Klasifikasi Eritrosit Pada Thalasemia Minor Menggunakan Fitur Konvolusi dan Multi-Layer Perceptron

https://doi.org/10.22146/ijeis.83473

Zuhrufun Nufusy Nugroho(1*), Agus Harjoko(2), Muhammad Auzan(3)

(1) Program Studi Elektronika dan Instrumentasi, FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author

Abstract


 Thalassemia blood disorder is a condition that can affect the blood's ability to function normally and can lead to erythropoiesis. In this blood disorder, there are nine types of abnormal erythrocytes, namely elliptocytes, pencils, teardrops, acanthocytes, stomatocytes, targets, spherocytes, hypochromic and normal. At present, thalassemia examination is carried out using Hb electrophoresis and is done manually so it will be subjective and take a long time. Therefore, this research implements the Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) algorithms. This study aims to determine the performance of convolution features as image feature extraction and MLP as an image classification method and then implemented on NVIDIA Jetson Nano. The convolution features used in this study apply the CNN VGG16 architecture. Then model learning is carried out on 7245 data by configuring hyperparameters. The best accuracy with the hyperparameter configuration is a batch that is 16, the epoch is 400, the learning rate is 0.0001, the dropout1 layer is 0.1 and the dropout2 layer is 0.1. From this configuration it produces optimal accuracy at 96.175%. In the following, the model that has been made is then implemented on the NVIDIA Jetson Nano as a mobile media to be applied to the medical world resulting in an average prediction speed for each class of 48.330 seconds. The obtained performance time and accuracy are suitable for use by medical personnel to predict the class of abnormal erythrocytes.


Keywords


thalassemia; convolution features; CNN VGG16; MLP; Jetson Nano

Full Text:

PDF


References

[1] Huizen, “What types of blood disorders are there?,” Jun. 2018, [Online]. Available: https://www.medicalnewstoday.com/articles/263489

[2] H. Bajwa and H. Basit, “Thalassemia,” StatPearls Internet, Aug. 2022, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK545151/?report=reader

[3] F. Rizal Makarim, “Minor atau Mayor, Mana Thalassemia yang Paling Parah?,” halodoc, Desember 2019, [Online]. Available: https://www.halodoc.com/artikel/minor-atau-mayor-mana-thalassemia-yang-paling-parah

[4] D. A. Tyas, S. Hartati, A. Harjoko, and T. Ratnaningsih, “Erythrocyte Classification using Multi Layer Perceptron, Naïve Bayes Classifier, RBF Network and SVM,” Int. J. Eng. Adv. Technol., vol. 9, no. 2, pp. 2024–2028, Dec. 2019, doi: 10.35940/ijeat.B3231.129219.

[5] D. A. Tyas, T. Ratnaningsih, A. Harjoko, and S. Hartati, “Erythrocyte (red blood cell) dataset in thalassemia case,” Data Brief, vol. 41, p. 107886, Apr. 2022, doi: 10.1016/j.dib.2022.107886.

[6] D. A. Tyas, S. Hartati, A. Harjoko, and T. Ratnaningsih, “Morphological, Texture, and Color Feature Analysis for Erythrocyte Classification in Thalassemia Cases,” IEEE Access, vol. 8, pp. 69849–69860, 2020, doi: 10.1109/ACCESS.2020.2983155.

[7] Chihang Zhao, Jie He, Tiantian Zhu, Jie Lian, Jing Shen, and Hongjuan Zhang, “Recognition of driver’s fatigue expressions by Gabor wavelet transform and Multilayer Perceptron classifier,” in Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), ChangChun, China, Dec. 2011, pp. 617–620. doi: 10.1109/TMEE.2011.6199279.

[8] R. J. Gunawan, B. Irawan, and C. Setianingsih, “PENGENALAN EKSPRESI WAJAH BERBASIS CONVOLUTIONAL NEURAL NETWORK DENGAN MODEL ARSITEKTUR VGG16”.



DOI: https://doi.org/10.22146/ijeis.83473

Article Metrics

Abstract views : 1107 | views : 1331

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis



View My Stats1
View My Stats2