Pembelajaran Mesin untuk Sistem Keamanan - Literatur Review

Nuruddin Wiranda(1*)

(1) Universitas Lambung Mangkurat
(*) Corresponding Author


Makalah ini merupakan literature review mengenai pembelajaran mesin untuk sistem keamanan. Makalah ini merangkum 30 makalah penelitian yang terkait, dan menjawab tiga pertanyaan penelitian (RQ) yang berbeda. Hasil dari penelitian ini adalah ringkasan dari ekstraksi makalah-makalah penelitian sesuai dengan RQ, berupa grafik, tabel, dan statistik untuk mempermudah pembaca.

Full Text:



M. A. . Maloof and J. Lakhmi, Machine Learning and Data Mining for Comp Sec. .

T. Alves, R. Das, and T. Morris, “Embedding Encryption and Machine Learning Intrusion Prevention Systems on Programmable Logic Controllers,” IEEE Embed. Syst. Lett., vol. 10, no. 3, pp. 99–102, 2018, doi: 10.1109/LES.2018.2823906.

Y. Zhang, M. Simsek, and B. Kantarci, “Machine learning-based prevention of battery-oriented illegitimate task injection in mobile crowdsensing,” WiseML 2019 - Proc. 2019 ACM Work. Wirel. Secur. Mach. Learn., pp. 31–36, 2019, doi: 10.1145/3324921.3328786.

S. Das and M. J. Nene, “A survey on types of machine learning techniques in intrusion prevention systems,” Proc. 2017 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017, vol. 2018-Janua, pp. 2296–2299, 2018, doi: 10.1109/WiSPNET.2017.8300169.

A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016, doi: 10.1109/COMST.2015.2494502.

R. Geetha and T. Thilagam, “A Review on the Effectiveness of Machine Learning and Deep Learning Algorithms for Cyber Security,” Arch. Comput. Methods Eng., pp. 371–390, 2020, doi: 10.1007/s11831-020-09478-2.

L. Chen, S. Hou, and Y. Ye, “Securedroid: Enhancing security of machine learning-based detection against adversarial android malware attacks,” ACM Int. Conf. Proceeding Ser., vol. Part F1325, pp. 362–372, 2017, doi: 10.1145/3134600.3134636.

I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, “IntruDTree: A machine learning based cyber security intrusion detection model,” Symmetry (Basel)., vol. 12, no. 5, pp. 1–15, 2020, doi: 10.3390/SYM12050754.

F. Sadikin, T. van Deursen, and S. Kumar, “A ZigBee Intrusion Detection System for IoT using Secure and Efficient Data Collection,” Internet of Things, vol. 12, p. 100306, 2020, doi: 10.1016/j.iot.2020.100306.

J. Fang, Y. Shen, H. Li, and P. Wang, “Pattern-coupled sparse bayesian learning for recovery of block-sparse signals,” IEEE Trans. Signal Process., vol. 63, no. 2, pp. 360–372, 2015, doi: 10.1109/TSP.2014.2375133.

Y. Liu, Y. Wan, and X. Su, “Identifying individual expectations in service recovery through natural language processing and machine learning,” Expert Syst. Appl., vol. 131, pp. 288–298, 2019, doi: 10.1016/j.eswa.2019.04.063.

B. Kitchenham et al., “Systematic literature reviews in software engineering-A tertiary study,” Inf. Softw. Technol., vol. 52, no. 8, pp. 792–805, 2010, doi: 10.1016/j.infsof.2010.03.006.

B. Liao, Y. Ali, S. Nazir, L. He, and H. U. Khan, “Security Analysis of IoT Devices by Using Mobile Computing: A Systematic Literature Review,” IEEE Access, vol. 8, pp. 120331–120350, 2020, doi: 10.1109/ACCESS.2020.3006358.

B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” 2007, doi: 10.1145/1134285.1134500.

M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “A Machine Learning Security Framework for Iot Systems,” IEEE Access, vol. 8, pp. 114066–114077, 2020, doi: 10.1109/ACCESS.2020.2996214.

A. B. Nassif, M. A. Talib, Q. Nasir, H. Albadani, and F. M. Dakalbab, “Machine Learning for Cloud Security: A Systematic Review,” IEEE Access, vol. 9, pp. 20717–20735, 2021, doi: 10.1109/ACCESS.2021.3054129.

F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine Learning in IoT Security: Current Solutions and Future Challenges,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1686–1721, 2020, doi: 10.1109/COMST.2020.2986444.

S. Zwane, P. Tarwireyi, and M. Adigun, “Performance analysis of machine learning classifiers for intrusion detection,” 2018 Int. Conf. Intell. Innov. Comput. Appl. ICONIC 2018, pp. 1–5, 2019, doi: 10.1109/ICONIC.2018.8601203.

A. G. Gedam and S. G. Shikalpure, “Direct kernel method for machine learning with support vector machine,” 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018-Janua, pp. 1772–1775, 2018, doi: 10.1109/ICICICT1.2017.8342839.

H. M. Farooq and N. M. Otaibi, “Optimal machine learning algorithms for cyber threat detection,” Proc. - 2018 UKSim-AMSS 20th Int. Conf. Model. Simulation, UKSim 2018, pp. 32–37, 2018, doi: 10.1109/UKSim.2018.00018.

I. Ortiz Garces, M. F. Cazares, and R. O. Andrade, “Detection of phishing attacks with machine learning techniques in cognitive security architecture,” Proc. - 6th Annu. Conf. Comput. Sci. Comput. Intell. CSCI 2019, pp. 366–370, 2019, doi: 10.1109/CSCI49370.2019.00071.

N. Zhang, F. Jaafar, and Y. Malik, “Low-Rate DoS Attack Detection Using PSD Based Entropy and Machine Learning,” Proc. - 6th IEEE Int. Conf. Cyber Secur. Cloud Comput. CSCloud 2019 5th IEEE Int. Conf. Edge Comput. Scalable Cloud, EdgeCom 2019, pp. 59–62, 2019, doi: 10.1109/CSCloud/EdgeCom.2019.00020.

R. Vishwakarma and A. K. Jain, “A honeypot with machine learning based detection framework for defending IoT based botnet DDoS attacks,” Proc. Int. Conf. Trends Electron. Informatics, ICOEI 2019, no. Icoei, pp. 1019–1024, 2019, doi: 10.1109/ICOEI.2019.8862720.

A. N. Sokolov, I. A. Pyatnitsky, and S. K. Alabugin, “Research of Classical Machine Learning Methods and Deep Learning Models Effectiveness in Detecting Anomalies of Industrial Control System,” Proc. - 2018 Glob. Smart Ind. Conf. GloSIC 2018, pp. 1–6, 2018, doi: 10.1109/GloSIC.2018.8570073.

E. Eziama, S. Ahmed, S. Ahmed, F. Awin, and K. Tepe, “Detection of Adversary Nodes in Machine-To-Machine Communication Using Machine Learning Based Trust Model,” 2019 IEEE 19th Int. Symp. Signal Process. Inf. Technol. ISSPIT 2019, 2019, doi: 10.1109/ISSPIT47144.2019.9001743.

L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning,” IEEE Access, vol. 9, pp. 7550–7563, 2021, doi: 10.1109/ACCESS.2020.3048198.

F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS,” IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 524–552, 2021, doi: 10.1109/COMST.2020.3036778.

Y. Uhm and W. Pak, “Service-Aware Two-Level Partitioning for Machine Learning-Based Network Intrusion Detection with High Performance and High Scalability,” IEEE Access, vol. 9, pp. 6608–6622, 2021, doi: 10.1109/ACCESS.2020.3048900.

S. Sharma, P. Zavarsky, and S. Butakov, “Machine Learning based Intrusion Detection System for Web-Based Attacks,” Proc. - 2020 IEEE 6th Intl Conf. Big Data Secur. Cloud, BigDataSecurity 2020, 2020 IEEE Intl Conf. High Perform. Smart Comput. HPSC 2020 2020 IEEE Intl Conf. Intell. Data Secur. IDS 2020, pp. 227–230, 2020, doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00048.

M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi: 10.1016/j.jisa.2019.102419.

J. Canedo and A. Skjellum, “Using machine learning to secure IoT systems,” 2016 14th Annu. Conf. Privacy, Secur. Trust. PST 2016, pp. 219–222, 2016, doi: 10.1109/PST.2016.7906930.

A. I. Abubakar, H. Chiroma, S. A. Muaz, and L. B. Ila, “A review of the advances in cyber security benchmark datasets for evaluating data-driven based intrusion detection systems,” Procedia Comput. Sci., vol. 62, no. Scse, pp. 221–227, 2015, doi: 10.1016/j.procs.2015.08.443.

A. V. Sukhanov, S. M. Kovalev, and V. Stýskala, “Advanced temporal-difference learning for intrusion detection,” IFAC-PapersOnLine, vol. 28, no. 4, pp. 43–48, 2015, doi: 10.1016/j.ifacol.2015.07.005.

P. Wang and Y. S. Wang, “Malware behavioural detection and vaccine development by using a support vector model classifier,” J. Comput. Syst. Sci., vol. 81, no. 6, pp. 1012–1026, 2015, doi: 10.1016/j.jcss.2014.12.014.

D. P. Gaikwad and R. C. Thool, “Intrusion detection system using Bagging with Partial Decision Tree base classifier,” Procedia Comput. Sci., vol. 49, no. 1, pp. 92–98, 2015, doi: 10.1016/j.procs.2015.04.231.

H. Zhang, D. Yao, N. Ramakrishnan, and Z. Zhang, “Causality reasoning about network events for detecting stealthy malware activities,” Comput. Secur., vol. 58, no. May 2012, pp. 180–198, 2016, doi: 10.1016/j.cose.2016.01.002.

W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, “Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system,” Expert Syst. Appl., vol. 67, pp. 296–303, 2017, doi: 10.1016/j.eswa.2016.09.041.

S. Liu, Y. Wang, J. Zhang, C. Chen, and Y. Xiang, “Addressing the class imbalance problem in Twitter spam detection using ensemble learning,” Comput. Secur., vol. 69, pp. 35–49, 2017, doi: 10.1016/j.cose.2016.12.004.

P. Li et al., “Multi-key privacy-preserving deep learning in cloud computing,” Futur. Gener. Comput. Syst., vol. 74, pp. 76–85, 2017, doi: 10.1016/j.future.2017.02.006.

A. Li, J. Wu, and Z. Liu, “Market Manipulation Detection Based on Classification Methods,” Procedia Comput. Sci., vol. 122, pp. 788–795, 2017, doi: 10.1016/j.procs.2017.11.438.

D. X. Cho, D. T. H. Thuong, and N. K. Dung, “A Method of Detecting Storage Based Network Steganography Using Machine Learning,” Procedia Comput. Sci., vol. 154, pp. 543–548, 2018, doi: 10.1016/j.procs.2019.06.086.

E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. Ajibuwa, “Machine learning for email spam filtering: review, approaches and open research problems,” Heliyon, vol. 5, no. 6, 2019, doi: 10.1016/j.heliyon.2019.e01802.

K. A. P. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. de Albuquerque, “Internet of Things: A survey on machine learning-based intrusion detection approaches,” Comput. Networks, vol. 151, pp. 147–157, 2019, doi: 10.1016/j.comnet.2019.01.023.

B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology,” Internet of Things, vol. 11, p. 100227, 2020, doi: 10.1016/j.iot.2020.100227.

F. Aminifar, S. Teimourzadeh, A. Shahsavari, M. Savaghebi, and M. S. Golsorkhi, “Machine learning for protection of distribution networks and power electronics-interfaced systems,” Electr. J., vol. 34, no. 1, p. 106886, 2021, doi: 10.1016/j.tej.2020.106886.

D. Yu, J. Kang, and J. Dong, “Service Attack Improvement in Wireless Sensor Network Based on Machine Learning,” Microprocess. Microsyst., vol. 80, no. December 2020, p. 103637, 2021, doi: 10.1016/j.micpro.2020.103637.


Article Metrics

Abstract views : 435 | views : 636


  • There are currently no refbacks.

Copyright (c) 2022 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133 |

View My Stats1
View My Stats2