Klasifikasi Kendaraan Menggunakan Learning Vector Quantization

https://doi.org/10.22146/ijeis.2340

Imelda Imelda(1*), Agus Harjoko(2)

(1) Budi Luhur University
(2) Department of Computer Science and Electronics, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Abstrak

Klasifikasi kendaraan penting dilakukan mengingat sering terjadi kesalahpahaman melakukan klasifikasi karena disamakan dengan merk. Klasifikasi kendaraan sudah banyak dilakukan dari tampak depan, tampak belakang dan tampak atas, namun belum ada yang melakukan klasifikasi kendaraan dari tampak samping. Oleh karena itu tujuan paper ini adalah agar dapat mengklasifikasi kendaraan dari tampak samping. Klasifikasi kendaraan yang digunakan adalah metodologi Learning Vector Quantization.

 

Kata kunci—Klasifikasi Kendaraan, Learning Vector Quantization

 

Abstract

Vehicle classification is important to remember frequent misunderstanding of the classification due to be equated with the brand. Vehicle classification has been done from the front, rear and looked up, but no one has determined the classification of the vehicle from a side view. Therefore the aim of this paper is to classify vehicles from the side view. Classification methodology used vehicle is Learning Vector Quantization.

 

KeywordsVehicle Classification, Learning Vector Quantization

Keywords


Vehicle Classification, Learning Vector Quantization

Full Text:

PDF



DOI: https://doi.org/10.22146/ijeis.2340

Article Metrics

Abstract views : 2330 | views : 2859

Refbacks

  • There are currently no refbacks.




Copyright (c) 2012 IJEIS - Indonesian Journal of Electronics and Instrumentation Systems

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis



View My Stats1
View My Stats2