ROUTING MODEL OF SEDIMENT YIELD FOR A REPRESENTATIVE HIMALAYAN DRAINAGE BASIN, INDIA

by

Ravindra K. Pande

ABSTRACT

For a large watersheds sediment yield can be more accurately estimated if the large watersheds is divided into sub-watersheds to compensate for non-uniformly distributed sediment sources. The effect of drainage basin hydraulics can be included by routing the sediment yield from sub-watersheds to the large watersheds outlet. Sediment routing increases prediction accuracy and determines individual watersheds contribution to the total sediment yield.

INTRODUCTION

Traditionally sediment yield has been predicted by applying a delivery ratio to the gross erosion. The gross erosion can be predicted with the universal soil loss equation given by Wischmeier and Smith (1965). Sediment is a pollutant of river ecosystems and for water quality modelling usually a shorter time interval than a year is required. Williams (1975) modified the universal soil loss equation by replacing the rainfall energy factor of the equation with runoff factor and also eliminated the need for delivery ratio.

THE MODEL

A linear reservoir is fictitious reservoir where the storage may be assumed to be directly proportional to the rate of sediment yield Y' at a particular channel section, viz.,

* Dr. Ravindra K. Pande is lecturer at Department of Geography, Kumaun University Campus, Almora 263 601, U.P. India.
\[S = K_s Y \] \hspace{1cm} (1)

Where, \(K_s \) is a reservoir constant, called storage coefficient.

To determine the total sediment yield at the watershed outlet the following equation is applied:

\[\text{Total sediment yield} = \sum_{i=1}^{n} \gamma_i e^{i/\tau_i} P_i \] \hspace{1cm} (2)

Where, \(\gamma_i \) is the sediment yield from sub-watersheds \('i' \), \(T_i \) is the time between sub-watershed \('i' \) to watershed outlet and \(n \) is the number of sub-watersheds.

Williams (1975) developed a soil loss equation for an agriculture dominated watershed, i.e.,

\[Y = a (O - q_p)^{b} K_{LscP} \] \hspace{1cm} (3)

Where, \(Y \) is the sediment yield from an individual storm in appropriate units, \(O \) is the storm runoff volume, \(q_p \) is the peak runoff rate, \(K \) is the soil erodibility factor, \(L \) is the slope length and gradient factor, \(C \) is the crop management factor and \(P \) is the erosion control practice factor, \(a \) and \(b \) are constants where \(a \) is the unit conversion constant and \(b \) is the exponent and is equal to 0.56 in Williams equation.

On application of this equation to the sub-watersheds of the master watershed (Figure 1) it is observed that due to a completely non-agricultural system of the watershed, the proposed equation is not applicable and needed modifications. Another sediment yield equation is thus developed which is found more suitable to the existing conditions.

The master watershed is divided into three sub-watersheds, namely, Saran, Ghamiyal and the ungauged sub-watershed (Figure 1). Separate sediment yield models are developed for Saran and Ghamiyal sub-watersheds and the average value of \(b \) of the two models is taken as the standard value for each of the three sub-watersheds.

APPLICATION OF THE MODEL

For Saran and Ghamiyal sub-watersheds the runoff volume \(O \) and peak flow rate \(q_p \) are obtained from measured runoff hydrographs of the storms. For
the ungauged watershed, Q is determined by obtaining the equivalent uniform depth by Thiessen method and then subtracting the infiltration index. The values of Q and \(q \) thus obtained for the three sub-watersheds are presented in figure 2.

The soil erodibility factor of a soil is determined by its characteristics and related qualities. Using the technique of USDA (1978) (Ashoken, 1981) the \(K' \) values for different types of landscape are estimated and the values of weighted soil erodibility factor are presented in Table 1.

Table 1. Weighted Parameters and Travel Time of Sub-watersheds

<table>
<thead>
<tr>
<th>Parameters/ Travel time</th>
<th>Saran</th>
<th>Sub-watersheds</th>
<th>Ungauged</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.57</td>
<td>0.53</td>
<td>0.24</td>
</tr>
<tr>
<td>Ls</td>
<td>66.16</td>
<td>27.49</td>
<td>35.15</td>
</tr>
<tr>
<td>C</td>
<td>0.09</td>
<td>0.19</td>
<td>0.24</td>
</tr>
<tr>
<td>r</td>
<td>0.95</td>
<td>0.67</td>
<td>0.88</td>
</tr>
<tr>
<td>T, (PV)</td>
<td>1.70</td>
<td>5.44</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Williams et al. (1976) suggested a contour-length method to determine the "Ls" values. The following equation is used for the determination of slope length and gradient factor:

\[
L_s = \left(\frac{L_{221}}{100} \right)^{3.6} (0.055 + 0.045L + 0.00005L^2)
\]

Where, \(L_s \) is the slope length factor, exponent \(L \) is 0.5 for slopes > 5 percent, 0.4 for slopes between 1 to 3 percent and 0.2 on uniform gradient of less than 1 percent. Due to the hilly terrain of the representative watershed the value of \(L \) is taken as 0.5 for the present case.

The cover and management factor "C" is the ratio of soil loss from clean tilled-continuous fallow. Based on the techniques of USDA (1978) and personal observations a value of 0.4 is taken as the average "C" value for the agriculture land in the watershed. A weighted C factor for each sub-watershed is estimated and listed in Table 1.

The support practice factor "P" is the ratio of soil loss with a specific support practice to the corresponding loss with up-and-down slope practice. Only the cultivated area of the watershed is considered for the computation of the P factor. The P factor for terraced agricultural area is estimated to be 0.6 and for the rest of the area as 1.0 (USDA, 1978). Finally, the weighted P factor is estimated for each of the three sub-watersheds (Table 1).
In equation 3 values of parameters are put in for each sub-watershed. The average value of exponent β is determined as 0.257 and is considered as standard value. Now, the general equation for the representative watershed is developed as:

\[Y = 11.8 (Q_{a}p)^{0.257} K LaCP \] \hspace{1cm} (5)

CONCLUSIONS

In equation 2 \(Y_i \) is required to be estimated from equation 5 for each sub-watershed. The time \(T_i \) is assumed to be equal to the time of concentration between the outlet of the sub-watershed \(Y \) and the representative watershed. If an uniform distribution of \(K LaCP \) is assumed in the representative watershed the storage coefficient \(K_e \) (equation 2) is estimated from the following equation:

\[(Q_{a}p)^{0.257} = \sum_{i=1}^{n} (Q_{a}p_i)^{0.257} e^{-T_i/K_e} \] \hspace{1cm} (6)

This indicates that \(K_e \) is a function of the watershed fluvial system hydraulics only. The value of \(K_e \) for each storm can thus be estimated by solving the equation 6.

Storm events of July 8 and 9, 1987; August 11 and 12, 1987; June 28 and 29, 1985 and August 15 and 16, 1990 are taken to analyse sediment yield from the representative watershed. Equation 5 is used to compute sediment yield from the sub-watershed. For the unengaged sub-watershed EUD of rainfall for each storm and the volume of runoff are estimated. The peak flow is determined by the synthetic unit hydrograph method. The travel time \(T_i \) is computed and is given in Table 1.

Putting the above mentioned values in equation 5 sediment yield is obtained. A comparison of routed and measured values of sediment yield are presented in Table 2.

<table>
<thead>
<tr>
<th>Storm events</th>
<th>Measured sediment yield (mg)</th>
<th>Routed sediment yield (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 8-9, 1987</td>
<td>15290.30</td>
<td>15540.00</td>
</tr>
<tr>
<td>August 11-12, 1987</td>
<td>15300.00</td>
<td>15948.00</td>
</tr>
<tr>
<td>June 28-29, 1988</td>
<td>16500.00</td>
<td>16900.00</td>
</tr>
<tr>
<td>August 15-16, 1990</td>
<td>16900.00</td>
<td>16900.00</td>
</tr>
</tbody>
</table>

REFERENCES

