Hybrid Support Vector Machine to Preterm Birth Prediction
Noviyanti Santoso(1*), Sri Pingit Wulandari(2)
(1) Institut Teknologi Sepuluh Nopember
(2) Institut Teknologi Sepuluh Nopember
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] H. Blencowe, S. Cousens, D. Chou, M. Oestergaard, L. Say, A. B. Moller, M. Kinney and J. Lawn, “Born Too Soon: The global epidemiology of 15 million preterm births,” Reproductive Health, vol. 10 (Suppl 1): S2, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828585/. [Accessed: 14-May-2018]
[2] Dinas kesehatan Provinsi Jatim 2014. Buku Profil Kesehatan Jatim 2014. Jawa Timur.
[3] D. Sulistiarini and S. M. Berliana, “Faktor-Faktor Yang Memengaruhi Kelahiran Prematur Di Indonesia: Analisis Data Riskesdas 2013,” E-Journal WIDYA Kesehatan Dan Lingkungan, vol. 1, no. 2, pp. 109-115, March 2016. [Online]. Available: http://e-journal.jurwidyakop3.com/index.php/kes-ling/article/view/242. [Accessed: 12-April-2018]
[4] A. A. H. Asl, S. Safari, and M. P. Hamrah, “Epidemiology and Related Risk Factors of Preterm Labor as an obstetrics emergency”, An Academic Emergency Medicine Journal, vol 5, no. 1, Jan. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325899/. [Accessed: 20-March-2018]
[5] Y. P. Zhang, X. H. Liu, S. H. Gao, J. M. Wang, Y. S. Gu, J. Y. Zhang, X. Zhou, and Q. X. Li, “Risk Factors for Preterm Birth in Five Maternal and Child Health Hospitals in Beijing”, PLoS ONE, vol 7, no. 12, Dec. 2012. [Online]. Available: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052780. [Accessed: 20-March-2018]
[6] T. B. Temu, G. Masenga, J. Obure, D. Mosha, and M. J. Mahande, “Maternal and obstetric risk factors associated with preterm delivery at a referral hospital in northern-eastern Tanzania,” Asian Pacific Journal of Reproduction, Vol. 5, Issue 5, pp. 365-370, Sept 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2305050016300768. [Accessed: 20-March-2018]
[7] J. H. Friedman, “Multivariate adaptive regression splines (with discussion)”, Annals of Statistics, vol. 19, pp. 1–141, 1991.
[8] Suroto, B. W. Otok, Suharto, A. Wibowo, “Multivariate Adaptive Regression Spline for Prediction of Hypertension Cases the Measurement of Blood Pressure in Indonesia”. J.Appl. Environ. Biol. Sci., vol. 7, no. 5, pp. 41-46, 2017. [Online]. Available: https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%207(5)41-46,%202017.pdf. [Accessed: 4-March-2018]
[9] S. W. Purnami, S. Andari, and Y. D. Pertiwi, “High-Dimensional Data Classification Based on Smooth Support Vector Machines”, Procedia Computer Science, vol. 72, pp. 477 – 484, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915035905. [Accessed: 4-March-2018]
[10] D. Yao, J. Yang, and X. Zhan, “A Novel Method for Disease Prediction: Hybrid of Random Forest and Multivariate Adaptive Regression Splines”, Journal of Computers, vol. 8, no. 1, 2013. [Online]. Available:
http://www.jcomputers.us/index.php?m=content&c=index&a=show&catid=50&id=523. [Accessed: 20-March-2018]
[11] Nidhomuddin and B. W. Otok, “Random Forest Dan Multivariate Adaptive Regression Spline (MARS) Binary Response Untuk Klasifikasi Penderita HIV/AIDS Di Surabaya”, Jurnal Statistika Universitas Muhammadiyah Semarang, vol. 3, no.1, 2015. [Online]. Available: https://jurnal.unimus.ac.id/index.php/statistik/article/view/1439. [Accessed: 10-April-2018]
[12] V. N. Vapnik, The Nature of Statistical Learning Theory, New York: Springer, 1995.
[13] S. Li and S. Oh, “Improving feature selection performance using pairwise pre-evaluation,” BioMed Central Bioinformatics, vol. 17, pp. 312, Aug 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992252/. [Accessed: 14-May-2018]
[14] D. S. Kumar and S. Sukanya, “Feature Selection Using Multivariate Adaptive Regression Splines,” International Journal of Research and Reviews in Applied Sciences And Engineering (IJRRASE), vol. 8, no.1, pp. 17-24, 2016. [Online]. Available: http://www.ijcns.com/pdf/ijrrasevol8no11016-4.pdf
[15] J. H. Friedman and B. W. Silverman, “Flexible Parsimony Smoothing and Additive Modelling”, Technometrics, vol. 31, 1989.
[16] N. Santoso, W. Wibowo, “Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine,” in AIP Conf. Series: Journal of Physics: Conf. Series, 2018, vol. 979, pp. 012089. [Online]. Available: http://iopscience.iop.org/article/10.1088/1742-6596/979/1/012089.
[17] C.C. Chang and C. J. Lin, “LIBSVM: A library for support vector machine,” 2013. Available: https://www.csie.ntu.edu.tw/~cjlin//papers/libsvm.pdf
DOI: https://doi.org/10.22146/ijeis.35817
Article Metrics
Abstract views : 3167 | views : 2434Refbacks
- There are currently no refbacks.
Copyright (c) 2018 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1