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Abstract T﻿his study examines the impact of climate change on key climatic parameters—temperature, rainfall, 
and wind speed—in Iran’s central plateau, a region highly vulnerable to climate variability. Long-term data 
from major synoptic stations in Isfahan, Kerman, Yazd, and Semnan were analyzed using the Statistical 
Downscaling Model (SDSM) with the CanESM2 model. Future climate conditions were projected for the mid-
century (2030–2060) and end-century (2070–2100) periods under RCP2.6, RCP4.5, and RCP8.5 scenarios. 
The analysis indicates a general warming trend across all stations, with changes in precipitation and wind 
speed that vary spatially. In the near future, some stations are expected to experience reduced rainfall and an 
average temperature increase of 1–2°C, while others may see slight precipitation increases. Wind speed trends 
also vary regionally. This study provides a comprehensive multi-variable assessment for a region with limited 
prior analysis, integrating projections for temperature, rainfall, and wind speed under multiple scenarios. 
Furthermore, this study is among the first to combine the SDSM and CanESM2 models to assess multi-variable 
climate change impacts in Iran’s arid central plateau. The results offer a concise summary of anticipated climate 
changes, without providing detailed interpretation or policy recommendations, thereby establishing a solid 
foundation for further research and planning.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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1. 	 Introduction 
Global warming, largely driven by industrialization and 

increasing greenhouse gas emissions, has profoundly altered 
climate systems and natural processes worldwide (Sutton et 
al., 2015; Hawkins et al., 2020). Recognizing human-induced 
climate change is essential for public awareness and adaptation, 
particularly where its impacts are substantial. Climate change 
poses serious threats to food security, agriculture, water 
resources, and ecosystems (Cetin et al., 2022; Marin et al., 2020; 
Varol et al., 2022), and its acceleration is increasingly evident 
(Cetin et al., 2023; Cevik Degerli and Cetin, 2023). Between 
1906 and 2005, the global mean temperature increased by 
0.74°C, with projections indicating continued warming 
throughout the 21st century (Tabari et al., 2011; Wang et 
al., 2007, 2013). Accurate climate projections are therefore 
critical for planning adaptation strategies. Climate models 
have steadily improved, with nearly half of the current models 
achieving spatial resolutions below 1.3° in both latitude and 
longitude, surpassing previous generations (Dupuis, 2007; 
Chen et al., 2013; Keerthirathne and Perera, 2015).

Temperature, rainfall, and wind speed are crucial 
parameters affecting agricultural productivity and water 
management (Erskine and Ashkar, 1993; Lobell et al., 2007; 
Cooper et al., 2008; Muchow et al., 1990). However, their 
temporal and spatial variability complicates trend detection 
(Sethi et al., 2015; Buba et al., 2013; Balyani et al., 2013). 
Downscaling approaches such as the Statistical Downscaling 

Model (SDSM), combined with general circulation models 
like HadCM3 and CanESM2, have been applied to project 
regional climate conditions under different emission scenarios 
(Chu et al., 2010; Mahmood and Babel, 2012). Studies in 
arid and semi-arid regions demonstrate that even modest 
changes in temperature and precipitation can substantially 
affect agriculture and water resources (Groisman et al., 2012; 
Almazroui et al., 2017).

The Central Plateau of Iran, encompassing major 
urban centers such as Isfahan, Yazd, Semnan, and Kerman, 
is characterized by arid to semi-arid conditions and high 
vulnerability to climate change. Limited water resources, 
reliance on agriculture, and fragile ecosystems exacerbate 
the impacts of increasing temperatures, shifting precipitation 
patterns, and variable wind regimes (Tabari et al., 2015; 
Azadi et al., 2018; Shaban et al., 2021). Urban centers face 
additional pressures from growing populations and rising 
demand for resources, making infrastructure resilience and 
urban planning crucial under changing climate conditions. 
Despite these vulnerabilities, few studies have conducted 
comprehensive multi-variable assessments of climate change 
impacts in this region. Previous research has often focused 
on single variables or lacked high-resolution, simultaneous 
modeling of temperature, rainfall, and wind speed. Although 
numerous global climate studies have been conducted, long-
term prediction studies using downscaling in the Central 
Plateau of Iran remain limited, particularly those combining 
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temperature, rainfall, and wind speed parameters. This leaves 
a clear research gap in understanding how multi-variable 
climatic changes will affect agriculture, water availability, 
urban planning, and ecosystems. Addressing this gap is 
essential to guide sustainable resource management and 
adaptation strategies.

Therefore, the objective of this study is to model key 
climatic parameters—temperature, rainfall, and wind speed—
and assess their future trends in the Central Plateau of Iran. 
Long-term data from major stations in Isfahan, Kerman, Yazd, 
and Semnan were used, with projections generated using the 
SDSM and CanESM2 models under multiple Representative 
Concentration Pathway (RCP) scenarios.

The novelty of this research lies in providing a 
comprehensive multi-variable assessment for a region with 
limited prior analysis, integrating projections of multiple 
climatic parameters to support sustainable agriculture, water 
management, urban planning, and ecosystem protection. 
By focusing on this region, the study contributes to refining 
climate models for semi-arid areas and provides actionable 
insights for policymakers to enhance resilience against 
climate-induced risks.

2. 	 Methods
2.1. Study area and data

The central plateau of Iran, which covers over half of 
the country’s area, is characterized by arid and semi-arid 
conditions. Annual precipitation in this region is low, averaging 
no more than 100 mm, often around 50 mm, and in some cases 
as little as 25 mm per year. In contrast, the region experiences 
high potential evaporation due to intense heat and sunlight, 
often exceeding 4,000 mm per year, making evaporation rates 
40 to 80 times greater than annual precipitation. The average 
relative humidity ranges from 30 to 40 percent, dropping to 
as low as 15 percent during the warm season. Average annual 
temperatures vary between 15°C and 30°C, with recorded 
extremes ranging from a maximum of 51°C to a minimum of 
-18°C. The geographical location of the study area is shown in 
Figure 1. Two main datasets were used in this study. Historical 
observational data (daily rainfall, average temperature, and 
wind speed) obtained from synoptic stations across the 
Central Plateau of Iran for the period 1965–2017. CanESM2 
model data, including large-scale predictors and reanalyzed 
atmospheric variables (NCEP), covering the period 1961–2005 

for calibration and 2006–2100 for future scenario projections. 
The Isfahan, Yazd, Kerman, and Semnan stations were chosen 
because they (1) are major synoptic stations with long-term, 
continuous, and high-quality climate records; (2) represent 
different climatic subzones of the Central Plateau (semi-arid, 
arid, and hyper-arid conditions); and (3) are spatially well 
distributed, providing balanced geographic coverage of the 
region.

2.2. Methods
2.2.1. Downscaling approach (SDSM + CanESM2)

Since bias correction of general circulation model 
outputs requires long-term data, synoptic stations with 
extended historical records were selected for input into 
the SDSM model. Downscaling was performed using 
SDSM version 5.3, while the CanESM2 model outputs 
were processed using MATLAB R2021b and Microsoft 
Excel 2019. Table 1 provides details of the selected 
stations. After verifying and ensuring the quality of the 
observational data, NCEP reanalysis predictor variables 
with the highest correlation to the observational data 
were chosen. The number of NCEP predictor variables 
correlated with the observational data depends on the 
length of the statistical period and the type of process 
(conditional or unconditional). Generally, the longer the 
statistical period and the more continuous the variable 
(unconditional process), the fewer correlated variables are 
needed, resulting in more accurate modeling.

The SDSM method is based on the empirical/
statistical relationship between large-scale variables from 
general circulation models (GCMs) and local variables 
(Wetterhall et al., 2006). This relationship is expressed as 
follows (Dibike and Coulibaly, 2005) (Eq.1): 

Y=F(X) ............................................................................... (1)

Where Y is the predictor variable, X is the predicted 
variable, and f represents the transfer function, which 
is derived empirically from observational data. In this 
method, climatic variables at the global scale—such as 
mean sea level pressure, temperature, and geopotential 
height—are linked with local-scale variables, including 
precipitation and observed temperature. Statistical 
downscaling has been utilized not only for numerical 

	

   
Figure 1. Geographic locations of the study area stations (red circles)
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weather prediction and synoptic climatology but also for a 
wide range of climate application programs. The primary 
advantage of this statistical approach is its ability to evaluate 
the effects of climate change at the local level. The SDSM 
method has been extensively employed to downscale 
climate variables and assess hydrological responses under 
various climate change scenarios (Huang et al., 2011). 
SDSM integrates multiple linear regression with statistical 
air and climate data (Gebremeskel et al., 2005; Diaz-Nieto 
and Wilby, 2005; Gagnon et al., 2005; Wilby et al., 2007). 
In this study, SDSM version 5.3 was used for downscaling 
rainfall, temperature, and wind speed data. The method 

consists of four main components: determining NCEP 
predictor variables, model recalibration, model validation, 
and scenario generation and simulation for future periods 
(Sada, 2015).

To model daily climate data, it is essential to 
identify NCEP variables that have a logical and relevant 
relationship with the selected climate parameters. The 
output of the SDSM model is significantly influenced 
by the appropriate selection of these NCEP variables. 
Choosing the most suitable NCEP variable in the SDSM 
model is based on the coefficient of determination (R²), 
the partial correlation coefficient, and the distribution 

Table 1. Specifications of Synoptic Stations with Long-Term Statistical Records in the Study Area.

Station Longitude Latitude Average rainfall
(mm/year)

Average temperature 
(°C)

Mean wind 
speed (m/s)

Isfahan 29.08 58.45 122.05 16.69 1.67

Kerman 31.30 54.10 134.41 16.08 2.84
Semnan 30.58 53.08 137.95 18.47 1.69

Yazd 35.27 59.22 57.3 20.12 2.47

Table 2. Model Evaluation Criteria for Assessing Model Efficiency (Gupta et al.,1999; Chu and Shirmohammadi, 2004; Singh et 
al., 2004; Vasquez-Amábile and Engel, 2005)

Evaluation
Evaluation Criteria

NSEPBIASRSRThe correlation 
coefficient

Very good0.75<NSE1PBIAS 100RSR0.50.86 <1

Good0.65<NSE0.7510PBIAS 150.5<RSR0.60.73 <0.86

Acceptable0.5<NSE0.6515PBIAS 250.6<RSR0.70.6 <0.73

UnacceptableNSE<0.5PBIAS> 25RSR>0.7<0.6

Figure 1. A Methodological Framework for Multi-Variable Climate Projection.
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Figure 2. Comparison of Downscaled Rainfall Values from the 
CanESM2 Model with Observed Precipitation Data at Isfahan 

Station.

Figure 3. Comparison of Downscaled Mean Temperature 
Values from the CanESM2 Model with Observed Data at 

Isfahan Station.

Table 3. Evaluation Criteria for the CanESM2 Model: Rainfall, 
Average Temperature, and Wind Speed at Isfahan Station.

parameter correlation 
coefficient NRMSE PBIAS RSR NSE

precipitation 0.85 0.08 20.7 0.69 0.513

temperature 0.99 0.01 0.88 0.05 0.997

Wind speed 0.96 0.06 -7.39 0.40 0.837

Figure 4. Comparison of Downscaled Wind Speed Values 
from the CanESM2 Model with Observed Data at Isfahan 

Station.

plots of the NCEP variables against the observed variable.
As mentioned, global circulation models (GCMs) are 

the primary tools for predicting changes and fluctuations 
in climate variables at both global and continental levels. 
In this study, we utilized the second generation of the 
Canadian Earth System Model, or CanESM2. This model 
is an enhanced version of the broader category of models 
known as Earth System Models (ESMs), which aim to 
incorporate the most significant components of land 
systems into their structure. While GCMs are effective 
for forecasting future climate changes, their outputs 
are based on large-scale grids ranging from 250 to 600 
km (Gebremeskel et al., 2005). Due to the low spatial 
resolution of these global models, their outputs are not 
suitable for investigating the effects of climate change on a 
local scale. Downscaling is the most appropriate method 
for establishing the relationship between regional scales 
and large GCM models, with the regional scale defined 
as 50 x 50 km. Various methods have been developed 
for downscaling that address the discrepancies between 
global and regional scales. In this study, the SDSM 
statistical method was employed to downscale the output 
of the CanESM2 GCM.

Three types of inputs are used to model climate 
variables with the CanESM2 model: daily rainfall data, 
average temperature and wind speed from synoptic 
stations, and reanalyzed atmospheric data (NCEP), along 

with data from the CanESM2 model itself. The daily 
observational data are referred to as “predicted” variables, 
while the reanalyzed atmospheric data are labeled as 
“observational predictors,” and the general circulation 
model data are termed “large-scale predictors.” The 
observational and large-scale predictive datasets comprise 
26 variables that are available for two key periods: from 
1961 to 2005 and for the future period from 2006 to 2100.

2.2.2. Model Calibration
To develop the model, 70% of the observational data 

was used for calibration to determine the key parameters 
for rainfall, temperature, and wind speed. These 
parameters were then applied to the remaining 30% of the 
data for validation. The analysis is restricted to stations 
where the model output showed strong agreement with 
actual observations. We assessed model efficiency and 
uncertainty using several statistical metrics—including 
the Nash-Sutcliffe coefficient and percentage bias—
against the acceptable criteria in Table 2. The subsequent 
sections provide a detailed discussion of the validation 
outcomes. 

2.2.3. Scenario simulation (RCP2.6, RCP4.5, RCP8.5)
Following the baseline period modeling and 

evaluation, future climate projections were run for the 
near (2030–2060) and far future (2070–2100) under the 
RCP2.6, RCP4.5, and RCP8.5 scenarios.
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3. 	 Result and Discussion 
3.1. Model Validation

3.1.1. Isfahan Station
Figures 2 through 4 show monthly mean precipitation, 

mean temperature, and wind speed produced by the 
climate model, alongside observed data from the Isfahan 
station for the period 1961–2005. The downscaled 
rainfall predictions align closely with observed data, 
with only minor discrepancies in January and December 
(Figure 2). Evaluation criteria results confirm that the 
model performs efficiently within an acceptable range 
for simulating future rainfall at the Isfahan station 
(Table 3). The comparison of mean temperature values 
with observed data demonstrates the climate model’s 
ability to accurately reproduce temperature trends at the 
Isfahan station (Figure 3). The model’s temperature data 
aligns closely with observed values in nearly all months. 
Evaluation criteria further validate the CanESM2 model’s 
effectiveness in simulating temperature at the Isfahan 
station (Table 3). The climate model’s average wind 
speed values show strong alignment with observed data, 
with only a slight overestimation in August (Figure 4). 
Model evaluation further confirms the CanESM2 model’s 
reliability in projecting future wind speed data (Table 3).

3.1.2. Kerman station
Monthly mean precipitation, mean temperature, 

and wind speed generated by the downscaled climate 
model, using observed data from the Kerman station 
during the period 1961–2005, are shown in Figures 
5–7. The simulated rainfall values show good agreement 
with observed data (Figure 5), and the model evaluation 
criteria confirm the CanESM2 model’s effectiveness in 
simulating rainfall (Table 4). Similarly, a comparison 
between modeled average temperature values and 
observations demonstrates that the climate model 
performs well in capturing temperature trends at the 
Kerman station (Figure 6). Most modeled temperature 
data are consistent with observed values, and model 
evaluation criteria indicate the CanESM2 model’s strong 
suitability for temperature simulation at Kerman station 
(Table 4). For wind speed, the model’s values align closely 
with observed data, with only a notable discrepancy in 
August (Figure 7). Model evaluation further supports the 
CanESM2 model’s reliability in projecting wind speed for 
future periods at Kerman station (Table 4).

3.1.3. Semnan Station
Figures 8–10 present monthly mean precipitation, 

average temperature, and wind speed generated by the 

Figure 5. Comparison of Downscaled Rainfall Values 
from the CanESM2 Model with Observed Data at Kerman 

Station.

Figure 6. Comparison of Downscaled Average Temperature 
Values from the CanESM2 Model with Observed Data at 

Kerman Station.
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Figure 7. Comparison of Downscaled Wind Speed Values 
from the CanESM2 Model with Observed Data at Kerman 

Station.

Table 4. Evaluation Criteria for the CanESM2 Model: Rainfall, 
Average Temperature, and Wind Speed at Kerman Station.

Parameter Correlation 
Coefficient NRMSE PBIAS RSR NSE

Precipitation 0.84 0.05 -18.57 0.70 0.55

Temperature 0.96 0.04 5.77 0.18 0.96

Wind speed 0.99 0.01 0.18 0.15 0.96
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climate model, alongside observed data from the Semnan 
station for the period 1965–2005. The model’s rainfall 
predictions align relatively well with observed data, 
though they are higher in March, April, and July (Figure 
8). Evaluation criteria confirm the CanESM2 model’s 
capability to simulate future rainfall at the Semnan station 
(Table 5). A comparison of the model’s mean temperature 
values with observations indicates that the climate model 
performs well in simulating temperature at the Semnan 
station (Figure 9). Model performance metrics—Nash-
Sutcliffe coefficient, normalized root mean square 
error, bias percentage, standard ratio, and correlation 
coefficient—all fall within the “very good” range for 
temperature (Table 5). For wind speed, however, the 
CanESM2 model produces values that exceed observed 
data (Figure 10). The evaluation criteria suggest that the 
CanESM2 model is less reliable for wind speed simulation 
at the Semnan station (Table 5).

3.1.4.Yazd station
Figures 11–13 illustrate monthly mean precipitation, 

average temperature, and wind speed generated by the 
climate model, alongside observed data from the Yazd 
station for the period 1961–2005. The predicted rainfall 

values generally align well with the observed data, although 
the model shows lower values than observed from January 
to March (Figure 11). Additionally, evaluation criteria 
confirm the CanESM2 model’s capability to simulate 
future rainfall at the Yazd station (Table 6). A comparison 
of the model’s mean temperature values with observed 
data indicates that the climate model has strong potential 
for accurately producing temperature data at the Yazd 
station (Figure 12). The model performance evaluation 
criteria further support the suitability of the CanESM2 
model for temperature simulation in this region (Table 
6). In terms of wind speed, the model’s predictions are in 
good agreement with observed data at the Yazd station 
(Figure 13). However, the model generates higher wind 
speeds than observed during April and May. Overall, 
model evaluation confirms the CanESM2 model’s effective 
performance in simulating wind speed for future periods 
(Table 6).

Generally,The performance of the CanESM2 model 
downscaled with SDSM was evaluated for four stations 
(Isfahan, Kerman, Semnan, Yazd) using historical data 
(1961–2005 for most stations; 1965–2005 for Semnan). 
Model evaluation focused on precipitation, temperature, 
and wind speed

Figure 9. Comparison of Downscaled Temperature Values 
from the CanESM2 Model with Observed Data at Semnan 

Station.

Figure 8. Comparison of Downscaled Rainfall Values from 
the CanESM2 Model with Observed Data at Semnan Station.

Table 4. Evaluation Criteria for the CanESM2 Model: Rainfall, 
Average Temperature, and Wind Speed at Kerman Station.

parameter
correlation 
coefficient

NSE RSR PBIAS NRMSE

Precipitation 0.60 0.63 21.23 0.06 0.87

Temperature 0.99 0.69 -1.65 0.01 0.99

Wind sped 0.23 0.71 38.13 0.40 0.24

Figure 10. Comparison of Downscaled Wind Speed Values 
from the CanESM2 Model with Observed Data at Semnan 

Station.
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3.2. Scenario Generation and Simulation of Climatic 
Parameters

Following the successful modeling and evaluation of the 
baseline period, future climate conditions were simulated for 
the near future (2030–2060) and the far future (2070–2100) 
under the RCP2.6, RCP4.5, and RCP8.5 scenarios.

3.2.1. Isfahan Station
Based on the projections for the Isfahan station, 

detailed in Figures 14 through 19 and quantified 
against the historical period (1961-2017) in Tables 7 to 

9, the future climate is expected to shift significantly. 
Under the RCP scenarios, the annual average rainfall is 
projected to decrease. For the near future (2030–2060), 
rainfall is estimated at 92.2 mm, 92.1 mm, and 111.75 
mm, representing decreases of 24.46%, 24.51%, and 
8.44%, respectively, from the historical average of 122.05 
mm. This declining trend continues into the far future 
(2070–2100), with projected rainfall of 92.22 mm, 87.09 
mm, and 116.5 mm, resulting in further reductions of 
24.44%, 28.65%, and 4.55%. Conversely, a substantial 

Figure 11. Comparison of Downscaled Rainfall Values from 
the CanESM2 Model with Observed Data at Yazd Station.

Figure 12. Comparison of Downscaled Mean Temperature 
Values from the CanESM2 Model with Observed Data at Yazd 

Station.

Figure 13 - comparison of downscaled values by CanESM2 
model and wind speed observations of Yazd station.

Table 6. Evaluation Criteria for the CanESM2 Model: Rainfall, 
Average Temperature, and Wind Speed at Yazd Station. 

NSERSRPBIASNRMSE
correlation 
coefficient

parameter

0.810.28130.090.88precipitation

0.960.181.630.040.98temperature

0.780.47-0.280.040.87Wind Speed

 

Table 1. Summary of Model Validation Metrics for All Stations

Station Précipitation 
(CC / NSE)

Température 
(CC / NSE)

Wind Speed 
(CC / NSE) Remarks

Isfahan 0.85 / 0.513 0.99 / 0.997 0.96 / 0.837 Minor Jan & Dec rainfall 
discrepancy

Kerman 0.84 / 0.55 0.96 / 0.96 0.99 / 0.96 Slight wind discrepancy in Aug

Semnan 0.60 / 0.63 0.99 / 0.69 0.23 / 0.24 Wind less reliable

Yazd 0.88 / 0.81 0.98 / 0.96 0.87 / 0.78 Slight low rainfall Jan–Mar, high 
wind Apr–May
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warming trend is forecast. The average temperature is 
projected to rise to 17.42°C, 17.71°C, and 18.13°C in the 
near future, which corresponds to increases of 4.39%, 
6.12%, and 8.62% above the historical average of 16.69°C. 
This warming intensifies dramatically in the far future, 

with temperatures expected to reach 17.53°C, 18.47°C, 
and 20.44°C—increases of 5.03%, 10.65%, and 22.43%, 
respectively. Finally, wind speed at the station is also 
predicted to increase slightly in the near future, with rises 
of 1.03%, 1.15%, and 1.4% under the RCP scenarios.

Figure 14. Simulated Rainfall Values for the Near Future 
Period (2030–2060) at Isfahan Station.

Figure 15. Simulated Rainfall Values for the Far Future 
Period (2070–2100) at Isfahan Station.

	

Table 7. Percentage Changes in Annual Average Rainfall Produced Under RCP Scenarios Compared to the Observation Period at 
Isfahan Station.

Percentage changes in the 
far future (2070-2100)

Annual average-
far future (2070-2100))

Percentage of changes in 
the near future (2030-

2060)

Annual average - 
near future (2030-2060)Data

---122.05observations

-24.4492.22-24.4692.20RCP2.6

-28.6587.09-24.5192.14RCP4.5

-4.55116.50-8.44111.75RCP8.5

Figure 16. Simulated Average Temperature Values for the 
Near Future Period (2030–2060) at Isfahan Station.

 
Figure 17. Simulated Average Temperature Values for the Far 

Future Period (2070–2100) at Isfahan Station.
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Table 8. Percentage Changes in Annual Average Temperature Produced Under RCP Scenarios Compared to the Observation 

Period at Isfahan Station.

Percentage changes in 
the far future 
(2070-2100)

Annual average-far 
future (2070-2100)

Percentage of changes 
in the near future 

(2030-2060)

Annual average - near 
future (2030-2060)Data

---16.69observations

5.0317.534.3917.42RCP2.6

10.6518.476.1217.71RCP4.5

22.4320.448.6218.13RCP8.5

Figure 18. Simulated Wind Speed Values for the Near Future 
Period (2030–2060) at Isfahan Station.

Figure 19. Simulated Wind Speed Values for the Far Future 
Period (2070–2100) at Isfahan Station.

Table 9. Percentage Changes in Annual Average Wind Speed Produced Under RCP Scenarios Compared to the Observation 
Period at Isfahan Station.

Percentage changes
in the far future 

(2070-2100)

Annual average-far 
future (2070-2100)

Percentage of changes in 
the near future 

(2030-2060)

Annual average - near 
future (2030-2060)Data

---5.66observations

-0.605.621.035.71RCP2.6

0.105.661.155.72RCP4.5

1.315.721.405.73RCP8.5

3.2.2.Kerman Station
Figures 20 to 25 display the simulated future values 

for climate parameters—rainfall, average temperature, 
and wind speed. Tables 10 to 12 summarize the changes in 
these parameters for the near (2030–2060) and far (2070–
2100) future periods compared to the historical period. 
Rainfall simulations indicate that, in the near future, 
average rainfall under RCP scenarios is projected to be 
153.39 mm, 150.43 mm, and 174.13 mm, representing 
increases of 14.11%, 11.19%, and 29.57% compared to 
the historical average of 134.41 mm. In the far future, 
average rainfall under RCP scenarios is expected to 
reach 155.79 mm, 140.6 mm, and 215.61 mm, indicating 
increases of 15.91%, 4.60%, and 41.60%, respectively. For 

temperature, the average values under RCP2.6, RCP4.5, 
and RCP8.5 scenarios in the near future are projected to be 
approximately 17.16°C, 17.4°C, and 17.8°C, representing 
increases of 6.8%, 8.22%, and 10.7% from the observed 
historical period. In the far future, temperature averages 
are expected to further rise under RCP scenarios, with 
projected increases of 17.05%, 18.05%, and 19.93%. Wind 
speed simulations for Kerman station suggest that wind 
speeds will increase under RCP scenarios in both the near 
and far future. In the near future, increases are projected 
to be 3.71%, 3.9%, and 2.4% for RCP2.6, RCP4.5, and 
RCP8.5, respectively. In the far future, wind speeds are 
expected to rise by 2.43%, 3.84%, and 3.97% under the 
same scenarios.
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Figure 20. Simulated Rainfall Values for the Near Future 
Period (2030–2060) at Kerman Station.

Figure 21. Simulated Rainfall Values for the Far Future 
Period (2070–2100) at Kerman Station.

Table 10. Percentage Changes in Annual Average Rainfall Produced Under RCP Scenarios Compared to the Observation Period 
at Kerman Station.

Data Annual average - near 
future (2030-2060)

Percentage of changes in 
the near future 

(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes in 
the far future
 (2070-2100)

Observations 134.41 - - -

RCP2.6 153.39 14.11 155.79 15.91

RCP4.5 150.43 11.91 140.6 4.60

RCP8.5 174.13 29.57 215.61 60.41

Figure 22. Simulated Average Temperature Values for the 
Near Future Period (2030–2060) at Kerman Station.

Figure 23. Simulated Average Temperature Values for the 
Far Future Period (2070–2100) at Kerman Station.

Table 11. Percentage Changes in Annual Average Temperature Produced Under RCP Scenarios Compared to the Observation 
Period at Kerman Station.

Data Annual average - near 
future (2030-2060)

Percentage of changes 
in the near future 

(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes in 
the far future 
(2070-2100)

observations 16.08 - - -

RCP2.6 17.16 6.76 17.05 6.08

RCP4.5 17.4 8.22 18.06 12.34

RCP8.5 17.80 10.70 19.93 23.98
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3.2.3. Semnan Station
The annual mean precipitation and average 

temperature parameters for Semnan Station during 
the near future (2030-2060) and far future (2070-2100) 
periods are presented in Figures 26 to 29. Additionally, 
Tables 13 and 14 show the changes in these parameters 
compared to the historical period (1965-2017). Based on 
the predicted rainfall values, the annual average rainfall 
for Semnan Station under the RCP scenarios is estimated 
to be 117.55 mm, 108.72 mm, and 116.5 mm, respectively. 
This represents a decrease of 14.79%, 21.19%, and 15.55% 
compared to the historical average of 137.95 mm during 
the near future period. In the far future, the average 
rainfall under the RCP scenarios is projected to be 108.8 
mm, 110.49 mm, and 104.61 mm, indicating decreases of 
21.13%, 19.91%, and 24.17%, respectively, compared to 
the historical period. Forecasts for average temperature 
under climate change conditions indicate that, in the near 
future, the average temperature for the RCP scenarios will 
be 18.84°C, 18.87°C, and 18.98°C, representing increases 
of 1.96%, 2.12%, and 2.74%, respectively, compared to the 
historical value of 18.47°C. In the far future, the average 
temperature is predicted to be 18.82°C, 19.02°C, and 
19.46°C, corresponding to increases of 1.89%, 2.94%, and 
5.34%, respectively, compared to the historical period.

3.2.4. Yazd station
The annual averages of precipitation, temperature, 

and maximum wind speed for the near future (2030–
2060) and far future (2070–2100) periods at Yazd Station 

Figure 24. Simulated Wind Speed Values for the Near Future 
Period (2030–2060) at Kerman Station.

Figure 25. Simulated Wind Speed Values for the Far 
Future Period (2070–2100) at Kerman Station.

Table 12. Percentage Changes in Annual Average Wind Speed Produced Under RCP Scenarios Compared to the Observation 
Period at Kerman Station.

Data Annual average - near 
future (2030-2060)

Percentage of changes in 
the near future (2030-

2060)

Annual average-far 
future (2070-2100)

Percentage changes in 
the far future
 (2070-2100)

observations 7.81 - - -

RCP2.6 8.09 3.71 8.01 2.43

RCP4.5 8.11 3.9 8.11 3.84

RCP8.5 8.01 2.4 8.12 3.97

are shown in Figures 30–35. Tables 15–17 present the 
changes in these parameters relative to the historical 
period (1961–2017). Based on projected rainfall values, 
the annual average rainfall under the RCP scenarios at 
Yazd Station is estimated to be 64.52, 55.17, and 68.44 
mm, representing increases of 17.45%, 0.42%, and 24.58% 
respectively, compared to the historical period (54.93 
mm) for the near future. Forecasts of average temperature 
under future climate change scenarios indicate that 
mean temperatures under the RCP scenarios will be 
20.79°C, 21.05°C, and 21.56°C, showing increases of 
5.45%, 6.77%, and 9.35% respectively, compared to the 
historical average of 19.71°C. For the far future, average 
temperatures are predicted to be 21.26°C, 20.67°C, and 
21.86°C, corresponding to increases of 7.87%, 4.85%, and 
10.9% compared to the historical period.

Model Uncertainty
Although the SDSM and CanESM2 models provide 

reliable projections, they have inherent limitations. SDSM 
relies on statistical relationships that may not capture all local 
microclimatic processes, while CanESM2, as a global climate 
model, has coarse spatial resolution which can introduce 
uncertainty in downscaled results. Moreover, variability 
between RCP scenarios (e.g., RCP2.6 vs. RCP8.5) reflects 
different emission pathways and assumptions, resulting in 
a range of possible climate outcomes. Acknowledging these 
uncertainties is essential for interpreting the projected changes 
in temperature, rainfall, and wind in Central Iran and for 
guiding adaptive management strategies.
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Figure 26. Simulated Rainfall Values for the Near Future 

Period (2030–2060) at Semnan Station.
Figure 27. Simulated Rainfall Values for the Far Future 

Period (2070–2100) at Semnan Station.

Table 13. Percentage of Annual Average Rainfall Changes Under RCP Scenarios Compared to the Observation Period at Semnan 
Station.

Data
Annual average - near 

future (2030-2060)
Percentage of changes 

in the near future 
(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes in the 
far future

(2070-2100)

Observations 137.95 - - -

RCP2.6 117.55 -14.79 108.80 -21.13

RCP4.5 108.72 -21.19 110.49 -19.91

RCP8.5 116.50 -15.55 104.61 -24.17

Figure 28. Simulated Average Temperature Values for the 
Near Future Period (2030–2060) at Semnan Station.

Figure 29. Simulated Average Temperature Values for the Far 
Future Period (2070–2100) at Semnan Station.

Table 14. Percentage of Annual Average Temperature Changes Under RCP Scenarios Compared to the Observation Period at 
Semnan Station.

Data
Annual average - near 

future (2030-2060)
Percentage of changes in 

the near future 
(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes in 
the far future
 (2070-2100)

observations 18.47 - - -

RCP2.6 18.84 1.96 18.82 1.89

RCP4.5 18.87 2.12 19.02 2.94

RCP8.5 18.98 2.74 19.46 5.34
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Figure 30. Simulated Rainfall Values for the Near Future 
Period (2030–2060) at Yazd Station.

Figure 31. Simulated Rainfall Values for the Far Future Period 
(2070–2100) at Yazd Station.

	

Table 15. Percentage Change in Annual Average Rainfall Under RCP Scenarios Compared to the Observation Period at Yazd 
Station.

Data
Annual average - near 

future (2030-2060)
Percentage of changes 

in the near future 
(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes 
in the far future

 (2070-2100)

observations 54.93
RCP2.6 64.52 17.45 60.02 9.25
RCP4.5 55.17 0.42 54.90 -0.07
RCP8.5 68.44 24.58 66.92 21.81

		

Figure 32. Simulated Average Temperature Values for the Near 
Future Period (2030-2060) at Yazd Station.

Figure 33. Simulated Average Temperature Values for the 
Far Future Period (2070-2100) at Yazd Station

Table 16. Percentage of Annual Average Temperature Changes Under RCP Scenarios Compared to the Observation Period at 
Yazd Station.

Data
Annual average - near 

future (2030-2060)
Percentage of changes in 

the near future (2030-
2060)

Annual average-far 
future (2070-2100)

Percentage changes in 
the far future 
(2070-2100)

observations 19.71 - - -
RCP2.6 20.79 5.45 21.26 7.87
RCP4.5 21.05 6.77 20.67 4.85
RCP8.5 21.56 9.35 21.86 10.90
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Discution 
Generally, Future simulations were performed under 

RCP2.6, RCP4.5, and RCP8.5 scenarios, for the near future 
(2030–2060) and far future (2070–2100). Percent changes in 
annual averages relative to historical periods are summarized 
below.

The combination of decreased precipitation and increased 
temperature for the central and northern stations suggests 
heightened drought risk. Eastern stations (Kerman, Yazd) may 
face increased precipitation but higher temperatures, affecting 
water balance and evaporation.These trends highlight the 
importance of adaptive water resource management and 
regional climate planning.

The projected trends for Central Iran, including 
decreasing precipitation in stations such as Isfahan and 
Semnan and rising temperatures across all stations, are 
generally consistent with findings reported in neighboring arid 
and semi-arid regions. For example, studies in Saudi Arabia 
indicate reductions in annual rainfall and increased heat stress 
in recent decades, aligning with the drying trends projected 
in Central Iran. Similarly, research from India and Pakistan 
highlights increasing temperatures and variability in monsoon 
precipitation, which supports the warming and changing 
rainfall patterns observed in our simulations. These regional 
comparisons suggest that the climate changes projected for 
Central Iran are part of broader trends affecting Southwest 
and South Asia.

In addition, several global projections, including IPCC 
assessments, indicate that under high-emission scenarios 
(e.g., RCP8.5), temperature rises are more pronounced, and 
precipitation patterns become increasingly variable. Our 
results for the far future (2070–2100) under RCP8.5, showing 
substantial warming and mixed precipitation trends, are 
consistent with these broader regional and global projections. 
By comparing our findings with both regional studies and global 
models, it becomes evident that the projected climate changes 
in Central Iran are plausible and reflect patterns observed 
across similar climatic zones.The projected decrease in rainfall 
in stations such as Semnan and Isfahan is likely to reduce water 
availability for irrigation, potentially affecting crop yields and 
requiring adaptive water management strategies. Conversely, 
the projected temperature increase in Yazd and surrounding 
areas will enhance evapotranspiration rates, intensifying water 
stress and necessitating adjustments in irrigation scheduling, 
crop selection, and soil moisture conservation practices. These 
practical implications highlight the need for region-specific 
adaptation measures to mitigate the impacts of climate change 
on agriculture and water resources in Central Iran. In general, 
temperatures are projected to increase across all stations in 
Central Iran, with the highest rises under the RCP8.5 scenario. 
Rainfall trends vary regionally: a decrease is observed in the 
western stations (Isfahan and Semnan), whereas the southern 
stations (Kerman and Yazd) tend to experience slight increases 
or smaller decreases in precipitation. Wind speed projections 

Figure 34. Simulated Wind Speed Values in the Near Future 
Period (2030-2060) at Yazd Station.

Figure 35. Simulated Wind Speed Values in the Far Future 
Period (2070-2100) at Yazd Station.

Table 17. Percentage of Annual Average Wind Speed Changes Under RCP Scenarios Compared to the Observation Period at Yazd 
Station.

Data
Annual average - near 

future (2030-2060)
Percentage of changes in 

the near future 
(2030-2060)

Annual average-far 
future (2070-2100)

Percentage changes 
in the far future 

(2070-2100)

observations 12.73 - - -

RCP2.6 11.64 -8.59 11.50 -9.66

RCP4.5 11.48 -9.85 11.49 -9.75

RCP8.5 11.61 -8.79 11.69 -8.17
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are more variable, with modest increases in Isfahan and 
Kerman, slight decreases in Yazd, and inconsistent trends in 
Semnan. These patterns highlight the spatial heterogeneity 
of climate change impacts within Central Iran and provide a 
basis for region-specific adaptation strategies.The projected 
climate changes in Central Iran have important implications 
for water and agricultural management.  Similarly, in Yazd, 
higher temperatures and enhanced evapotranspiration will 
exacerbate water stress, necessitating improvements in crop 
selection, irrigation scheduling, and soil moisture conservation. 
These findings underline the urgency of integrating climate 
projections into regional planning and resource management 
policies.

4. 	 Conclusion 
The projected trends for Central Iran, including decreasing 

precipitation in stations such as Isfahan and Semnan and 
rising temperatures across all stations, are generally consistent 
with findings reported in neighboring arid and semi-arid 
regions. For instance, Almazroui et al. (2020) observed a 
decrease in annual rainfall in Saudi Arabia, with a significant 
reduction of 5.89 mm per decade, particularly in the winter 
months. Similarly, studies in India have highlighted increasing 
temperatures and variability in monsoon precipitation, 
indicating a shift towards more extreme rainfall events (He et 
al., 2024). Research in Pakistan also supports these findings, 
with Hussain et al. (2024) documenting an increase in 
monsoon precipitation extremes, particularly in the monsoon 
region from 1961 to 2017.

This study comprehensively evaluated future changes in 
temperature, precipitation, and wind speed across Central 
Iran using the SDSM statistical downscaling model and 
the CanESM2 global circulation model under RCP2.6, 
RCP4.5, and RCP8.5 scenarios. The results clearly indicate 
that temperature is projected to rise by 1.5–4.5°C across all 
stations, with higher increases expected under RCP8.5 during 
2070–2100. Precipitation is projected to decrease by up to 25% 
in western stations such as Isfahan and Semnan, while the 
southern regions (Kerman and Yazd) may experience slight 
increases of up to 10%. Wind speed trends are more spatially 
variable, with modest increases (1–4%) in Isfahan and Kerman, 
and slight decreases (up to 9%) in Yazd. These climatic changes 
are expected to intensify water scarcity, increase irrigation 
demand, and place additional stress on agricultural systems 
across this arid and semi-arid region.

The novelty of this research lies in its station-level, multi-
variable assessment for Central Iran — a region that has been 
largely understudied in previous climate modeling efforts. 
The combination of SDSM and CanESM2 provides more 
detailed and localized projections, enhancing understanding 
of how climate change may evolve within Iran’s central plateau. 
The model validation results further confirm the robustness 
and reliability of the projections, although scenario-based 
uncertainties remain.

Comparison with regional studies (e.g., Saudi Arabia, 
India, Pakistan) and global IPCC projections confirms 
that the observed trends in Central Iran are consistent with 
broader warming and drying patterns across Southwest and 

Table 2. Percentage Changes in Annual Average Precipitation (%)

Station RCP2.6 2030–
2060

RCP4.5 2030–
2060

RCP8.5 2030–
2060

RCP2.6 2070–
2100

RCP4.5 2070–
2100

RCP8.5 2070–
2100

Isfahan -24.46 -24.51 -8.44 -24.44 -28.65 -4.55

Kerman 14.11 11.19 29.57 15.91 4.60 41.60

Semnan -14.79 -21.19 -15.55 -21.13 -19.91 -24.17

Yazd 17.45 0.42 24.58 9.25 -0.07 21.81

Table 3. Percentage Changes in Annual Average Temperature (%)

Station RCP2.6 2030–
2060

RCP4.5 2030–
2060

RCP8.5 2030–
2060

RCP2.6 2070–
2100

RCP4.5 2070–
2100

RCP8.5 2070–
2100

Isfahan 4.39 6.12 8.62 5.03 10.65 22.43

Kerman 6.76 8.22 10.70 6.08 12.34 23.98

Semnan 1.96 2.12 2.74 1.89 2.94 5.34

Yazd 5.45 6.77 9.35 7.87 4.85 10.90

Table 4. Percentage Changes in Annual Average Wind Speed (%)

Station RCP2.6 2030–
2060

RCP4.5 2030–
2060

RCP8.5 2030–
2060

RCP2.6 2070–
2100

RCP4.5 2070–
2100

RCP8.5 2070–
2100

Isfahan 1.03 1.15 1.40 -0.60 0.10 1.31

Kerman 3.71 3.90 2.40 2.43 3.84 3.97

Semnan – – – – – –

Yazd -8.59 -9.85 -8.79 -9.66 -9.75 -8.17
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South Asia. Future research should expand on these findings 
by integrating socio-economic factors, employing multiple 
GCMs, and assessing local adaptation strategies such as 
efficient irrigation, crop diversification, and sustainable land 
management to strengthen climate resilience in this vulnerable 
region.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.
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1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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