparative 
analysis of inclusion and exclusion of the effect of Bangkok - 
which had not existed in the prior observation of Thailand’s 
regional study. In this regard, the “strong correlation” 
results based on inclusion of Bangkok and Vicinities (Table 
4) imply that built-up area is a direct reflection of economic 
activity and urbanization. In other words, the economic 
growth of a region and/or the increase in the urbanization 
of a region result in the expansion of urban area in a region. 
The evidence of this finding could be explained by observing 
the urban expansion of Bangkok to its vicinity and regional 
cities, so-called the Extended Bangkok Metropolitan Region 
(EBMR) or Bangkok's Mega-Urban Region. However, the “no 
correlation” results based on exclusion of Bangkok and 
Vicinities (Table 4) give a new perspective to the role of built
-up area in that the economic growth of a region and/or the 
increase in the urbanization of a region may or may not 
involve with the expansion of urban area in a region. This 
finding is opposite to the evidence given by the past 
research works (e.g., Y. Ma and Xu, 2010; Ma et al., 2012; 
Propastin and Kappas, 2012; Wang et al., 2012; Li et al., 
2013; Faisal and Shaker, 2014; Yue et al., 2014; Kamil Faisal 
et al., 2016; Chen et al., 2020).  

Noticeably, these past research studies were conducted 
in countries having different urban hierarchical system 
compared to that of Thailand such as China (having several 
super-cities) and Canada (having the city hierarchies of rank-
size rule distribution). In my opinion, the “no correlation” 
information is noteworthy as it can truly reflect the uneven 
regional development in Thailand. Therefore, excluding the 
effect of Bangkok’s urban primacy creates new information 
and awareness, which otherwise would result in 
misinterpretation and misleading conclusion. Further 
implication is that our understanding of how to use 
remotely-sensed derived built-up area information is still 
limited. Further research should be carried out to reveal the 
relationships with respect to other parameters such as 
employment, incomes, CO2 emission etc. A study at 
provincial level can potentially reveal new information. 
Moreover, since the effect of Bangkok is uncovered, 
replication of the analysis for other countries, particularly 

those experiencing the effect of urban primacy, is another 
direction for further work. 

All in all, what is acquired from the analysis from both 
dimensions (inclusion and exclusion of the effect of 
Bangkok) of relationships is that this study can demonstrate 
the regional proportion of built-up areas both in terms of 
quantity and spatial domain as well as its relationships to 
the existing development indicators. It can also offer other 
directions of work that can be conducted based on the 
distribution patterns of built-up areas in a region or across 
regions, e.g., the analysis study of factors influencing their 
distribution patterns, the study of environmental impacts 
(i.e., air pollution issue) due to over-concentration of built-
up areas in a region. Therefore, this study can reveal 
informative information which is beneficial to the regional 
analysis. Despite that only a limited number of regions for 
investigating the relationships were used, a large part of the 
regional variation is satisfactorily explained.  
 

5. Conclusion  
 Recently, Thailand’s national strategy (2018 – 2037) 
has applied the sustainability concept to all development 
aspects including the sustainable regional development 
(SRD). With an aim to monitor and measure the success of 
SRD, indicators of economic, social, demographic, and 
physical and/or environmental dimensions are necessary, 
and their interactions and relationships should be observed. 
In this study, remotely-sensed derived built-up area is 
applied for the first time as a physical indicator, adding in 
the spatial dimension for the study of regional development 
of Thailand. Satellite remote sensing and GIS techniques 
were utilized to extract and estimate the regional 
proportion of built-up area of the whole country in 2019. 
Relationships between the regional proportion of built-up 
area and the three development indicators (urbanization 
rate, Gross Regional Product, and Human Achievement 
Index) were analyzed through the linear regression analysis 
and the coefficient of determination (R2). The findings are as 
follows. 1) Estimate of built-up area of the total country 
from Landsat 8 images was 2.46% with the average accuracy 
of 84.50%. 2) The built-up area and its regional proportion 
can reveal regional variation of the country. 3) The 
relationships between the percentage of built-up area and 
the three development indicators for regions were relatively 
strong. However, there was no relationship after excluding 
the region having the effect of Bangkok. The findings suggest 
that remotely-sensed derived built-up area has the 
advantage of providing efficient and accuracy spatial data 
for various research purposes in regional study and policy-

Research studies Development indicators 

GRP Urb HAI 

Before excluding Bangkok and Vicinities 0.85 0.88 0.66 

After excluding Bangkok and Vicinities 0.04 0.04 0.16 

Table 4. Comparison of the correlation (R2) results between the derived built-up area and different types of development 

indicators, obtained from author’s study  

Remark :  1 GRP refers to Gross Regional Product 
2 Urb refers to Urbanization rate 
3 HAI refers to Human Achievement Index 
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decision makers should consider using remotely-sensed 
derived built-up area information as an input indicator for 
the regional study. 
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