Model Tracking Pembicara Dalam Perekaman Video Otomatis Pada Kelas Cendekia

https://doi.org/10.22146/ijeis.27818

Elga Ridlo Sinatriya(1*), Muhammad Idham Ananta Timur(2), Ika Candradewi(3)

(1) Prodi Elektronika dan Instrumentasi Jurusan Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author

Abstract


The requisite of intelligent classroom’s saving the information from speakers inside the class using ubiquitous computing concept. It said the most profound technologies are those that disappear, and they weave themselves into fabric of everday life until they are indistinguishable from it. It requires a few capability such as tracking the speaker and record it. Therefore it will be require the system that can tracking the speaker in real time, ignore the other speaker, and recording speaker’s activity. The system consumes 168.02 ms in one move, like detection using statis camera, send the centroid to microcontroller, second detection using dinamis camera, and record it. The system had an accuracy of 93.37 % to fits the speaker at the middle of frame record. The system is also had an accuracy of 98%  to detecting the correct speaker.

Keywords


Ubiquitous Computing; intelligent classroom; LBP Cascade; Kalman filter

Full Text:

PDF


References

 

[1]      E. Oran, “Integrating Mobile and Ubiquitous Computing in a Smart Classroom to Increase Learning Effectiveness,” Int. Conf. Educ. e-Learning Innov., pp. 1–5, 2012 [Online]. Available: http://ieeexplore.ieee.org/document/6360684/ [Accessed: 27-Aug-2017]

[2]      J. Park, K. An, D. Kim, and J. Choi, “Multiple human tracking using multiple kinects for an attendance check system of a smart class,” 2013 10th Int. Conf. Ubiquitous Robot. Ambient Intell. URAI 2013, vol. 25, no. 10, p. 130, 2013 [Online]. Available: http://ieeexplore.ieee.org/document/6677494/ [Accessed: 29-Aug-2017]

[3]      T. Tsuda, M. Okuda, K. Mutou, and Y. Nishida, “Automatic tracking camera system utilizing the position of faces in the shot image,” IEEE Conf. Publ., 2006 [Online]. Available: http://ieeexplore.ieee.org/document/4150108/ [Accessed: 29-Aug-2017]

[4]      D. E. Pratiwi and A. Harjoko, “Implementasi Pengenalan Wajah Menggunakan PCA ( Principal Component Analysis ),” Ijeis, vol. 3, no. 2, pp. 175–184, 2013 [Online]. Available: https://jurnal.ugm.ac.id/ijeis/article/view/3892 [Accessed: 29-Aug-2017]

[5]      P. Chong, “A Novel Pedestrian Detection and Tracking with Boosted HOG Classifiers and Kalman Filter,” IEEE Student Conf. Res. Dev., pp. 1–5, 2016 [Online]. Available: http://ieeexplore.ieee.org/document/7810052/ [Accessed: 29-Aug-2017]

[6]      C. Miller, B. Allik, M. Ilg, and R. Zurakowski, “Kalman filter-based tracking of multiple similar objects from a moving camera platform,” Proc. IEEE Conf. Decis. Control, pp. 5679–5684, 2012 [Online]. Available: http://ieeexplore.ieee.org/document/6425956/ [Accessed: 29-Aug-2017]

[7]      K. Kadir, M. K. Kamaruddin, H. Nasir, S. I. Safie, and Z. A. K. Bakti, “A comparative study between LBP and Haar-like features for Face Detection using OpenCV,” 2014 4th Int. Conf. Eng. Technol. Technopreneuship, ICE2T 2014, vol. 2014–Augus, pp. 335–339, 2015 [Online]. Available: http://ieeexplore.ieee.org/document/7006273/ [Accessed: 29-Aug-2017]

[8]      J. Chang-yeon, “Face Detection using LBP features,” Stanford.Edu, pp. 1–4, 2008 [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Face+Detection+using+LBP+features#0 [Accessed: 10-Jul-2017]

[9]      S. Sarwar, N. I. Rao, and M. F. Khan, “Real-time object tracking using Powell’s direct set method for object localization and kalman filter for occlusion handling,” 2012 Int. Conf. Digit. Image Comput. Tech. Appl. DICTA 2012, pp. 1–7, 2012 [Online]. Available: http://ieeexplore.ieee.org/document/6411705/ [Accessed: 29-Aug-2017]

[10]    I. Abbas and P. Ali, “Small Target Detection and Tracking Based on the Background Elimination and Kalman Filter,” 2015 Int. Symp. Artif. Intell. Signal Process., pp. 328–333, 2015 [Online]. Available: http://ieeexplore.ieee.org/document/7123509/ [Accessed: 29-Aug-2017]



DOI: https://doi.org/10.22146/ijeis.27818

Article Metrics

Abstract views : 725 | views : 795

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis



View My Stats1
View My Stats2