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ABSTRACT

The HyMap hyper-spectral data was used to classify photosynthetic
vegetation (PV), non-photosynthetic vegetation (NPV), and exposed soils in a semi-
arid savannah environment of McKinlay, northern Queensland, and Australia. This
study aimed to understand how effective the sub-pixel classification approach applied
on hyper-spectral data to distinguish the vegetation and soil features in semi-arid
environmeni. In contrast (o the per-pixel approach, this approach treats the pixel
value as reflectance sum of ils composite features, and shows its component
abundance. The most commonly used sub-pixel classification technique was used in
this research, namely Linear Spectral Unmixing (LSU). End members were used as
the input class, and the result was compared with the standard maximum likelihood
classification (MLC) using post-classification comparison method. The result of this
study shows that LSU produced a patchy distribution of classes throughout the
image. The brown soil tends to be over-estimated with respect to other classes. PV
features were relatively well-mapped compare to other classes. NPV features have
problem with domination of exposed soil reflectance. This is equivalent to the
previous studies result that background soil dominates the spectral reflectance in
this environment. According to the qualitative accuracy assessment, LSU has
higher accuracy in representing PV and NPV compare to the traditional MLC
classification.
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INTRODUCTION

Arid and semi-arid environments cover approximately 35% of the earth’s
land surface, and have important function for grazing, wildlife habitat, irrigated
agriculture, mining, solar energy generation, wood fuels, recreation, military bases,
etc. Remote sensing technology has been employed to study in these areas for
decades. However, mapping land cover in these areas using remote sensing
imageries is problematic, due to their unique environment [McGwire ef al., 2000:
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Okin et al., 2001]. The particular challenges in mapping in these areas are including
the relatively low proportion of vegetation cover, the predominance of perennial
species which often have low photosynthetic activity, patchiness of the envi-
ronment, and the mixture of vegetation and soil reflectance [Lewis, 2000; Asner &
Heidebrecht, 2002].

Arid and semi-arid regions have cloud-free weather and generally have
bright spectral properties along with high air and surface temperatures, high
evapotranspiration rates and sparse vegetation [Tueller, 1987]. The problem of
quantitative retrieval of vegetation and soil features in this area arises from several
factors, those are;

. Individual plant canopies are typically small [Lewis, 2000; Asner &

Heidebrecht, 2002],

2. A large soil background which can dominate the reflectance/absorption
contribution of plant and the potential of nonlinear mixing due to
multiple scattering of light rays [Okin et al., 2001],

Localized environment patchiness [Lewis, 2000],

Heterogeneity of vegetation species which leads to mixed pixels [Tueller,

1987],

5. Temporal change in vegetation state and soil signature [Karnieli et al.,
2002; Bastin & Ludwig, 2006], and

6. Problem at separating photosynthetic and non-photosynthetic vegetations
from soil background [Roberts et al., 1993; Asner & Heidebrecht, 2002].

o

Hyper-spectral remote sensing has potential capabilities in quantitative
measurement of key feature properties of surface [Hill et al, 2006]. Imaging
spectroscopy is routinely used in applying land cover mapping and for detecting
the impacts of land use on ecosystem. The increased spectral resolution of the data
provides access to spectral absorption features that can be used in various
classification methods [Ustin et al., 2004]. It is a promising tool for the analysis of
vegetation and soils in arid and semi-arid regions. Many studies have been carried
out to investigate the ability of hyper-spectral data for vegetation and soil mapping
in this environment [Roberts et al., 1993; Drake et al., 1999; Lewis, et al., 2001:
Okin et al, 2001; Asner & Heidebrecht, 2002; Karnieli et al., 2002].

Traditional classification methods, which assign each pixel to a certain
cover class, are not always so suitable that they often result in a poor representation
of reality. The nature of pixels value made up of some different cover materials is
not well represented. A more suitable way of extracting information from such
scenes is to estimate how each ground pixel’s area is divided up among different
cover types. This approach was usually known as mixture modeling.
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An area assigned by a single pixel of remote sensing image usually contains
a lot of different materials. These materials are mixed and the pixel reflectance
observed by sensor was a combination of reflectance of individual materials. To get
more information from a single pixel, the proportion of these materials can be
approximated using a spectral unmixing model. Using this model the mixed pixel
can be reconstructed from known spectra in the image or the mixed pixel can be
divided into components.

This study assesses the capability of sub-pixel classification approach
applied on HyMap Airborne hyper-spectral Image to map vegetation (photo-
synthetic and non-photosynthetic) and soil features in semi-arid environment. The
classification technique used is Linear Spectral Unmixing (LSU). The background
question in this study is whether the sub-pixel classification can explain better
features group due to their heterogeneity than the traditional per-pixel
classification.

THE METHODS

Study Area

The site of this study is part of McKinlay area, centered at 529610 E and
7648045 N (Fig.1, coordinate in GDA 1994 MGA Zone 54). It is a little town
located at 104 kilometers southeast of Cloncurry, North West, Queensland. This
region is predominantly (approximately 70%) grassland that is persistently dry or
suffers from winter drought. Other climate types in this region include desert and
subtropical. Average annual rainfall in this region varies from 200 mm in the
inland areas, to more than 400 in the areas toward the coast. Average annual
temperatures in this region range from a minimum of 9°C and a maximum of 24°C
east of Charleville, to a minimum of 18°C and a maximum of 33°C in the north
[Commonwealth of Australia, 2007)].

The study area is located at Mitchell Grass Downs bioregion, which is
characterized by undulating downs on shale and limestone with Mitchell grass
(Astrebla spp) grasslands and Acacia low woodlands [dccad et al, 2006].
According to CRSSIS field data (2006), the dominant weeds in this area were
mesquite (Nahuatl mizquitl), parkinsonia (Parkinsonia aculeate), prickly acacia
(Acacia nilotica), and mimosa bush (Acacia farnesiana). The soils are
predominantly deep heavy gray and brown cracking clays often with self-mulching
and sometimes stony surfaces. The plains are interspersed with drainage lines,
supporting open grasslands, herb lands or eucalypt woodlands and isolated remnant
plateaus supporting a variety of hummock grasslands and shrub land vegetation
[Commonwealth of Australia, 2007].
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Image Dataset

Figure 1. Study area, McKinlay, North West, Queensland, Australia

HyMap or Hyper-spectral Mapper is an advanced hyper-spectral sensor
developed by Integrated Supertonics, Sydney Australia, representing the current
state-of-the-art in airborne hyper-spectral remote sensing. The sensor covers the
0.45 — 2.5 um region in 126, approximately 15- nm-wide spectral bands with 3-
10m spatial resolution and signal-to-noise ratios of 500-1000 or better. The system
is a whiskbroom scanner utilizing diffraction gratings and four 32-element detector
arrays to provide 126 spectral channels covering the 0.45 — 2.5 um range over a
512-pixel swath [Kruse ef al., 2000]. Table 1 summarizes the configuration and
operational characteristics of the current HyMap sensor.

Table 1. HyMap configuration and operational characteristics [Cocks ef al., 1998]

Typical Sensor parameters

Speciral regions
Number of channels
Spectral bandwidths
Spatial resolution
Swath width

Signal to noise ratio
Typical operation Parameters
Platform

Operation altitude
Ground speeds
Spatial Configuration
IFOV

FOV
Swath

VIS, NIR, SWIR, MWIR, TIR
100 — 200

10— 20 nm

2—10m

60 -70 degrees

=500:1

Light, rtwin engine aircraft
2000 — 5000 m AGL
110 — 180 kis

2.5 mr along frack
2.0 mr across wrack

60 degrees (312 pixels)
2.3 km at 5m IFOV (along track)
4.6 km at 10m IFOV (along track)

This dataset has 126 bands and 4.9 m resolution, and was collected in
August 2006. All scenes were processed atmospherically, geometrically and radio
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metrically to at surface reflectance by the Centre of Remote Sensing and Spatial
Information Science (CRSSIS), The University of Queensland. Geometrically. All
scenes were projected into UTM coordinate system using MGA zone 54 southern
hemisphere and GDA 1994 as the datum. Radio metrically, the at surface
reflectance values were rescaled into the range of 0 to 10000, which means 100
percent of reflectance equals to 10000 DN on image. Acquisition date was chosen
to reflect the optimum vegetation-soil exposure at the end of winter or early spring.

End member Selection

End member was developed for hyper-speciral-based classification method,
which assigns the major materials found on image and have relatively pure
reflectance [Lillesand et al., 2004]. End member refers to a unique ground material
and its spectra known as end member specira. This class sampling was in the form
of spectral signature of feature’s properties, which was obtainable from laboratory
or field spectra or extracted from the image for the known ground materials [Asner
& Heidebrecht, 2002; Yang et al., 2006].

This study intended to map major typical features found in semi-arid areas,
those were photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV:
e.g. dry grass, leaf litter, and woody material), exposed soils (brown and gray
soils), and road (asphalt). In selecting end members, some ancillary data were
needed to assist the selection, which were the spectral reflectance of the feature to
be mapped, vegetation and soils information, and fieldwork report. These data were
required to get the suitable and accurate sample classes. A standard false color, true
color bands compositions and NDVI image were found very useful in identifying
the feature classes.

Classification Methods

Linear spectral unmixing method was developed to determine sub-pixel
information. The input of this process was end members collected in the previous
stage. This method assumed that a value at a given pixel was the result of a linear
combination of one or more components. In the process of ‘unmixing’, this method
estimated the fit of selected end members to the observed value of a pixel in order
to estimate its proportion of composition. As a result, each pixel carried
information about the predicted abundance of each of the end members [Okin ef al.,
2001; Rosso et al., 2005].

This mapping approach was based on assumption that the spectra of materi-
als in an instrumental instantaneous field (IFOV) is combined linearly, with pro-
portions given by their relative abundances. A combined spectrum thus can be de-
composed into a linear mixture of its spectral end members [Okin et al., 2001]. The
weighting coefficients of each spectral end member, which must sum to one, were
then interpreted as the relative area occupied by each material in a pixel (Fig. 2).
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Figure 2. Principle of spectral mixing and unmixing [Van Der Meer & De Jong,
2001], with modificati

This method contrasts clearly with traditional classification approaches that
assign only one possible value or category per pixel (i.e. maximum likelihood).
Conceptually, it is deterministic method rather than statistical method, since it is
based on a physical model of the mixture of discrete spectral response patterns
[Lillesand et al., 2004]. The results of this mapping method were classified maps of
the approximate proportions of the ground area of each pixel that were occupied by
each of the end member classes.

RESULTS AND DISCUSSION

PV, NPV, and Exposed Soil Discrimination

PV feature typically found as green vegetation could be identified as strong
red color in FCC image, and associated with the sireams. Spectrally, this feature
can be identified by its high difference between red spectral absorption and NIR
reflectance, due to the photosynthesis activity (Fig.3). NPV, on the other hand,
usually lack significant quantities of chlorophyll and thus lack the high NIR to red
contrast [Roberts et al., 1993]. This category included materials such as dry leaf
(dry grass and litter), bark, wood, and stems.

Supporting information derived from the image, such as NDVI, can also
support the selection of these classes. Bright areas in NDVI image represent the
dense vegetation canopy that can be assumed healthy green vegetation. The darker
the area indicated the fewer the vegetation features exist. Exposed soil has a very
distinct spectral reflectance compared to vegetation. It has higher reflectance at
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most of the wavelength but less peak and valley. According to [Lillesand ef al.,
2004], this is because the factors that influence soil reflectance act over less
specific spectral bands.

PV, HFY ond soil Speciral Profile of Study Area

5000 =
5 et o adiprlings
! 3 o~ T ~Sgil \H:
% 2 oot 1]
g i i
£ = b =
_5' \ /__H—,,_L MY '“\M ]
Fi L. R X o
& 2 e Rl ]
05 () i)

ot erometo) 2

Figure 3. Spectral profiles of PV, NPV, and soil extracted from HyMap
Image of the study area.

End member Selection

End members were selected as objects’ reference spectra for LSU
classification. There were some sources of end member; laboratory measurement,
field spectra collection, or the one extracted from the image for the known ground
materials [Asner & Heidebrechr, 2002; Yang et al, 2006]. This study developed
end members from the image data. Image-based end members were ideal because
they were drawn from the population of data points to be analyzed, which increased
the likelihood that image pixels will be decomposed using end members which
actually exist in the area [Asner & Heidebrechr, 2002].

Endmembers Spechro

:

g

Rallecionca (10000 = 100%)

Figure 4. End member’s spectra collection and their source locations
(Indicated by + marks)

As discussed earlier, PV feature typically found as green vegetation, could
be identified as strong red color in FCC image, and have association with the
crecks. Spectrally, this feature could be identified by its high difference between
red spectral absorption and NIR reflectance, due to the photosynthesis activity (Fig.
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4). NPV, on the other hand, usually lacked significant quantities of chlorophyll and
thus lacked the high NIR to red contrast.

Deep heavy gray and brown cracking clays were the typical soil color in
this area [Accad et al, 2006; Commonwealth of Australia, 2007]. Thus, the
exposed soil class could be identified visually using true color image as it would
showed the same color as in the field. In addition, the use of soil spectral
reflectance was also critical in selecting this class. Features with a consistent ‘soil
like® reflectance profile throughout the image would be assigned as exposed soil
class. However, the gray color in the image did not match up with the typical soil
reflectance profile. On the other hand, the bright spots in the image had similar
reflectance profile with soil. These spots could be exposed gray soil with highly
reflectance during daytime.

Asphalt road has a relatively low and steady spectral signature throughout
the wavelength (Fig.4). According to [Herold & Roberts, 2005], this low
reflectance is due to the domination of hydrocarbon absorption in this material.
However, asphalt pavement aging and erosion of the asphalt mix result in a gradual
transition from hydrocarbon to mineral absorption characteristics with a general
increase in brightness and changes in distinct small-scale absorption features.

Classification Result

Linear Spectral Unmixing determined the relative abundances of materials
that were depicted in multi- or hyper-spectral imagery based on the materials’
spectral characteristics. The reflectance at each pixel of the image was assumed to
be a linear combination of the reflectance of each material (or end member) present
within the pixel [Kruse ef al., 1993]. So given the resulting spectrum (the input
data) and the end member spectra, the linear unmixing solved the abundance values
of each end member for every pixel.

The results of spectral unmixing appeared as a series of gray-scale images,
one for each end member (Fig.5), plus a root-mean-square (RMS) error image (Fig.
6b). Higher abundances (or higher errors for the RMS error image) were
represented by brighter pixels. The unmixing results should have a data range
(representing end member abundance) from 0 to 1. However, negative values and
values greater than one were possible. The results were depending on the input end
members, they changed if the end members were changed. The RMS error image
helps to determine arcas of missing or incorrect end members.
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Figure 5. LSU images of each class and combined class

The result map show that PV and NPV classes were distributed along the
river and creeks; brown-exposed soil dominated eastern part of image, while gray-
exposed soil mostly found in west. The soil features” distribution was in parallel to
the geological map of this area (Fig. 6d). From the statistics (Table 2), brown-
exposed soil class dominated the area by covering 49.33% of the area, followed by
gray-exposed soil at 30.80%. On the other hand, PV only occupied area of 5.75%
and NPV of 12.58%. The soil features were dominant in this classification method.
However, apart from the classification method applied, this was a typical arid and
semi-arid environment, in which exposed soils were usually the largest contributor
to the scene rellectance and dominate pixel responses [Lewis, 2000]. Vegetation
features (PV and NPV), as earlier discussed, only covered small area in this
environment. According to the properties of classes resulted (mainly shape, site.
association, and distribution), LSU proven to be a powerful and efficient method of
classification. However, the unclassified resulted from this classification was
1.43%. Those pixels were outside the threshold ranges defined for each class.
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Figure 6. a. LSU-classified image, b. RMSE image, ¢c. NDVI of McKinlay, and
d. Geological map of McKinlay area (Australian 1:250,000 Geological
Series Sheet SF 54-7, McKinlay Queensland)

Table 2. Statistics of LSU-classified image

Class Pixel Total Pct Acct Pot
Unclassified 3436 3436 1.43% 1.43%
PV 13844 17280 3.75% 7.18%
NPV 30292 47572 12.58% 19.76%
Brown soil 118738 166310 49.33% 69.09%
Gray soil 74139 240449 30.80% 09 89%
Road 276 240725 0.11% 100.00%

There were two factors possibly influencing the unclassified result. First,
the non-linearity of mixed features, as reported by [Roberts ef al., 1993] that
spectral mixture that includes green vegetation has the potential of being non-
linear. It is due to transmission and scattering of NIR light by green leaves and the
high spectral contrast between red and NIR of leaves. Second, this could be caused
by inaccuracy of the threshold value assigned to the feature classes when creating a
combination image. According on the RMSE image (Fig.6b), the largest contri-
bution to these errors was found in areas insufficiently described by the unmixing
model, such as river water bodies, some NPV classes, and some exposed soil spots.

Accuracy Assessment

Thematic information extracted from remote sensing images always
contains error. This stage was conducted to ascertain whether each category in a
classification really presents at the points specified on a map, and the boundaries
separating categories valid as located [Jensen, 2005]. Several standard steps should
be followed to assess the resulted image. However, because of the limitation in
sample points, those procedures could not be conducted. Alternatively, a qualitative
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matching was carried out between pictures of sample points and corresponding
classification map results (Fig. 7). The classification accuracy resulted from LSU
was then compared to the result of MLC as a standard per-pixel classification.

Figure 7. Sample pictures and classification results of point mcki 03

According to qualitative assessment, PV features were relatively well
mapped in this classification approach, indicated by matched up features with the
field photographs and data. NPV features were obstructed with the domination of
exposed soil reflectance, but less than MLC did. Hence, the result experienced
misclassification of these features. Up to this point, with the limitation of sample
points, LSU has successfully mapped the PV and NPV.

Post-classification change detection was carried out to provide "matched
classification" information between LSU and MLC as the standard classification.
This is aimed to understand the degree of correspondence between those different
classification approach (sub-pixel and per-pixel). In Table 3, the pixels that have
matched classification on both images were located along the major diagonal of the
matrix. The resulted percentage of matching classes was 70.6%, which meant they
have a relatively high degree of correspondence. The unmatched class was more
likely to occur in the middle and east part of the study area, particularly around the
settlement area, where their end members were not assigned.

Table 3. Post-classification comparison matrices

LsU
Uncl PV NPV BS Gs AR Toral
Uncl 3436 3436
PV 0909 1231 211 462 130 11943
NPV 3826 18036 10281 6832 36 39011
BS 109 2768 102090 26535 17 137519
GS 0 2256 5924 39893 03 45166
AR 0 1 232 417 0 630
i Total Pixl 240725
= Martched Pixel 9909 18036 102090 39893 0 169928
= % Match 70.6
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Legend:

Uncl = unclassified,

PV = photosynthetic vegetation

NPV = non-photosynthetic vegetation,
BS = brown soil

GS = gray soil,

AR = asphalt road

In general, LSU considered as the better classifier in this study, because
semantically its classification result was more similar to the reference information.
However, there were some unclassified pixels resulted. In addition, the potential of
nonlinear spectral mixing in this environment was high, which diminished the uti-
lity of this method. MIL.C was less appropriate to be employed in this environment.
It did produce a compact and solid feature classes, but they tended to be over-
estimate, especially the soil features. It was obvious because all pixels in MLC
were assigned according to the highest probability to the training area, which was a
typical of hard classifier. Thus, many pixels would be forced into a certain class
member, which was subject to misclassification.

CONCLUSION

Selection of the end member is the most important step for hyper-spectral
classification since choosing a wrong one can make great difference in
classification result. The use of ancillary information is proven to be very useful as
guidance in selecting appropriate end member. The classification result indicated
that PV and NPV features were well identified in LSU. Exposed soils were
dominating the spectral reflectance of this area, especially when mixing with NPV
features. According to post-classification comparison with MLC, there was a
relatively high correspondence result between them (70.6%). However, a
quantitative accuracy assessment showed that LSU classified image has greater
match with the field data. Up this point, this classification technique is proven to be
successful in discriminating PV, NPV, and exposed soils in the semi-arid area.
Nevertheless, LSU experienced with some unclassified pixels. It should be note
that this technique depends on the threshold value of rule images determined by
user. Some possible sources of error might affect classification results, such as
impurity of end members and the nonlinearity of features’ reflectance.
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