Rancang Bangun Electronic Nose untuk Mendeteksi Tingkat Kebusukan Ikan Air Tawar


Chrisal Aji Lintang(1*), Triyogatama Wahyu Widodo(2), Danang Lelono(3),

(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author


When fish die, fish freshness start to reduce gradually until cannot be eaten anymore. Properness of fish meat can be identified by odor that come out from fish itself. An instrument called electronic nose that can detect pattern of fish odor has been designed and implemented in this research.

To be able to detect scent of freshwater fish, electronic nose will drain the air from sample chamber to sensor chamber using fan. When taking sample aroma, fan will drain air that contain sample scent from sample chamber to sensor chamber, and air from the outside flowed into sensor chamber when odor off. Scent stimulus captured by sensor array in form of signal response will be extracted with integral method so that the digital fingerprint from samples can be obtained. This pattern then analyzed by PCA (Principal Component Analysis) to determine patterns of freshwater fish odor.

Result from this study indicated that electronic nose system can detect scent of freshwater fish with percentage variance of two major components are 98.7% (pomfret), 98.8% (catfish), and 99.5% (tilapia). Sensors that give high response in each samples is TGS 2620, and TGS 2600. TGS 822 give high response when fish is rotting.


Fish; electronic nose; array sensor; Principal Component Analysis (PCA)

Full Text:



[1]   Afrianto, E., Liviawaty, E., 1989. Pengawetan dan Pengolahan Ikan, kanisius, Yogyakarta.

[2]   Neu, D., Tro, N. J., 2009. Chemistry in Focus : A Molecular View of Our World, Westmont College, Santa Barbara, USA.

[3]   Lelono, D., Triyana, K., Hartati, S., Amalinda, F., Kaltsum, U., Usuman, I., 2011.  Rancang Bangun Prototipe Sensor Rasa Elektronik Berbasis Membran Selektif Ion, Jurusan Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta.

[4]   Pearce,T.C., Schiffman, S.S, Nagle, H.T., 2003, Handbook of Machine Olfaction- Electronic Nose Technology, WILEY-VCH, UK.

[5]   Sadeghifard, S., Esmaeilani, L., 2012, A New Embedded E-nose system to Identify Smell of Smoke, 2012 7th International Conference on System of System Engineering (SoSE), Genoa. 16-19 July 2012.

[6]   Widyatmoko, P.H, 2014. Rancang Bangun Electronic Nose Untuk Klasifikasi Kemurnian Minyak Tanah, Skripsi. Jurusan Ilmu Komputer Dan Elektronika, FMIPA, UGM, Yogyakarta.

[7]   Rosyad, F., 2015. Klasifikasi Kemurnian Daging Sapi Berbasis Electronic Nose dengan Metode Principal Component Analysis, skripsi, Jurusan Ilmu Komputer Dan Elektronika, FMIPA UGM, Yogyakarta.

[8]   Haddad, R., 2007, A Feature Extraction Algorithm for Multi-Peaks Signals in Electronic Noses, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel.

[9]   Soemartini, 2008. Principal Component Analysis (PCA) Sebagai Salah Satu Metode Untuk Mengatasi Masalah Multikonlinearitas, Skripsi, Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Padjajaran, Jatinangor.

DOI: https://doi.org/10.22146/ijeis.15251

Article Metrics

Abstract views : 158 | views : 114


  • There are currently no refbacks.

Copyright (c) 2016 IJEIS - Indonesian Journal of Electronics and Instrumentation Systems

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electronics and Instrumentations Systems
(IJEIS) ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis

Creative Commons License
IJEIS by http://jurnal.ugm.ac.id/ijeis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1
View My Stats2