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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1.	 Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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(Elkhrachy, 2015; Greene & Cruise, 1995; Ozkan & Tarhan, 
2016; Paudyal, 1996; Shafapour Tehrany et al., 2017). This study 
adopted a multilayered flood mapping approach to improving 
the accuracy of coarse grid modeling with an insignificant 
increase in the computing cost (Chen et al., 2012; Zhou et al., 
2021). 

The cellular automata (CA) approach using regular grid cells 
and generic rules was employed to simulate the spatiotemporal 
evolution of pluvial flooding, greatly reducing the computation 
time (Chen et al., 2010; Ghimire et al., 2013). This study also 
developed an urban storm-inundation simulation method 
(USISM) using GIS-based simplified distributed hydrological 
models with DEM inputs (S. Zhang & Pan, 2014). An urban 
pluvial flood model was presented by integrating a 1D hydraulic 
drainage network model and GIS technology to rapidly estimate 
the flood extent, depth, and damage (Jamali et al., 2018).

Floods should be mitigated to reduce the resultant risks, 
necessitating creating a flood risk map of the physical, social, 
and economic vulnerabilities. Studies using Geographic 
Information Systems and Remote Sensing techniques are 
a novelty because there is no analysis of the topographic 
conditions in many areas of West Kalimantan, where heavy 
floods have hit in the last two years. Therefore, this study aimed 
to determine the flood risk and its environmental impact in 
Nanga Pinoh, Melawi Regency.

2.	 Methods
Study Area

This study was carried out in the Sengah Temila District, 
Landak Regency, West Borneo province, Indonesia, located 
between longitude 111°40’30”E to 111°58’30”E and latitude 
0°13’30”N to 0°31’30”N (Figure 1). The area is approximately 
45.448,72 ha (454,4873 km2). The Nanga Pinoh Watershed 
covers Tengkaju, Nanga Blimbing, Batu Buil Baru, Tekelak, 
Manding, Sidomulyo,Tanjung Niaga, Paal, Nanga Kebebu, 
Nanga Man, Engurai, Nanga Tebedak, Tanjungsari, Tembawang 
Panjang, Tanjung Pauh, poring, Sungai Pinang, Bina Jaya, 
Landau Garong, and Nangkalan Villages. 

Figure 1. Study Area

The Method
A GIS-based weighted multi-criteria analysis (MCA) (Nagu 

et al., 2021; Roy et al., 2021) was used to determine flood 
risk areas in Nanga Pinoh Watershed, West Kalimantan. The 
method involved integrating five flood conditioning factors, 
including slope (S), soil type (ST), total precipitation (TP), 
drainage density (DD), and land use land cover (LULC). These 
geo-rectified maps were digitized in the GIS to produce 
thematic soil layers, drainage network or density, contour lines 
to generate slope, land use and cover (Chauhan et al., 2016), 
and total precipitation.

This study was conducted in three stages (Rincón et al., 
2018):
• 	 The first stage involved determining the weight and impact 

score of the five determined flood-causing factors on a 1 
to 5 scale. Scores of 1 and 5 were given to impact factors 
with low and high contributions to flooding, respectively. 

• 	 In the second stage, all maps were reclassified on a scale 
from 1 to 5 using the Reclassify Tool in ArcMap, where 1 
referred to very low and 5 implied a very high flood risk. 
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• 	 The third stage employed the Weighted Overlay Tool of 
ArcMap to carry out the maps’ spatial overlay.

3.	 Result and Discussion
Slope (S)

The gradient slope strongly influences river flow velocity 
through drainage channels and watersheds. A steeper slope 
causes high runoff, increasing peak discharge (Rincón et al., 
2018). In line with this, previous studies found that a lower 
slope gradient has more chances of flooding (Khosravi et al., 
2018; Radmehr & Araghinejad, 2015; Ullah & Zhang, 2020).

 This study derived the slope from the DEM, with a 
resolution of 30 m, to determine the slope map using the 
Slope tool in ArcMap10.8. It was reclassified on a scale from 1 
to 5, where 5 and 1 were assigned to lower and higher slopes, 
respectively, as shown in Table 1.

Total Precipitation (TP)
Precipitation is a major cause of floods, where heavy rainfall 

and runoff make streams unable to hold the excess water. 
High rainfall increases runoff, meaning increased precipitation 
leads to higher flood risk. Many previous studies established a 
relationship between rainfall and flooding (Das, 2019; Sahana 
& Patel, 2019; Ullah & Zhang, 2020; J. Zhang & Chen, 2019). 
This study created a map by interpolating the monthly average 
precipitation data for the wet season (January to December 
2020) using the inverse distance weighted (IDW) interpolation 
method. The total precipitation (TP) map was reclassified on 
a scale from 1 to 5 for low and high TP values, respectively, as 
shown in Table 1.

Drainage Density
Drainage density significantly influences flood vulnerability 

and surface runoff. The water that cannot be accommodated in 
the river overflows from various drainage channels and gathers 
into puddles or floods (Das, 2019; Ullah & Zhang, 2020). The 
flooding probability increases with drainage density (Ullah & 
Zhang, 2020). This study derived drainage density from the 
DEM with a resolution of 30 m using the line density tool in 
ArcMap10.8. Drainage density was reclassified on a scale from 
1 to 5, where 5 and 1 were assigned to higher and lower density 
values, respectively, as shown in Table 1.

Soil Type
Soil greatly influences flooding due to its water absorption 

ability, known as infiltration. Studies examined the factors 
influencing infiltration, including in the province of Aceh, 
Indonesia (Basri & Chandra, 2021; Silalahi et al., 2019; Suryadi 
& Riduansyah, 2021). It was found that soil types have different 
infiltration rates based on their characteristics. The physical 
factors include soil texture, structure, and density. Ultisol soil 
has a clay texture that makes it easily flooded (Y. Liu et al., 

Table 1. Criteria that contribute to flood risk. S: Slope, TP: Total Precipitation, DD: Drainage Density: TS: Type of 
Soil, LULC: Land Use Land Cover

Class Level
Criteria for Flood prone

S (%) TP (mm) DD (km) TS LULC
1 Very low > 45 3.684-3.723 >174,9 - Primer Forest 
2 Low 25-45 3.723-3.751 120,4-174,9 Inseptisol Sekunder Forest 
3 Medium 15-25 3.751-3.801  72,3-120,4 Oxisol, Ultisol Plantation
4 High 8-15   3.801-3.858 25,4-72,3 - Farming
5 Very high 0-8 > 3.858 0-25,4 - Mining, Settlement

2019) due to the low ability to pass water. Table 1 shows the 
soil criteria used in the flood risk assessment.

Land Use Land Cover (LULC)
Land use and land cover (LULC) also greatly affects an area’s 

flood susceptibility and determines the amount of runoff, the 
rainwater exceeding the infiltration rate. Expensive land is 
planted with vegetation, increasing the rainwater infiltration 
and time taken by runoff to get to the river. This reduces 
the possibility of flooding compared to areas not covered 
with vegetation. Therefore, this study analyzed the effect 
of settlement and mining on runoff in impervious soil (Ullah 
& Zhang, 2020). It also analyzed the relationship between 
runoff and land without plants to prevent water flow to the 
soil surface (J. Liu et al., 2018; Ullah & Zhang, 2020). Table 1 
shows the land use criteria used in the flood risk assessment.

GIS approach and multi-criteria analysis are effective tools 
for flood risk mapping. The weighted overlay method showed 
that the study location has low, medium, and high risks. Low-
risk areas are 990,88 ha, while medium and high regions cover 
35.294,35 ha and 8.601,70 ha, respectively. Figure 8 shows 
flood risks at Nanga Pinoh Watershed.

Slope affects the velocity of water flowing through drainage 
channels and watersheds. Steeper slopes result in higher runoff 
and peak discharges. The 0–8% slope classes occupied most of 
the basin, implying a higher susceptibility to flooding hazards. 
This is because steeper slopes are more susceptible to surface 
runoff, while flat terrains are vulnerable to waterlogging, 
accumulating over time and becoming floods. Therefore, 
efforts should be made to minimize the inundation by ensuring 
drainage channels facilitate smooth water flow.

Rainfall is spatially distributed, ranging from 3.684 to 3.858 
mm. The rainfall map shows that heavy rainfall is observed in 
the top and middle areas. Since rainfall is a natural factor that 
cannot be controlled, it is necessary to minimize its impact. 
The high rainfall in the upper and middle regions significantly 
contributed to flooding in the lower regions. Almost the entire 
basin is susceptible to flooding due to high-intensity rainfall.

Drainage density significantly influences vulnerability and 
flood risk. The potential for flooding increases with the drainage 
density. The volume of water that cannot be accommodated 
in the river overflow into drainage channels and gathers into 
puddles or floods (Das, 2019; Ullah & Zhang, 2020).

The relationship between soil and flooding is the ability 
to absorb water, a process known as infiltration. The physical 
factors affecting infiltration include soil texture, structure, and 
density. In this situation, coarse-textured soils have a greater 
infiltration capacity than fine-textured soils. Soils with low 
structure and density have a faster infiltration than those 
with high structure and density. Rapid infiltration reduces 
the flooding risk because the stagnant soil above flows more 
quickly vertically. The predominant soil in the study area is 
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Figure 3. Flood Risk Criteria Reclassified Slope

Figure 4. Flood Risk Criteria Reclassified Total Precipitation

ultisol soil, which has a clay texture. This soil is also easily 
flooded due to its low ability to pass water (Y. Liu et al., 2019).

Land use plays a role in determining the amount of runoff 
and the rainwater exceeding the infiltration rate. Land covered 
with vegetation is less vulnerable to flooding because the 
runoff takes longer to get to the river, allowing more time 
for infiltration (Y. Liu et al., 2019; Ullah & Zhang, 2020). 
Therefore, settlement, mining, and land without plants are 
highly discouraged.

The floods in Tanjung Lay Village, Tembawang Panjang, Pal 
Village, Tanjung Niaga, Kenual, Baru, and Sidomulyo Village in 
the last few months were indeed caused because they were 
included in medium and high-risk areas. The risk mapping 
showed that future developments could consider mitigating 
the flooding possibility to minimize losses and social, economic, 
and physical damage (Meyer et al., 2009; Rincón et al., 2018). 
Therefore, mapping flood risk areas could be used in making 
policies regarding possible flood risks.
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Figure 5. Flood Risk Criteria Reclassified Land Use Land Cover

Figure 6. Flood Risk Criteria Reclassified Soil Type

4.	 Conclusion
GIS approach and multi-criteria analysis are effective tools 

for flood risk mapping. It could help estimate areas prone to 
flood risk and assist water resources planners and decision-
makers in focusing on specific areas to perform a further 
detailed assessment. Consequently, this simplified but reliable 
methodology could help reduce resource requirements for 
accurate flood risk assessments. The GIS approach is flexible, 
easy to handle, and inexpensive, making it applicable to areas 

lacking detailed information. The method helps obtain large-
scale flood risk maps or a rapid assessment.

The flood risk maps generated in this study could help 
Nanga Pinoh District and Melawi Regency implement 
mitigation measures for insurance purposes, disaster response, 
and land. The results showed that criteria of slope, total rainfall, 
drainage density, soil type, and land use are sufficient to obtain 
a reliable map.
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Figure 7. Flood Risk criteria reclassified Drainage Density

Figure 8. Flood Risk Map Nanga Pinoh Watershed
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