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susceptibility assessment. This paper explores Google Earth (GE) for generating a polygon-based landslide
inventory in Bandung Basin. How far GE can identify landslides and their boundaries, source areas, and
types were discussed here. Visual interpretation of GE images supported by path tool in GE, official landslide

Keywords: reports, previous research papers, and media was performed. The result is a polygon-based landslide
landslide inventory, inventory consisting of 194 landslide areas and 194 landslide source areas during 1993-2020. The limitations
Google Earth, of GE in preparing the landslide inventory are (1) not covering the timing of the landslide occurrences, (2)

polygon-based landslide, Bandung tricky to identify small landslides (<100 m?) in anthropogenically transformed areas, and (3) not able to
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distinguish between earth and debris of landslide material.
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1. Introduction

Landslides are the movement of a mass of rock, debris, or
earth down a slope, a definition agreed upon by landslide
researchers worldwide (Sassa, 2007). Some landslides are
triggered by human activities, e.g., road and railroad
constructions, building construction, mining, and other
development (Sassa, 2007). Landslide disasters occurred in
many areas, especially in mountainous regions, that cause a
lot of economic loss and casualties (Sadisun et al., 2006).
Many landslide studies are performed to mitigate the disaster;
one is preparing zoning maps of landslide-prone areas,
termed landslide susceptibility mapping (LSM). Other terms,
namely landslide hazard mapping, are used in some studies
with the same definition (Anbalagan, 1992; Mora & Vahrson,
1994). Contrary to (Guzzetti et al., 1999), landslide hazard
mapping distinguished landslide susceptibility one. Guzzetti
et al. (1999) stated that landslide hazard mapping is more
complex since it involves spatial concepts and the concepts of
magnitude and time. The further analysis on such landslide
studies is landslide risk assessment which uses LSM as an
input (Roccati et al., 2021; van Westen et al., 2006; Wang et
al, 2021). LSM is generated by using some geo-
environmental factors related to landslides, such as lithology,
slope, elevation, land-use, distance to rivers, etc. (Anbalagan,
1992; Cepeda et al., 2010), while landside risk assessment
needs socio-economic information, like exposed population
and properties (Cepeda et al., 2010; Roslee et al., 2017).

In the landslide susceptibility mapping (LSM) based on
the landslide probability, landslide inventory, a collection of
historical landslide data, is a primary factor (Lee & Talib,
2005; Wang et al, 2021). In the landslide probabilistic
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models, either by using conventional statistic or machine
learning-based methods, landslide causative factors and
landslide inventory are employed as independent and
dependent factors, respectively. In modeling, the old saying
of ‘garbage in - garbage out’ is accurate; therefore, the
acquisition of each input data should be appropriately made
(Chen et al., 2017). As a dependent factor for landslide
susceptibility, landslide location accuracy is crucial Dou et al.,
2015; Xu, 2015. It determines the future landslides geo-
environment since it assumes that the future landslides will
happen under similar conditions as the past landslides (Lee &
Talib, 2005).

Studies on the landslide inventory are attractive for many
researchers, evidenced by many studies concerning building
the best technique of semi-automatic (Cao et al., 2016; Li et
al., 2016) and automatic landslide extractions on remote
sensing imageries (Dou et al,, 2015; Keyport et al., 2018;
Moosavi et al., 2014; Yu & Chen, 2017). However, no
competent proposed method can replace the visual
interpretation, either pixel-based or object-based. The
methods encounter some obstacles, for instance (1) spectral
differences between landslide objects with other objects, e.g.,
building, road, bare areas, similar (Cao et al., 2016; Dou et al.,
2015), (2) the object-based classification requires knowledge
of the mechanisms that cause landslides (Cao et al., 2016), (3)
bi-temporal images for change detection, not easy to obtain,
(Yu & Chen, 2017), and is even expensive for high-resolution
images, and (4) the proposed method is less accurate if
applied in other areas (Yu & Chen, 2017). The weakness of
the proposed methods is misclassification which frequently
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occurs, e.g., false positive (Dou et al., 2015; Keyport et al.,
2018) and the inability to detect landslides in shadow areas
(Keyport et al., 2018). False positives happened when a
particular object was identified as landslides, but it was not
(Keyport et al., 2018); it caused overdetection (Li et al., 2016).
This condition happens mainly in agricultural (Cao et al.,
2016; Keyport et al., 2018) and urban areas. It was hard to
distinguish landslide objects from vacant areas, a condition
when farmland is unvegetated. Regarding the urban areas,
identification difficulties occur because the roofs and roads
have a bright appearance, similar to landslide objects (Cao et
al., 2016; Keyport et al, 2018). Hence, most landslide
susceptibility studies use visual interpretation for preparing
the landslide inventory. This article aims to discuss how to
prepare the landslide inventory using visual interpretation of
the images, which is still rarely deliberated in the previous
ones.

Google Earth (GE) supported by historical high spatial
resolution images can benefit this effort since the price of
those such images is often unaffordable, but it is accessible in
GE. A preceding research paper said that GE could not
identify landslides for anthropogenically transformed areas; it
is only effective for natural protected areas (Rabby & Li,
2019). In addition, historical landslides were represented by
point features (Rabby & Li, 2019) that are not as accurate as
polygon features. Polygon features can describe the size of
landslide occurrences better than if they were presented as
points.

Most landslide susceptibility assessments used point
features (Hong et al., 2019; Kalantar et al.,, 2018; Liu & Duan,
2018; Mallick et al., 2018; Pham et al., 2018; Riaz et al., 2018;
Zhang et al., 2019; Zhu et al,, 2018) and the rests used
polygons to represent landslide locations (Juliev et al., 2019;
Kavzoglu et al., 2019; Othman et al., 2018; Shirani et al., 2018;
Tian et al., 2019). Researchers identified the landslide source
area from the whole landslide area (Marjanovic, 2013;
Schlégel et al., 2018). They concluded that the source area
was preferred since it can represent the failure of a landslide,
a location that experiences movement (Hungr et al., 2014),
which has a close relationship with the landslide
susceptibility (Marjanovic, 2013; Schlogel et al., 2018).
Therefore, this research explores using GE to produce a
polygon-based landslide inventory consisting of landslide
areas and landslide source areas for Bandung Basin.
However, this does not cover the timing of the landslide
occurrences. The availability of time-series data is limited,
and the return period for all images is not uniform
worldwide and in the study area.

2.Methods

This research was carried out in Bandung Basin (2,307
km?), located in West Java, Indonesia (107.26° — 107.95° E
dan 6.73° - 7.24° S). Hilly and mountainous areas dominate
the study area with an altitude of 333-2730 meters above sea
level. The slope varies from gentle to steep and belongs to the
Bandung Volcanic-Depression Physiographic zone (Kartiko
et al., 2006). The frequency of landslides in the study area,
calculated by DIBI (Indonesian Disaster Database) http://
dibi.bnpb.go.id/, from 1999 - 2021 is 315. The landslides
caused 308 fatalities, 22 people missing, 193 people injured,
620 houses destroyed, and 401 houses damaged. This
calculation is the total frequencies and their impact on the
four central districts in the Bandung Basin, namely Bandung
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City, Cimahi City, Bandung Regency, and West Bandung
Regency. Bandung City and Cimahi City areas are included
in Bandung Basin, except for Bandung District and West
Bandung District. Some areas in the southern and southwest
parts of Bandung District are outside Bandung Basin.
Likewise, the western part of the West Bandung District is
also not in Bandung Basin. In addition, the area in the
northeastern part of the Bandung Basin, which is 5.6%, is
included in Sumedang Regency.

Landslides are spread in hilly to mountainous areas, and
several locations in  this study area are oftentimes
experiencing landslides, including Pangalengan, Ciwidey,
Cililin, Cipatat, and Lembang (Figure 1). The landslide
distribution map (Figure 1) results from plotting landslide
data from December 19, 2013, to April 1, 2020, from PVMBG
(The Center for Volcanology and Geological Hazard
Mitigation). In the study area, a devastating landslide
occurred in Leuwigajah - Cimahi, a waste landslide in a
dumpsite on February 21, 2005, that killed 143 people buried
71 houses (Lavigne et al, 2014). Another devastating
landslide occurred in Margamukti Village — Pangalengan -
Bandung Regency, a landslide on May 5, 2015, that hit a 300
m long geothermal gas pipeline of Wayang Windu
(Yuhendar et al.,, 2016), and resulting in nine people deaths,
two people missing, ten people injured (Rahardjo et al,
2017), and 54 families displaced (Tukino, 2021) (Figure 1).

The main data in this study are historical high spatial
resolution images of Google Earth (GE) from 1993 to 2020.
The terrain of those images is represented using the Digital
Elevation Model (DEM), e.g., Shuttle Radar Topographic
Mission (SRTM) which has a spatial resolution of 30 m or 90
m. As supporting data, official historical landslide reports
sourced from the Center for Volcanology and Geological
Hazard Mitigation (vsi.esdm.go.id), the previous scientific
papers, and media were used.

Four steps were performed to produce landslide
inventory by using GE imageries for Bandung Basin. Those
steps include (1) identifying landslides both in natural
protected and anthropogenically transformed areas, (2)
analyzing official landslide reports and media to trace
landslides in GE images, (3) identifying landslide source area
and types, and (4) analyzing the resulted landslide inventory.
Natural protected areas can be found in the upper slopes of
high mountains, while anthropogenically transformed areas
are all areas utilized by humans like built-up areas,
agriculture, plantations, and induced vegetation (Dgbek et al.,
2018; Figueroa & Sanchez-Cordero, 2008). The following
flowchart visualizes the steps in this study to create a
landslide inventory by using GE (Figure 2).

3. Result and Discussion

Historical GE images from 1993 to 2020 were used to
recognize landslides to produce polygon-based landslide
inventory for Bandung Basin. One hundred ninety-four
landslides were identified in natural protected areas and
anthropogenic transformed areas (Table 1). Among those
194 landslides in Bandung Basin, the three largest landslides
have a landslide area of more than 10 Ha, i.e., 15.97 Ha, 15.57
Ha, and 10.8 Ha, respectively. The ten most significant
landslides were presented in Table 1 and Figure 3. Four of the
ten most considerable landslides are in anthropogenic
transformed areas, i.e., No 3, 4, 6, and 8. Landslide No. 3
occurred at the Wayang Windu geothermal, while landslide
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Figure 1. Landslide Distribution 2009-2020 and Two Devastating Landslides in The Study Area
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Figure 2. Flow chart of the research methods

No. 4 happened on the banks of the Cibintinu river, Arjasari caused worries for residents because the distance from the
Sub-district, dammed the river, which was feared to cause landslide is about 50 m only.

debris flow afterward and destroy several agricultural areas Landslides in the natural protected areas are more easily
(Sukristiyanti, 2018). Landslide No. 6 occurred in the golf recognized in GE than in anthropogenically transformed
field, Cimenyan Sub-district, devastated a golf course. This ones. They are small vacant areas between the large vegetated
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Table 1. The ten most considerable landslides identified on Google Earth

nnnnnnn

Area Image acquisition Location
(Ha) date Landuse Village Sub-district Regency
15.965 2 0Oct 2018 Forest Genteng Tanjungsari Sumedang
15.574 Dec 1993 Forest Sukarame Pacet Bandung
Shrubs,settlement,
10.796 21 Mar 2017 fishpond Margamukti Pangalengan  Bandung
4.535 12 May 2017 Agriculture areas Lebakwangi and Wargaluyu Arjasari Bandung
4.380 27 Sep 2013 Forest Cikawao Pacet Bandung
3.556 16 Aug 2016 Grassland Mekarsaluyu Cimenyan Bandung
2.934 31 Mar 2017 Forest Mekarsari Pacet Bandung
Forest, agricultural
2.784 10 May 2018 areas, settlement Buninagara Sindangkerta =~ West Bandung
2.631 28 Jun 2006 Forest Dukuh Ibun Bandung
1.817 27 Aug 2017 Forest Sukarame Pacet Bandung
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Figure 3. Landslide inventory map based on visual interpretation using Google Earth

areas or forests. The smallest object detected as a landslide in
this study is about 39 square meters; it is influenced by the
resolution of the images in Google Earth. The minor
landslide can be detected by using more detailed images. The
vacant areas are found in one or some images and absent in
other previous or afterward images. If the vacant area is
permanent in all available historical images, it is better not to
assign the areas as landslides. To help consider whether the
bare land is a landslide, it needs to set the position of those
images. For instance, those images are directed so that it
displays the landslide direction from top to bottom. In
addition, setting the direction and terrain and using elevation
profiles for specific paths are very helpful in landslide
identification.

Identifying landslides in the anthropogenically
transformed areas is rather tricky. It needs geospatial
information, which can be obtained from official landslide
reports or field surveys. The information is used to trace the
exact location and boundary of a landslide. Three large
landslides could be delineated in GE, i.e., landslides of
numbers 3, 4, and 6 (Table 1). A landslide on the roadside
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slope in Sugihmukti Village, Pasirjambu Sub-district,
recorded in the official landslide data, was the smallest
traceable landslide in the transformed area. The extent of the
landslide area was 87.72 m?.

Without any guidance of geospatial information,
landslides in the anthropogenically transformed can also be
identified, for instance, landslides in agricultural areas. It can
be recognized by finding a vacant area with the damaged
pattern of rice field, changing the plant cover. A landslide was
identified in an image of Jan, 2014, located in Warnasari
Village, Pangalengan Sub-district. It can be seen in Figure 4
that the pattern of rice fields and dry land in the landslide
area turned patternless. The landslide area is quite large,
which is 5395 square meters. It is almost impossible if
humans did the damage because the location is far from the
roads, which is difficult for heavy equipment to reach.

Some supporting data such as the previous research
papers, official landslide reports, and news were used to
convince or give a clue of the presence of a landslide event.
For instance, when landslide evidence was found in a specific
image, the location and time of the image can be traced via
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(a)

(b)

(c)

Figure 4. The changing of rice field and dry land patterns pre and post images of landslide: (a) pre
landslide (Sept 2012), (b) landslide (Jan 2014), and (c) post landslide (July 2017)

(@)

(b)

(©)

Figure 5. A landslide in Cicapeu of Kidangpananjung Village, Cililin Sub-district was confirmed in media:
(a) pre landslide in GE, (b) post landslide in GE, (c) photograph of the landslide in the media

the internet. The time tends to be flexible because the date of
the landslide is not necessarily the same as the date of the
image. Substantial landslide evidence was found in
Kidangpananjung Village, Cililin Sub-district in an image of
August, 2019, and the landslide was confirmed by the news,
obtained through the internet browsing (Figure 5). The news
reported that landslides occurred in some locations in the
village simultaneously because of heavy rain. Those
landslides happened on May 13, 2019 (news.detik.com, May
15, 2019), recorded around three months after the incident.
In that case, eleven landslide locations were recognized in
GE. The smallest area of landslide identified in the image is
75.7 m?. Some instances of landslides occurrences that were
assisted by such supporting data in landslide identification
on Google Earth are presented in Table 2.

The appearance of landslides in GE images is irregular
(Rabby & Li, 2019). In the previous images (Figure 4 -Figure
5), some landslide shapes were already presented. The
illustrations can expand knowledge to ease in identifying

289

Table 2.The availability of supporting data in landslide

inventory
Landslide Supporting data
location Research  Land-  Field  News
paper slide  survey
report
Kidangpananjung, - - - v
Cililin
Roadside slope in - v - -
Sugihmukti
Wayang Windu v v v v
Cibintinu River v v v v
Golf field - -

landslides in GE images. Irregular shapes are formed by
natural processes (Rabby & Li, 2019), influenced by many
factors, e.g., slope, lithology, the driving force, the presence of
rock and some landcover, etc. If there is a more robust
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a b c

d e f

Figure 6. Some appearances of landslides in GE images: (a, b, ¢, d) elongated shapes of landslide and (e, f) wide or rounded
shapes of landslide

(a)

(b)

Figure 7. Position of break of slope: (a) in an image (red arrow), (b) in the elevation profile

material (rocks, trees, buildings) blocking and defeating the
force of the landslide, the direction of the landslide will
change (Ma et al., 2020; Naryanto, 2017; Sadisun et al., 2019).
The shapes of landslides can be elongated and rounded
generally (Samia et al., 2017) (Figure 6). Most landslides in
Bandung Basin are long shapes resulting from landslides
with a material displacement distance more remarkable than
the width (Niculit,:A, 2016). A wide landslide was occurred in
the riverbank in Rajamandala Village, Cipatat Sub-district,
West Bandung Regency (Figure 6f). This condition is in line
with the statement that round landslides most frequently
happen along river banks and gully (NiculitA, 2016).

In addition to the landslide area boundary, the landslide
source boundary can also be identified in GE. Although the
satellite images in GE were not recorded immediately after
the landslide, the landslide boundary could be recognized
using multiple time-series images. The landslide source area
may be a small, half, or a large part of the landslide area or
the same as the landslide area. This condition is related to
landslide conditions. The landslide polygons in Figure 4-8 do
not represent landslide areas only, but also landslide source
areas. The landslide source area represents a failure slope, a
location that experiences movement (Hungr et al., 2014).
Regarding the process, landslides consist of deformations of
pre-failure, failure itself, and displacements of post-failure.
The most significant movement is a failure (Hungr et al,
2014). Landslide area and landslide source area result in
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different accuracy for landslide susceptibility mapping. The
landslide source area resulted in the highest accuracy for
landslide susceptibility mapping on a scale of 1:10.000
(Schlogel et al., 2018). It means preparing landslide source
area as landslide inventory data; instead, landslide area may
increase the accuracy of landslide susceptibility map. The
determination of landslide source boundary in GE is
somewhat subjective because only a single DEM is available;
thus, elevation profile pre and post landslide change could
not be obtained. However, the landslide source area is still
better than the whole landslide area to represent the failure
slope in landslide susceptibility modeling (van Westen et al.,
2008).

It has been mentioned that the landslide source area in
some cases has the same boundary as the whole landslide
area. If a landslide is on an upright slope where landslide
material has fallen, its deposition area is not identified. This
condition can also occur if a landslide is in a forest with very
dense vegetation in which its deposition area could not be
detected (Figure 6e). If there is a break of slope, a change of
slope angle from steep into gentler, it may be a boundary of
the landslide source. The slope break is familiar with debris
flow, including landslide source, flow tracking, and
depositional area. In a type of slide, the break of the slope is
also frequently found. Figure 7 shows the break of slope both
in the image and in the elevation profile to identify the
boundary of the landslide source area.
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(a)

(b)

(c) (d)

Figure 8 .The sequence of land-use changes in some historical GE images (before and after landslide event): (a)
December 2017, (b) May 2018, (c) June 2018, (d) July 2019
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Figure 9. Chart of landslide areas (m?) versus landslide number

Indonesia, as a tropical region, has rapid vegetation
growth. This condition makes it an obstacle to recognize
landslide evidence using an image if the image is not acquired
just after the incident (Samodra et al., 2017). The worse, time-
series GE images do not continue; the time interval between
images is uncertain (Rabby & Li, 2019). In one place of a
particular time, the available time-series images can be
abundant; but the times-series images can be infrequent in
other sites or other times. By comparing the change of old
landslide appearance in some historical GE images, it can be
observed how long a landslide is covered by vegetation. An
example observation performed in a landslide occurred in
Bonjot Sub-village, Buninagara Village, Sindangkerta Sub-
district on March 5, 2018 (jabar.tribunnews.com, March 5,
2018). Evidence of landslides was found on GE images from
10 May 2018 to 19 June 2018, and the old landslide was
covered with vegetation within two months, i.e., 21 July 2018
(Figure 8).

Referring to the working party of the International
Geotechnical Inventory of UNESCO, landslides based on the

material type are classified into three types, i.e., rock, debris,
and earth (Sassa, 2007). In this study, a landslide with rock
material was not found, only debris or earth which can be
found. Debris is dominated by coarse soils, while the earth is
dominated by fine soils (Sassa, 2007). Between them, debris
and earth were indistinguishable in this study.

The landslides are classified into fall, topple, slide, spread,
and flow (Sassa, 2007). Regarding this landslide inventory
carried out, the landslide types of fall, slide, and flow can be
recognized, but not to topple and spread. Creep, a very slow
landslide, could not be identified by GE. Geospatial
information of many creeps from official landslide reports is
already plotted in GE, but none can be traced. Creep is
included in the flow type of landslide; its shear stress can
cause permanent deformation but could not cause shear
failure (USGS, 2004).

The area of landslides in Bandung Basin varies from 39.13
m? to 159,654.24 m? (15.97 Ha), with a total landslide of 99.13
Ha. To figure out the dominance of area of landslides
happened in Bandung Basin, the range of landslide area were
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classified into four classes, i.e. (1) < 100 m2, (2) > 100 - 1000
m?, (3) > 1000 - 10000 m?, and (4) > 10000 m? (Figure 9). It
can be seen that large landslides, landslides with an area of
more than 10000 m? (1 Ha), have occurred eleven (11) times
in this research area. Only a small number of small landslides
have been identified with GE. This condition does not mean
that small landslides rarely occur in this area, but rather
because of the limited availability of time-series imageries
and the limited spatial resolution of GE images.

Seventy landslides have occurred in only one village in
Bandung Basin, i.e., Weninggalih Village, Sindangkerta Sub-
district, West Bandung District obtained by field
investigation (Sadisun et al., 2006). Those landslides were
dominated by small dimensions with a size less than 10 m in
length and width. It means that many other small landslides
in Bandung Basin could not be recognized using GE. A field
survey is conducted as an alternative effort to improve the
landslide inventory derived from GE. It is mainly conducted
along roads and in urban (Rabby & Li, 2019). Therefore, it
will be a complementary effort to fulfill the lack of GE
capability in detecting landslide evidence.

Landslide reports or news and scientific writings only
report or discuss landslides that directly or indirectly impact
humans, e.g., fatalities and property damages, settlement and
infrastructure demages, and economic activities disruptions .
If a landslide has no impact at all, it is improbable to be
investigated or reported. Therefore, landslides in remote
areas could not be traced in the all supporting data. Only
landslides with significant impacts are discussed the most, for
example, the landslide in the Wayang Windu geothermal,
which can be traced both in landslide reports, news, and
previous research papers.

4.Conclusion

GE can produce polygon-based landslide inventories
consisting of landslide areas and landslide source areas. The
limitations of GE are (1) not covering the timing of the
landslide occurrences, (2) tricky to identify small landslides
(<100 m?) in anthropogenically transformed areas, and (3)
not able to distinguish between earth and debris of landslide
material. Intensive field surveys in anthropogenically
transformed areas or the using of other high resolution
imageries are strongly encouraged to fill data gaps in order to
obtain an ideal landslide inventory.
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