Sistem Kendali Penghindar Rintangan Pada Quadrotor Menggunakan Konsep Linear Quadratic
Ariesa Budi Zakaria(1*), Andi Dharmawan(2)
(1) 
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Quadrotor is one of UAV (Unmanned Aerial Vehicle) rotary wing aircraft type. Quadrotor has been widely used for various needs to military or civilian. Quadrotor can be operated manually by remote or autonomously. One of the difficulties of quadrotor operations is to avoid the obstacles before autonomous flying towards destination point. Therefore, an obstacle avoidance control system is required on quadrotor systems.
Linear Quadratic Regulator is a control system that produces an input value system from state value and feedback. State value is produced from translation and rotation. That input value then converted into pulse width modulation to control the speed of the brusless motor, and it's used to do obstacles avoidance manouver.
This method might reduce overshoot on the system and make response time (rise time) arrived faster than other methods. The obstacle avoidance system requires small overshoot value and an appropriate response time to avoid frictions or collisions. The result of this research is the rise time to avoid obstacles that reached 4,7 second with flight speed of 0,6 m/s and turns for roll angle equal to 14,27 °, pitch equal to 13,26 °, and yaw equal to 9,87 ° while avoidance maneuvering obstacles.
Keywords
Full Text:
PDFReferences
[1] M. D. Schmidt, “Simulation and Control of A Quadrotor Unmanned Aerial Vehicle,” University of Kentucky, 2011.
[2] S. Bouabdallah, M. Becker, V. de Perrot, and R. Siegwart, “Toward obstacle avoidance on quadrotors,” XII Int. Symp. Dyn. Probl. Mech., no. Diname, pp. 1–10, 2007.
[3] A. P. S. Putra and A. Dharmawan, “Implementasi Metode PID FUZZY untuk Menghindari Tumbukan pada Quadrotor,” Universitas Gadjah Mada, 2015.
[4] F. Rozani and A. Dharmawan, “Implementasi Sistem Kendali PID pada Quadrotor dengan Pendekatan Penalaan LQR,” Universitas Gadjah Mada, 2016.
[5] B. Panomrattanarug, K. Higuchi, and F. Mora-Camino, “Attitude control of a quadrotor aircraft using LQR state feedback controller with full order state observer,” Proc. SICE Annu. Conf., pp. 2041–2046, 2013.
[6] J. Domingues, “Quadrotor prototype,” Inst. Super. Tec. Univ. Tec. …, no. October, p. 129, 2009.
[7] R. Prahasta and A. Dharmawan, “Implementasi Metode LQR (Linear Quadratic Regulator) pada Pengendali Terbang Quadrotor untuk Kestabilan Sikap Pesawat,” Universitas Gadjah Mada, Yogyakarta, Indonesia, 2016.
[8] K. Ogata, Modern Control Engineering Fifth Edition. New Jersey, USA: Prentice Hall, 2010.
[9] Z. Shulong, A. Honglei, Z. Daibing, and S. Lincheng, “A new feedback linearization LQR control for attitude of quadrotor,” in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), 2014, vol. 2014, no. December, pp. 1593–1597.
[10] A. Dharmawan and I. F. Arismawan, “Sistem Kendali Penerbangan Quadrotor pada Keadaan Melayang dengan Metode LQR dan Kalman Filter,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 7, no. 1, p. 49, Apr. 2017 [Online]. Available: https://jurnal.ugm.ac.id/ijeis/article/view/15262. [Accessed: 31-May-2017]
DOI: https://doi.org/10.22146/ijeis.25503
Article Metrics
Abstract views : 2787 | views : 3330Refbacks
- There are currently no refbacks.
Copyright (c) 2017 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1