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Abstract Synthetic rainfall simulation using weather generator models is commonly used as a substitute
at locations with incomplete or short rainfall data. It incorporates a method that can be developed into
forecasts of future rainfall. This study was designed to modify a rainfall prediction system based on the
principles of weather generator models and to test the validity of the modelling results. It processed the data
collected from eight rain stations in zones affected by El-Nino Southern Oscillation (ENSO). A large-scale
predictor, that is, SST prediction data in the Nino 3.4 region over the Pacific Ocean was used as the
influencing variable in projecting rainfall for the following six months after the predefined dates. Rainfall
data from weather stations and SST in 1960-2000 were analyzed to identify the effects of ENSO and build a
statistical model based on the regression function. Meanwhile, the model was validated using the data from
2001 to 2007 by backtesting six months in a row. The analysis results showed that the model could simulate
both low rainfall in the dry season and high one in the rainy season. Validation by the student's t-test
confirmed that the six-month synthetic rain data at nearly all observed stations was homogenous. For this

reason, the developed model can be potentially used as one of the season prediction systems.

©2020 by the authors. Licensee Indonesian Journal of Geography, Indonesia.
This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution(CC BY NC) licensehttps://creativecommons.org/licenses/by-nc/4.0/.

1. Introduction

Nowadays, there has been an immense number of climate
change impacts in Indonesia (Sekaranom & Masunaga, 2017;
Sekaranom, Nurjani, & Pujiastuti, 2018). As a result, in most
regions floods, drought, sea-level rise and forest fires have
increased dramatically in frequency (Marfai, Sekaranom, &
Cahyadi, 2015; Marfai, Sekaranom, & Ward, 2015). Climate
change mainly contributes to elevated precipitation rates in
the rainy season but decreased amounts of rainfall in the dry
season (Chung & Power, 2014; Ummenhofer, D'Arrigo,
Anchukaitis, Buckley, & Cook, 2013). That said, agriculture is
projected to be the most severely affected sector because
extremely different rains in alternating dry and rainy seasons
result in crop failure (Iglesias & Garrote, 2015; Nurjani,
Harini, Sekaranom, & Mutaqqin, 2020). Also, the economic
sector is broadly affected as climate change-induced floods
damage infrastructure and inundate residential and industrial
areas (Marfai, Sekaranom, & Ward, 2015).

Weather and climate data enable the estimation of climate
change impact and corresponding mitigation, as well as the
development of adaptation strategies (Iglesias & Garrote,
2015; Meinke & Stone, 2005). A sufficiently long record,
which is more than 30 years, is generally required (Meinke &
Stone, 2005). However, most data in Indonesia do not have a
long observation period (Sekaranom, Nurjani, Hadi, &
Marfai, 2018). In cases where only short observational data
are available in the field, simulated data called synthetic
rainfall data can be used instead (Richardson & Wright,
1984).

Synthetic rainfall data can be obtained from shorter
observation times as a basis for statistical or numerical model
calculations(Richardson & Wright, 1984). Statistical methods
are more straightforward and require less computational
capacity than the numerical model (Sekaranom & Nurjani,
2019). A statistical method that produces synthetic data is
termed as the weather generator model(Ivanov, Bras, &
Curtis, 2007; Richardson & Wright, 1984). Weather
generator models simulate climatic parameters according to
their statistical characteristics, as obtained from observation
data. This simulation is based on several statistical
parameters, namely mean value, statistical data distribution
and the probability of a value or an event to occur (Wilby,
1999). Weather generator models have been widely applied in
many fields, including water resources analysis and
hydrometeorological disasters (Ivanov et al., 2007).

Weather generator models assume that the statistical
characteristics of a meteorological parameter in an area are
constant and do not change (Wilby, 1999). For example, at
the same location, there is no difference in rainfall today and
ten years ago. For this reason, the model cannot simulate any
changes in statistical properties that may have occurred.
Weather generator models, thereby, cannot be used as a basis
in analyses involving future climate change.

From a meteorological perspective, large-scale changes in
weather and climate parameters most likely affect the same
parameters in a smaller area of coverage. For instance, as a



SIMULATION OF DAILY RAINFALL DATA USING ARTICULATED

Andung Bayu Sekaranom, et al

result of climate change, sea-surface temperature (SST) shifts
in the Pacific region modify the El-Nino and La-Nina states
in the El-Nino Southern Oscillation (ENSQO), which in turn
influence rainfall occurrences in some parts of Indonesia
(Jourdain et al., 2013; Sekaranom, Nurjani, & Pujiastuti,
2018). If the sea surface temperatures in the eastern Pacific
Ocean rise, a stronger El-Nino potentially occurs and brings
about widespread drought. On the contrary, a warming of the
western Pacific Ocean surface can lead to a stronger La-Nina,
which causes flooding over increasingly more extensive areas
in some Indonesian regions (Grimm & Tedeschi, 2009;
Sekaranom & Masunaga, 2019; Sekaranom, Nurjani, &
Pujiastuti, 2018).

Contributing weather and climate factors can be
fundamentally used as the calculation variables in weather
generator models (Wilks, 1999). As an example, changes in
the magnitude of ENSO are represented by sea surface
temperature (SST) anomalies in the Nino 3.4 region in the
Pacific Ocean (Chowdhury & Beecham, 2013). This particular
variable can be considered as a parameter in rainfall
distribution and probability change. This contributing factor
can be integrated into the weather generator model. This
paper is intended to explain the development of Articulated
weather generator for seasonal climate prediction
(AWGenSCP) model (Sekaranom & Nurjani, 2019). The
model integrates regional weather and climate parameters
into a weather generator system (Sekaranom & Nurjani,
2019). In this paper, the AWGenSCP model is designed to
simulate weather in the following six months based on ENSO
prediction data and weather and climate parameters. This
paper further explains the development of the basic concepts
of integrating regional weather and climate parameters into
AWGenSCP and describes the results of the model
validation.

2. The Methods

This study reproduced rainfall data in some ENSO-
affected areas in Indonesia as an example of simulation.
Increased and reduced rainfalls during La-Nina and El-Nino
characterize these regions (Sekaranom, Nurjani, & Pujiastuti,
2018). This study backtested the modelled rain data for six
months in a row after each of the predetermined times of
analysis. The baseline data from 1960-2000 was used to build
the statistical properties of the model. Furthermore,
backtesting was carried out starting from 2001 to 2007 for
particular locations. Records of rainfall during this period
were used to validate the created model. More specifically,
the research method is as follows:

Data

AWGenSCP simulates two categories of data. The first
category is large-scale predictors that influence regional
weather and climate. In this study, SST prediction in the
Nino 3.4 zone was used to represent the effects of ENSO.
ENSO variability was selected because it has the broadest
range of influence compared with other regional weather and
climate dynamics in Indonesia (Sekaranom, Nurjani, &
Pujiastuti, 2018). SST prediction for this zone was obtained
from the NOAA National Centers for Environmental
Prediction (NCEP), which is a coupled forecast system model
(CFSv2 model) that can be downloaded at http://
www.cpc.ncep.noaa.gov/products/ CESv2CFSv2seasonal.sht
ml. Figure 1 presents an example of SST data in the Nino 3.4
zone during the baseline period. In general, +/- 1°C is the
threshold for determining the El-Nino and La-Nina states. A
weather pattern is categorized as El-Nino when SST anomaly
reaches >1°C, whereas La Nina is considered when SST
anomaly reaches <1°C (Chowdhury & Beecham, 2013;
Grimm & Tedeschi, 2009).

The second category is the rain station data, which

Monthly Nino 3.4 SST Anomaly from 1961-2000
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Figure 1. Sea surface temperature anomaly in the Nino 3.4 zone during the baseline period (1961-2000). La-Nina is characterized
by colder SST anomaly (<-1°C), while EI-Nino by warmer SST anomaly (>1°C). Source: NCEP-coupled forecast system model
version 2 (CFSv2 model)
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Table 1. Rain station data used in the analysis and correlation analysis between rainfall and SST in the Nino 3.4 zone. The highest
seasonal correlation values are indicated by bold letters (Source: Data analysis)

SST anomaly in Nino 3.4
ID Stations Lon Lat Seasonal Correlation
DJF MAM JJA SON
a Yogyakarta 110.37 -7.77 -0.05 -0.21 -0.11 -0.45
b Kebumen 109.47 -7.64 0.05 -0.13 -0.15 -0.44
c Semarang 110.39 -6.99 0.13 -0.21 -0.14 -0.39
d Denpasar 115.15 -8.67 0.01 -0.12 -0.11 -0.41
e Lombok 116.33 -8.63 0.00 -0.19 -0.19 -0.44
f Bima 118.75 -8.47 -0.03 -0.21 -0.17 -0.43
g Banyuwangi 114.27 -8.27 -0.06 -0.07 -0.11 -0.43
h Jepara 110.66 -6.62 -0.07 -0.23 -0.09 -0.38
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Figure 2. Rain station data used in the analysis and correlation analysis between rainfall and SST in the Nino 3.4 zone. The colour
bar represent the correlation between rainfall and Nino 3.4 SST in SON.

represents the weather and climate at the local level as
predictand variables). Rain observation stations in regions
receiving the most substantial influence of ENSO were
selected for the rainfall simulations. At the initial stage, the
correlation analysis between rainfall and SST in the Nino 3.4
zone sought to determine locations that were intensely
affected by ENSO. It was carried out depending on the
season, namely a) December-January-February (DJF), b)
March-April-May (MAM), ¢) June-July-August (JJA) and d)
September-October-November (SON). At the final stage,
eight (8) rain stations from the Meteorology, Climatology
and Geophysical Agency (BMKG) were chosen for further
analysis (Table 1 and Figure 2).

The seasonal correlation analysis revealed that the
highest correlation at all rain stations occurred in September-
October-November (SON). This correlation was negative
because of the high SST in the Nino 3.4 zone, typifying an El-
Nino condition in which rainfall in some parts of Indonesia
tends to decrease (Sekaranom, Nurjani, & Pujiastuti, 2018). It
is mainly correlated to the beginning of the rainy season.
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ENSO significantly modifies, or particularly delays, the start
of the rainy season at the study locations. Meanwhile, at the
peak of the rainy season (December-January-February or
DJF), the correlation was at its lowest, indicating that the
effect of ENSO at this time is considerably weak.

2.The Methods

The method used in AWGenSCP is developed from the
basic statistical approach incorporated in the Weather
Generator Mode (Sekaranom & Nurjani, 2019). In the
Weather Generator Model, the fundamental assumption is
that the probability of an event occurring in the future
depends on the conditions in the past and the present
(Sekaranom & Nurjani, 2019). For example, the probability
of rain to occur tomorrow is strongly attributable to today's
weather and climate. Thereby, it is formulated as a Markov
Chain (Richardson & Wright, 1984; Wilby, 1999), that is, a
process where:
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P(X.,, =5|X =5.%_, =5, ...% =5,)=P(X,,, = s|®uld geyeal changes in data probability. This approach

i)

denoting the chance of rain on the next day and P& as
the chance of rain at the present day, as obtained from the
actual rainfall data and the function of days of rain (Rd) and
rainfall (Rr). The formula is as follows:

5.5.5,

with representing rainy/non-rainy day,

1if Rr = 0
Rd =
7

T Rd
Pxt) =—

n

In the developed model, whether or not rain occurs in
the next one day depends on a random number (Sekaranom
& Nurjani, 2019). Rainfall occurs if it exceeds a specific value
above a threshold. If the random number is less than the
specified limit and shows no rain event the next day, then the
probability of rain is zero (0 mm/day). However, if the
random number exceeds the specified threshold for
probability, then the simulation results most likely show a
rainy day.

If the simulation indicates a rainy day, then the next step
is to determine rainfall depth randomly according to rainfall
data distribution. In this model, the rainfall distribution is
based on gamma distribution fitting. This process produces
the shape (k) and scale (0) parameters in gamma probability
distribution function:

e

r(k)ax ™

flx, k.6) =

A
where f& ) is gamma distribution function and [(x)

is a gamma function for a random value x. The amount of
daily rain was determined through a random function, which
randomly selects a value based on the gamma probability
distribution function. Therefore, rainfall simulation by
weather generator model primarily refers to conditional
probability, which is:

R = {1"'::):] | (x~ U011} if x = 1 — P{Xt)
0

In the AWGenSCP model, the influencing variables on
the regional scale serve as predictors, which are divided into
two functions, namely how predictors affect the probability
of rainfall events and how they affect the distribution of
rainfall (Sekaranom & Nurjani, 2019). For instance, La-Nina
allows rain to occur more frequently, increasing the
likelihood of rain (Jourdain et al., 2013). In terms of
distribution, La-Nina can also increase the frequency of high-
intensity rain events, resulting in a shift in gamma
distribution.

In this model, the question of how predictors affect the
probability of rain was answered by the regression function.
Using the baseline data and the regression between large
scale predictors (SST in the Nino 3.4 zone), the researchers
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enabled the prediction of the statistical distribution of rainfall
events using the large scale predictors—in this case, is SST
projection in the Nino 3.4 zone for the following six months
after the time of release—using the formula below:

P{Xrn:l =dp + Bl

where the probability of a rainy day in the future P& 1) is

. . Bp i .
a function of intercept and " generated by a simple

regression model whose value of large-scale predictor ( ¥ ) is
determined. Regression models were also applied in
projecting changes in the gamma distribution, which in

L+1

k
detail, was divided into shape parameter ( ) and scale

)
parameter ( "**) in the predictions for the next day. The

prediction of change in scale parameter and shape parameter

tg By

in the linear regression model using intercept and

“e , Fe is expressed by the following equation:

koo = o + Be¥:
Beir = og + Ba¥:

The end result of changes in probability and shape and
scale parameters—based on the predictors of six-month
rainfall—is a synthetic rain data that follows the statistical
changes occurring in the predictor variable. Data distribution
must take into account the fact that rainfall data statistically
varies throughout the year, specifically in dry and rainy
seasons. In this study, data distribution was analyzed into a 3
-month time to determine changes in statistical
characteristics due to the influence of predictors. The
timeframe was adjusted to three months or similar to the
previous correlation analysis, which consisted of December-
January-February (DJF), March-April-May (MAM), June-
July-August (JJA) and September-October-November
(SON).

3. Result and Discussion

The previous chapter explains how a set of data can be
statistically processed in AWGenSCP to create rainfall
simulations along with changes in the predictor variable, that
is, SST in the Nino 3.4 zone in the following six months (the
SST prediction was obtained from the NCEP's coupled
forecast system model version 2/CFSv2 model). In this case,
backtesting was performed for each release of predictor data
at the beginning of each month. Each release presents the
SST projection in the Nino 3.4 zone for the next six months
from the date of release. Furthermore, the simulation
followed the six-month prediction data with reference to the
time of release. More specifically, the beginning of this
section explains how the predictor affects the statistical
properties of rain data by analyzing the baseline data (1961-
2000). Then, the synthetic and actual rainfall data were
compared based on graphical representation and statistical
tests, i.e., the student's t-test.
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Statistical properties of the rainfall data for weather
generator model development

In this sub-section, the statistical properties of rainfall
data are analyzed in relation to SST in the Nino 3.4 zone for
the baseline period (1961-2000). The statistical parameters,
consisting of the probability of rainy days and rain
distribution, are compared. Rain distribution is characterized
by the shape and scale parameters of the gamma distribution.
Also, the two periods, each representing the highest (SON)
and lowest correlation (DJF), are compared.

Figure 3 shows the plots of the probability of rain days
against the SST anomalies in the Nino 3.4 zone for each rain
station in SON (the beginning of the rainy season). Point
clouds in the picture lean towards the bottom-right of the
chart, indicating that the probability of a rainy day increases
when the SST anomaly in the Nino 3.4 zone is negative (La-
Nina). Conversely, when the SST anomalies in this zone are
high, the probability of rainy days tends to decrease.

Figure 4 is a graph showing the relation between the
probability of rainy days and the SST anomaly in the Nino
3.4 zone in DJF (peak of the rainy season). Unlike Figure 3,
the point clouds in this picture do not present a distinct
trend. In DJF, points are clustered on the right or upward of
0.6 (60%) probability of rainy days, and this pattern is
different from that of SON. Both findings imply that rainfall
in DJF is higher than the SON, but it is not affected by ENSO,
as evidenced by the results of the correlation analysis (see
Table 1). The causative factors are, among others, the
presence of low-pressure centres in the study area as a
product of the apparent motion of the sun, Madden-Julian
Oscillation, and the Indian Ocean Dipole mode (Chowdhury
& Beecham, 2013; Izumo et al., 2014; Ummenhofer et al.,
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2013).

The plots between the values of shape parameter (Gamma
distribution) and SST anomalies in the Nino 3.4 zone in SON
(the beginning of the rainy season) are presented in Figure 5.
Contrary to the observable change in the probability of rainy
days in the same months (Figure 2), the pattern of the shape
parameter, as induced by ENSO, is less than obvious. Its
values are randomly distributed over the positive and
negative SST anomalies. This condition is also apparent in
DJF (the peak of the rainy season), as seen in Figure 6.
Although a random distribution appears in DJF, the point
clouds lean toward higher values of shape parameter than the
ones in SON. It signifies a higher variation of daily rain
distribution at the peak (DJF) rather than at the beginning
(SON) of the rainy season. The same case applies to the
amount of daily rainfall, which is higher in the former than
the latter. Nevertheless, changes in the shape parameter—a
statistical characteristic—at the peak of the rainy season are
influenced more by the conditions of the season itself than
the effect of ENSO.

Figures 7 and 8 are plots between the scale parameter of
Gamma distribution and SST anomalies in the Nino 3.4 zone
in two periods, SON and DJF. In general, the observed
pattern is similar to that of the shape parameter, that is,
random. Furthermore, point clouds of the scale parameter in
DJF display a more apparent tendency toward the right side
of the chart than in SON. The effect of ENSO on the
distribution of the scale parameter is not sharply defined,
which is the same as the shape parameter. That said,
increased variation in daily rainfall is solely determined by
the effects of the season itself (the peak of the rainy season).

Based on the analysis of the probability of rainy days and

Raindays probability

Figure 3. Plots of the probability of rainy days (x-axis) against SST anomalies in the Nino 3.4 zone (y-axis) for each observed
rain station in SON (the beginning of the rainy season). Source: Data analysis
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Figure 4. Plots of the probability of rainy days (x-axis) against SST anomalies in the Nino 3.4 zone (y-axis) for each observed rain
station in DJF (the peak of the rainy season). Source: Data analysis
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Figure 5.Plots of the shape parameter of Gamma distribution (x-axis) against SST anomalies in the Nino 3.4 zone (y-axis) for
each observed rain station in SON (the beginning of the rainy season). Source: Data analysis
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Figure 7. Plots of the scale parameter of Gamma distribution (x-axis) against SST anomalies in the Nino 3.4 zone (y-axis) for
each observed rain station in SON (the beginning of the rainy season). Source: Data analysis
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Figure 8. Plots of the scale parameter of Gamma distribution (x-axis) against SST anomalies in the Nino 3.4 zone (y-axis) for
each observed rain station in DJF (the peak of the rainy season). Source: Data analysis

the shape and scale parameters of Gamma distribution, this
study concludes that ENSO can affect the occurrence of
rainfall in an area but not its amount. Declining trend, as
shown in Figure 3 and Figure 4 indicates that an increase of
the SST anomaly by 1°C reduce the rainfall probability from
25% to 50%. In the AWGenSCP model, ENSO was found to
influence any changes in the probability of rainy days, which
implies that changes in the modelled probability correspond
to the SST anomalies in the Nino 3.4 zone (Sekaranom &
Nurjani, 2019). In the cases where ENSO did not affect the
existing statistical variables, namely the shape and scale
parameters, the values of which were determined randomly
according to the statistic characteristics of each period
(Sekaranom & Nurjani, 2019). Therefore, although the effects
of ENSO on the shape and scale parameters in SON and DJF
are not apparent, the predicted values can vary according to
the distribution of the point clouds in the chart above.

Model experimentation and validation

Synthetic daily rainfall data in the AWGenSCP model was
determined using three parameters discussed earlier, namely
the probability of rainy days and the shape and scale
parameters of Gamma distribution. Based on the previous
results, the probability of rainy days, especially in SON, is
greatly influenced by ENSO. Some other parameters have
different statistical characteristics in each period. In this sub-
section, the trials and validation results of the developed
models are discussed. The trial or experimentation used the
data in 2001-2007 and was performed for all predetermined
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rain stations.

Figure 9 plots the synthetic rain data generated by the
AWGenSCP model and the records of actual rainfall in 2001-
2007 for comparison. The synthetic daily rain data was
accumulated into monthly data, marked with the blue line.
For comparison, the actual rain data is depicted in bar charts.
The figure shows that the synthetic rainfall can simulate low
and high rainfall each in the dry and rainy season.
Comparisons in the rainy season showed varied results for
different locations and times. As an example, the synthetic
rainfall at the beginning of the rainy season in 2002 is higher
than the actual record at Yogyakarta (a), Kebumen (b),
Semarang (c) and Jepara (h) rain stations. This finding is
potentially attributable to other factors besides ENSO,
producing a relationship that is not always linear
(Chowdhury & Beecham, 2013; Izumo et al, 2014;
Ummenhofer et al., 2013). The non-linear relationship
indicates that precipitation in those areas not only affected by
ENSO, but also affected by shorter and longer atmospheric
perturbation working together at the same location, for
example, Madden-Jullian Oscillation (MJO) and Indian
Ocean Dipole Mode (I0D) (Sekaranom, Suarma, & Nurjani,
2020).

The student's t-test determined whether the distributions
of the daily synthetic and actual rainfall data were statistically
homogeneous. In this case, homogeneity means that the
simulation results can be used for further applicable analysis.
The extent to which this model can be used depends on the
results of the student's t-tests in two periods, namely El-Nino
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Figure 9. Plots of synthetic rainfall (line) and actual rainfall (bars) accumulated into monthly data in 2001-2007. From top to
bottom: a) Yogyakarta, b) Kebumen, c¢) Semarang, d) Denpasar, e) Lombok, f) Bima, g) Banyuwangi, and h) Jepara rain stations.
Source: Data analysis

Table 2. The results of the homogeneity test between synthetic and actual daily rainfall using the student's t-test
for the El-Nino and La-Nina periods. The sample size is >100, with a 95% confidence level and a critical value of
+/- 1.645. Bold font marks scores above the critical values (Source: Data analysis)

Student's t-test scores

ID Stations

El-Nino period La-Nina period
A Yogyakarta 0.98 0.08
B Kebumen 1.11 1.17
C Semarang 0.94 2.37
D Denpasar 1.34 0.006
E Lombok 1.09 0.85
F Bima 1.38 0.87
G Banyuwangi 1.16 0.21
H Jepara 0.44 1.02

and La-Nina. For each period, the sample size was more than
100. Therefore, to achieve a 95% confidence level, the data is
said to be homogenous if its critical value is between +/-
1.645. In general, the student's t-test scores were lower
during La-Nina, except for Kebumen, Semarang and Jepara.
In Semarang, these scores were higher than the critical
values, meaning that the synthetic daily rainfall cannot
resemble the actual rain data. As explained in the previous
paragraph, these results can be caused by other weather
factors. In particular, this region is a coast that is heavily
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influenced by land and sea winds (Qian, 2008).

4. Conclusion

Compared to other weather generator model, the
development of the AWGenSCP model primarily lies in the
adopted consideration, that is, how a large-scale predictor
can affect local weather and climate. This effect can be a
downscaling variable in the modelling of temporal changes
in local weather and climate parameters. In this case, the
large-scale predictor is not necessarily ENSO variability, but
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it can be another global-scale variable, for example, regional-
scale wind speed, humidity, and other factors that are
correlated with local weather and climate. Therefore, the
developed model can be predictive for, among others, the
downscaling of climate change impact.

Some recent weather generator models also incorporate a
large-scale predictor in their analyses and assume that the
regional and local systems share components of linearity. An
example includes the positive relationship between
temperature and rainfall, in which a rise in the former is
believed to increase the latter. However, the relationship
between the two weather and climate parameters is often non
-linear. For this reason, current weather and climate
observations confirm that although temperatures continue to
increase, rainfall in the dry season becomes drier, but its
intensity in the rainy season is increasingly higher (Iglesias &
Garrote, 2015; Meinke & Stone, 2005). This assertion
confirms the non-linear response of the local weather and
climate systems. The AWGenSCP model has been developed
to capture non-linear patterns, which are changes in the
statistical distribution of the data (Sekaranom & Nurjani,
2019). This aspect distinguishes AWGenSCP from the
previously developed weather generator models that
integrate stagnant statistical properties from time to time.

This study has proven that in several locations, ENSO
affects the probability of rainy days. However, the same case
does not apply to the shape and scale parameters of Gamma
distribution. In conditions where the effects of large-scale
predictors are statistically insignificant, the developed model
executes the simulation based on a stagnant statistical
distribution like weather generator models in general. On the
contrary, when their influence on local weather and climate
is statistically significant, changes in statistical probability
and distribution can be incorporated in the calculation of the
model (Sekaranom & Nurjani, 2019). Experimentation in
several ENSO-affected locations indicates that the model has
successfully simulated low and high rainfall each in the dry
and rainy season, which is similar to the records of actual
rainfall. As for the student's t-test, it mostly shows that the
synthetic and actual daily rain data have homogenous
characters. In other terms, the model is potential for wider
applications in any field related to hydrology and
hydrometeorology.

Experimentation has also provided clues regarding future
model development. It is mainly related to the results of the t
-test analysis, which are non-homogeneous, and is
attributable to the influence of weather and climate on a
regional scale other than ENSO, such as the Indian Ocean
Dipole mode and Madden-Julian Oscillation (Chowdhury &
Beecham, 2013; Izumo et al., 2014; Ummenhofer et al., 2013).
Nowadays, the developed AWGenSCP model solely depends
on one large-scale predictor and, thereby, does not take into
account the role of other variables. Model development that
involves several large-scale predictors can potentially
increase the accuracy of the model in the future.
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