Indexing metadata

Sistem Klasifikasi Rasa Kopi Berbasis Electronic Tongue Menggunakan Madaline Neural Network


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Sistem Klasifikasi Rasa Kopi Berbasis Electronic Tongue Menggunakan Madaline Neural Network
 
2. Creator Author's name, affiliation, country Yudi Anom Priambudi; Indonesia
 
2. Creator Author's name, affiliation, country Sri Hartati; urusan Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta; Indonesia
 
2. Creator Author's name, affiliation, country Danang Lelono; Jurusan Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta; Indonesia
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) madaline neural network, membrane, taste sensor, interface, coffee
 
4. Description Abstract

Abstrak

Penelitian ini dilatar belakangi karena minimnya pengembangan dari sensor rasa yang ada selama ini dan bertujuan untuk mengimpelentasikan delapan buah sensor rasa berbasis komputer dengan menggunakan membran Decyl Alcohol (DA), Oleic Acid (OA), Dioctyl Phosphate (DOP), Trioctylmethyl ammonium chloride (TOMA), Dodevylamine (DDC), DA:OA 5:5, DA:DOP 5:5, dan DDC:TOMA 5:5 dilengkapi dengan semi auto sampler dan mampu menampilkan hasil pengukuran dan menyimpan data dari delapan sensor sekaligus. Sistem diimplementasikan pada beberapa merek kopi instan, serta dapat mempola karakter beberapa merek kopi dengan perbandingan pendeteksian secara fisis.

Pengujian karakterisasi membran dilakukan setiap hari dengan menggunakan sampel beberapa merek kopi instan yang ada di pasaran yang kemudian dideteksi pola karateristiknya. Alat yang digunakan sebagai ADC adalah PhidgetInterFaceKit 8/8/8 yang merupakan elektrometer pada penelitian ini. Dan digunakan program yang menggunakan Microsoft Visual Basic 2010 sebagai antarmuka sehingga dapat berinteraksi dengan alat. Serta digunakan toolbox dari program Matlab R2009a untuk pemanfaatan program madaline neural network.

 

Hasil penelitian menunjukkan pola yang dikarakterisasi menggunakan sistem ini dapat diidentifikasi jenisnya menggunakan madaline neural network. Data hasil dari sistem ini dapat disimpan dalam bentuk excel.

 

Kata kunci madaline neural network, membran, sensor rasa, antarmuka, kopi

 

Abstract

This research is motivated by the lack of the nowadays taste sensor development and this study aims ti implement eight computer-based taste sensor with Decyl Alcohol (DA), Oleic Acid (OA), Dioctyl Phosphate (DOP), Trioctylmethyl ammonium chloride (TOMA), Dodecylamine(DDC), DA:OA 5:5, DA:DOP 5:5, and DDC:TOMA 5:5 membranes with semi auto sampler and it could show the measuring result and store the data from eight sensors as one. System implemented on few instant coffees, and patterned characterization on the coffees with physical detection comparation.

The membrane character testing was did everyday with some instant coffee samples and then the pattern characterization be done. Tool that used as ADC was PhidgetInterFaceKit 8/8/8 that was an electrometer for this research. And uses program based on Microsoft Visual Basic 2010 as the interface so it can be interacted with the tool. And used the toolbox of Matlab R2009a program for madaline neural network utilization.

 

The results showed a pattern characterized using this system can be identified using the madaline neural network. Data results from this system can be stored in the form of excel.

 

Keywords madaline neural network, membrane, taste sensor, interface, coffee

 
5. Publisher Organizing agency, location IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.
 
6. Contributor Sponsor(s) IndoCEISS
 
7. Date (YYYY-MM-DD) 2014-10-31
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier https://jurnal.ugm.ac.id/ijeis/article/view/7124
 
10. Identifier Digital Object Identifier (DOI) https://doi.org/10.22146/ijeis.7124
 
11. Source Title; vol., no. (year) IJEIS (Indonesian Journal of Electronics and Instrumentation Systems); Vol 4, No 2 (2014): October
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions Copyright (c) 2014 IJEIS - Indonesian Journal of Electronics and Instrumentation Systems
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.