Development of Total Suspended Sediment Model using Landsat-8 OLI and In-situ Data at the Surabaya Coast, East Java, Indonesia

Teguh Hariyanto, Trismono C. Krisna, Khomsin, Cherie Bhekti Priabadi and Nadjadji Anwar

Abstract: The decrease of coastal-water quality in the Surabaya coastal region can be recognized from the concentration of Total Suspended Sediment (TSS). As a result we need a system for monitoring sediment concentration in the coastal region of Surabaya which regularly measures TSS. The principle to model and monitor TSS concentration using remote sensing methods is by the integration of Landsat-8 OLI satellites image processing using some of TSS-models then those are analyzed for looking its suitability with TSS value directly measured in the field (in-situ measurement). The TSS value modeled from all algorithms validated using correlation analysis and linear regression. The result shows that TSS model with the highest correlation value is TSS algorithm by Budiman (2004) with r value 0.991. Hence this TSS algorithm can be used to investigate TSS-distribution which represent the coastal water quality of Surabaya with TSS value between 75 mg/L to 125 mg/L.

Keywords: algorithm, coastal water, Landsat 8 OLI, Total Suspended Sediment (TSS), Surabaya

1. Introduction

Coastal areas often change in their function, the area which should be the conservation area or coastal protection, forests, as well as water catchment areas and mangrove forest habitat have been transformed into large scale residential area, industrial area, warehousing and others that have negative impacts on that region. Several cases of coastal reclamation area can be seen in coastal areas of Jakarta, as in the spatial plan of the city, the northern coastal region of Jakarta is designated as protected forest or mangrove forests, but in fact that region has been developed to be residential area. As a result this triggers flooding in the wider regions. Form example, reclamation is a necessity for the development of the capital Jakarta, that aims to expand the area used for economic activities. Likewise in the case of the Surabaya east coast region, the reclamation was influenced by several factors for instance the demand of residential areas, factories and so on, as well as due to the sedimentation in the river estuary which resulted in the emergence of ‘new land’. The impact of the reclamation both technically (backfilling) or natural (newland) certainly have impacts either positively or negatively [Hariyanto, 2014].

Monitoring the condition of the coast through TSS value change using Landsat-8 OLI (Operational Land Imager) satellite remote sensing in the Surabayaest coast area is necessary since there are some important things to be noted as a result of the reclamation either technically or naturally (new land). The effects of the reclamation are coastline changes, social issues, population and others. Furthermore we need the update of TSS data which is necessary to determine operational policy and technical guidance for the government, public and private sector in the utilization of coastal region from occurring environmental changes. The utilization of TSS remote sensing models in the previous study was performed by Budiman [2004], Nurudani [2013], Lestari [2009], and Rodriguez and Gilbes [2009]. Initial hypothesis is applied to obtain the highest correlation and best-fit linear regression equation.
of the TSS distribution to represent the condition of Surabaya coastal-water with 15 in-situ data sample. The TSS model which has correlation value close to 1 will be used as the basis for analyzing coastal water condition.

The aims of this research are retrieve and evaluate TSS concentration distribution using four algorithms of TSS in Surabaya east coast from Landsat-8 OLI image. Evaluate TSS correlation result retrieved from four algorithms against in-situ data using correlation value (r) and linear regression analysis. The best result will be used as the basis to explains the condition of Surabaya east coast.

2. The Methods

Research location is in the East Coast of Surabaya which has a center coordinate of 7°15'20" South and 112°49'50" East (Figure 1). The Sea region of Surabaya is divided into two zones, the first zone is the strait and located in the northern part while the second zone is the sea zones located in the eastern part. Both zones have different sea level characteristics caused by the ocean currents. Madura Strait is a narrow strait which connects the Java and Madura island. Java sea (southern part of Madura) in average has strong current which is 0.5 m and 0.6 m/s at the surface and at the bottom of strait respectively. Tidal conditions on the north coast of Surabaya is Semi-Diurnal with the highest tide (HHWS) and the lowest tide (LLWS) differences is 3.10 m. Meanwhile, the sea level condition on the east coast of Surabaya has the characteristics of Semi Diurnal (two tide per day) with the highest tide (HHWS) and the lowest tide (LLWS) differences of 2.80 m with strong currents 0.4 m/s on the surface and 0.48 m/s at the bottom of the sea. Due to the sea level conditions in the eastern part of Surabaya, the occurrence of sedimentation is more likely compared to the northern part.

The spectral characteristics of Landsat 8 OLI is provided in Table 1. Landsat-8 OLI image used in this study was acquired on March 3, 2014 with the number of pat-119 and row-065, the spatial resolution is 30mx30m. Image-to-image registration is the matching of one image to another so the same geographic area is positioned coincident with respect to the other. This type of geometric correction is used when it is not necessary to have each pixel assigned a unique x, y coordinate in a map projection [Baboo, 2011] (Figure 2). In order to get:

\[
\begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} u \\ v \end{pmatrix} \tag{1}
\]

Every step involved in the imaging process has to be known, i.e., we need to know the inverse process of geometric transformation.

\[
\begin{pmatrix} u \\ v \end{pmatrix} = T^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \tag{2}
\]
This is a complex and time consuming process. However, there is a simpler and widely-used alternative, the polynomial approximation.

\[u = \sum_{p=0}^{n} \sum_{q=0}^{n} a_{pq} x^p \cdot y^q \tag{3} \]

\[v = \sum_{p=0}^{n} \sum_{q=0}^{n} b_{pq} x^p \cdot y^q \tag{4} \]

Coefficients \(a \)'s and \(b \)'s are determined by using Ground Control Points (GCPs). For example, we can use very low order polynomials such as the affine transformation.

\[u = ax + b\Delta y + c \tag{5} \]

\[v = dx + e\Delta y + f \tag{6} \]

A minimum of three GCPs will enable us to determine the coefficients in the above equations. Therefore, we did not need to use the transformation matrix \(T \). However, in order to make our coefficients representative of the whole transformed image, we have to make sure that our GCPs are well distributed across the image [Camper, 2011].

The distance between the input location of the GCP and the retransformed coordinates of the same GCP is called the Root Mean Square (RMS) error. This is calculated in the rectification formula as follows (see Table 2 for the result)

\[T = \sqrt{R_x^2 + R_y^2} \quad \text{or} \quad R_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} X R_i^2} + Y R_i^2 \tag{9} \]

Where:

\(R_x \) = X RMS Error

\(R_y \) = Y RMS Error

\(T \) = Total RMS Error

\(n \) = the number of GCPs

\(i \) = GCP number

\(X_{Ri} \) = the X residual for GCPi

\(Y_{Ri} \) = the Y residual for GCPi

TSS in-situ Data.

In-situ data came from water samples on the East Coast of Surabaya when were taken at March 24, 2014 by the random sampling method as much as 15 points in the study site at a depth of 0.5 - 2 m. Furthermore, water samples were processed using Gravimetry method in Water Laboratory of Environmental Engineering - ITS to obtain the value of TSS.

Radiometric Correction

Landsat 8 OLI band data can also be converted to Top-of-Atmospheric (TOA) planetary reflectance using reflectance rescaling coefficients provided in the product metadata file (MTL file). The following equation is used to convert DN values to TOA reflectance for Landsat 8 OLI data:

\[\rho_{\lambda'} = M \rho Q_{\text{cal}} + A \rho \tag{10} \]

where:

\(\rho_{\lambda'} \) = TOA planetary reflectance, with no correction

\(\rho Q_{\text{cal}} \) = calibrated reflectance

\(A \rho \) = additive constant
DEVELOPMENT OF TOTAL SUSPENDED SEDIMENT

Teguh Hariyanto, et al.

for solar angle

\[M_{\lambda} = \frac{\rho_{\lambda}}{\cos(\theta_{SE})} = \frac{\rho_{\lambda}}{\sin(\theta_{SE})} \]

where:

\[\rho_{\lambda} = \text{TOA planetary reflectance} \]

\[\theta_{SE} = \text{Local sun elevation angle}. \text{The value of scene center sun elevation angle in degrees is provided in the metadata (SUN_ELEVATION)} \]

\[\theta_{SZ} = \text{Local solar zenith angle}; \theta_{SZ} = 90^\circ - \theta_{SE} \]

3. Result and discussion.

Budhiman [2004] method is based on bio optical modeling. The forward water analysis comprised the laboratory measurements of water quality (TSS and Chlorophyll) and Inherent Optical Properties (IOPs) to derive Specific Inherent Optical properties (SIOPs). SIOPs of water (TSM, Chlorophyll and CDOM), coefficient f and B were used to developed R(0-) model. The inverse atmosphere analysis encompassed several image pre-processing procedures (i.e geometric correction, atmospheric correction, air-water interface correction). The last step is the inverse water analysis, which comprised the development of algorithm and image processing to develop TSS concentration maps. The results indicate that red band of satellite sensor is sensitive to detect higher TSS concentration. Green band is sensitive to detect the lower TSS.
concentration. For Mahakam Delta, red band algorithm was used to derive TSS map, since higher TSS concentration occurred in the delta. The result can be seen in Figure 3 and the formula is as follow,

$$TSS (mg/l) = 7.9038 \times \exp (23.942 \times x)$$ (12)

where:

- $x =$ reflectance of Band 3 (red)

TSS Algorithm 2 : Nurandani [2013]

Based on Nurandani [2013], who observed and measured TSS in Rawa Pening, the results of data processing, empirical matching algorithm for the concentration of TSS is a logarithmic regression equation model using the ratio between band 1 (blue) with band 2 (green) of Landsat 7 ETM+. Therefore it changes into band 2 (blue) and band 3 (green) on Landsat-8 OLI respectively. The equation is as follow:

$$TSS (mg/l) = 368.7 \times \ln(x) + 31.52$$ (13)

The majority of TSS value is between 75-100 mg/L, which covers almost all of the study area, while the value of TSS between 50-75 mg/L is distributed in Madura Strait. Using this algorithm, there is only limited area with TSS value between 25-50 mg/L. The TSS map can be seen in Figure 4.

TSS algorithm 3: Lestari [2009]

Based on Lestari [2009], the best empirical model to predict the concentration of TSS is the 3rd degree polynomial regression model, both for the dry and rainy seasons. The model is created by the relationship between the chromaticity transformation reflectance values of blue band with TSS concentration in-situ data. Here is the formula:

$$TSS(mg/l)=24197x^3-22050x^2+6813x-644.98$$ (14)
Table 4. TSS and insitu data value

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Insitu</th>
<th>TSS 1</th>
<th>TSS 2</th>
<th>TSS 3</th>
<th>TSS 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>704337</td>
<td>9193046</td>
<td>44</td>
<td>134.5768</td>
<td>68.26647</td>
<td>37.70394</td>
<td>76.03919</td>
</tr>
<tr>
<td>702649</td>
<td>9200424</td>
<td>29</td>
<td>123.707</td>
<td>56.95261</td>
<td>36.65344</td>
<td>63.01086</td>
</tr>
<tr>
<td>704384</td>
<td>9195010</td>
<td>62</td>
<td>151.1878</td>
<td>69.24554</td>
<td>40.01199</td>
<td>77.60974</td>
</tr>
<tr>
<td>704114</td>
<td>9199646</td>
<td>29</td>
<td>120.8465</td>
<td>56.90761</td>
<td>36.51542</td>
<td>62.26074</td>
</tr>
<tr>
<td>703323</td>
<td>9196945</td>
<td>94</td>
<td>174.1747</td>
<td>72.03088</td>
<td>40.62543</td>
<td>79.58472</td>
</tr>
<tr>
<td>703355</td>
<td>9198889</td>
<td>36</td>
<td>125.9703</td>
<td>65.10379</td>
<td>37.51991</td>
<td>73.6571</td>
</tr>
<tr>
<td>705283</td>
<td>9198413</td>
<td>30</td>
<td>124.2871</td>
<td>61.58656</td>
<td>37.31288</td>
<td>71.10242</td>
</tr>
<tr>
<td>701568</td>
<td>919269</td>
<td>47</td>
<td>139.628</td>
<td>68.74805</td>
<td>38.11801</td>
<td>76.21643</td>
</tr>
<tr>
<td>701357</td>
<td>9201597</td>
<td>40</td>
<td>130.6984</td>
<td>67.49869</td>
<td>37.55825</td>
<td>74.63062</td>
</tr>
<tr>
<td>706929</td>
<td>9192318</td>
<td>24</td>
<td>115.1877</td>
<td>55.3726</td>
<td>35.8253</td>
<td>60.07251</td>
</tr>
<tr>
<td>706898</td>
<td>9194229</td>
<td>28</td>
<td>115.39</td>
<td>64.78537</td>
<td>37.45857</td>
<td>61.91773</td>
</tr>
<tr>
<td>699700</td>
<td>9202008</td>
<td>35</td>
<td>125.6025</td>
<td>64.78537</td>
<td>37.45857</td>
<td>71.74793</td>
</tr>
<tr>
<td>706385</td>
<td>9195644</td>
<td>76</td>
<td>161.5173</td>
<td>70.73078</td>
<td>40.28037</td>
<td>79.48254</td>
</tr>
<tr>
<td>706024</td>
<td>9197009</td>
<td>60</td>
<td>143.8556</td>
<td>69.20729</td>
<td>38.83112</td>
<td>76.26843</td>
</tr>
</tbody>
</table>

Figure 7. Linear regression analysis between TSS insitu over TSS retrieved using Budhiman [2004] algorithm.

Figure 8. Linear regression between TSS insitu over TSS modeled using nurandani [2013] algorithm.

Figure 9. Linear regression between TSS insitu over TSS retrieved using Lestari [2009] algorithm.

Figure 10. Linear regression between TSS insitu over TSS retrieved using Rodriguey and Gilbes [2009] algorithm.
where:
\(x = \) reflectance of blue band 1 chromaticity, according to Wouthuyzen et al. (2008) in Lestari (2009), blue band chromaticity is: \(\frac{\text{band 2}}{\text{band 2} + \text{band 3} + \text{band 4}} \)

TSS distribution obtained using Lestari algorithm can be seen in fig. 10, where the TSS value appears in the range of 25-50 mg/L. TSS algorithm 4: Rodriguez and Gilbes (2009). The result of Rodriguez and Gilbes (2009) algorithm shown in Figure 6 produced 3 broadest TSS value ranges. TSS range of 75-100 mg/L which covers the largest area, while the next largest TSS value is between 50-75 mg/L and the smallest area of TSS value is between 100-125 mg/L. The formula is as follow:

\[
\text{TSS} = 602.63 \times (0.5157 \times x - 0.0089 + 3.1481)
\]

where:
\(x = \) reflectance band 2

Figure 7 explains the regression analysis between the TSS insitu data over the TSS retrieved using Budhiman [2004] algorithm, where it has a good density at the sample number 3, 6 and 7 as well as at 8 and 9. Therefore, it has a high value of \(R^2 = 0.982 \), while the correlation value \(r \) is 0.991. Figure 8 explains regression analysis between the TSS insitu data over TSS retrieved using Nurandani [2013] algorithm, where the highest density is at the sample number 11. From the calculation it has \(R^2 = 0.684 \) and \(r = 0.827 \). Figure 9 explains the regression analysis between TSS insitu data with TSS modeled using Lestari [2009] algorithm, where good density appeared at sample number 3, 4, 10, 11 and 13. The value of \(R^2 \) is 0.915 while the value of \(r \) is 0.957.

Based on analysis test for all TSS models using linear regression method, the maximum \(r \) value was obtained from Budhiman algorithm with \(r = 0.991 \). Hence the water condition in the eastern coast of Surabaya based on the results of Budhiman’s [2004] TSS algorithm has the biggest range of TSS value between 100-125 mg/L. The value of 125 mg/L are located in the edge of the coastline, and thus increasing sedimentation process.

4. Conclusion

The use of four TSS algorithms applied to Landsat-8 OLI result in the TSS distribution vary from 40 mg/L up to 150 mg/L, where the highest variety of TSS value was obtained using Budhiman [2004] algorithm, whereas the lowest TSS value is obtained using Lestari [2009]. Nurandani [2013] and Rodriguez and Gilbes [2009] algorithms produced almost similar TSS values. Using four TSS algorithms above, model with the highest correlation with TSS Budhiman [2004] algorithm with \(r \) value of 0.991. The lowest correlation value was obtained from Rodriguez and Gilbes [2009] algorithm. The concentration of TSS in the east coast of Surabaya based on Budhiman algorithm which has the largest value of 125 mg/L, are distributed on the edge of the coastline, and thus increasing sedimentation process.

References

Camper, (2011). Georeferencing (Geometric Correction), Remote Sensing and Image Analysis, University of California at Berkeley.

Edgardh.L.A, Landsat 8, LDCM Landsat data Continuity Mission NASA – USGS.

