Sistem Klasifikasi Sampah Otomatis Berbasis Deteksi Objek Real-Time Pada Single Board Computer Dengan Algoritma YOLO

Ahmad Zaki Firdaus(1*), Danang Lelono(2), Oskar Natan(3)
(1) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
The development of an automatic waste classification system based on real-time object detection using the YOLO (You Only Look Once) algorithm on a Raspberry Pi 5 Single Board Computer (SBC) is the main focus of this final project. The main issue addressed is the increasing accumulation of waste, particularly in Indonesia, which requires an effective solution for automatic waste sorting. The system is designed to detect and sort plastic and metal waste in real-time using deep learning and computer vision technologies.
This research employs the YOLO11n model, trained on a dataset of plastic and metal waste. The training process involves data augmentation techniques such as rotation and grayscale to enhance dataset variability. The training results show a mean Average Precision (mAP) of 98.44% on testing data. The system is implemented on a Raspberry Pi 5, with the model converted to NCNN format to improve inference speed. Testing results indicate that the system can achieve a speed of 8.90 FPS with a latency of 110 ms, meeting the criteria for a real-time system.
Keywords
Full Text:
PDFReferences
[1] Kaza, S., Yao, L., Bhada-Tata, P. and Van Woerden, F., 2018. What a waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Publications.
[2] Fiona, F. and Fitri, W., 2023. Efektivitas Hukum Lingkungan Dalam Mengurangi Sampah Plastik Di Lautan Indonesia Pada Era Globalisasi. Gorontalo Law Review, 6(1), pp.155-164.
[3] Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia (2024) Sistem Informasi Pengelolaan Sampah Nasional (SIPSN). Available at: https://sipsn.menlhk.go.
id/sipsn/ [Accessed: 1-Maret-2024]
[4] Badan Pusat Statistik (2021) Persentase rumah tangga menurut provinsi dan perlakuan memilah sampah mudah membusuk dan tidak mudah membusuk, 2013-2014, 2021 [Online]. Available at: https://www.bps.go.id/id/ [Accessed: 2-Maret-2024]
[5] Shenai, H., Gala, J., Kekre, K., Chitale, P. and Karani, R., 2022. Combating COVID-19 using object detection techniques for next-generation autonomous systems. In Cyber-Physical Systems (pp. 55-73). Academic Press.
[6] Yanfei, P. and Yue, J., 2023, November. Road Crack Detection Algorithm Based on Improved YOLOv8. In 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 28-32). IEEE.
[7] Lin, W., 2021, December. YOLO-green: A real-time classification and object detection model optimized for waste management. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 51-57). IEEE.
[8] Yang, G., Jin, J., Lei, Q., Wang, Y., Zhou, J., Sun, Z., Li, X. and Wang, W., 2021, October. Garbage classification system with yolov5 based on image recognition. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) (pp. 11-18). IEEE.
[9] Kolla, N.S., Anumula, M., Sujana, S. and Ratnababu, M., 2023, May. Road Garbage Classification Using ResNet50. In 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT) (pp. 1-5). IEEE.
[10] Patil, A., Tatke, A., Vachhani, N., Patil, M. and Gulhane, P., 2021, August. Garbage classifying application using deep learning techniques. In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 122-130). IEEE.
[11] Ray, P.P., 2022. A review on TinyML: State-of-the-art and prospects. Journal of King Saud University-Computer and Information Sciences, 34(4), pp. 1595-1623.
[12] Kandel, I. and Castelli, M., 2020. The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT express, 6(4), pp.312-315.
[13] Lin, W., 2021, December. YOLO-green: A real-time classification and object detection model optimized for waste management. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 51-57). IEEE.
[14] Hermawan, I., Mardiyono, A., Iswara, R.W., Murad, F.A., Ardiawan, M.A. and Puspita, R., 2023, August. Development of Covid Medical Waste Object Classification System Using YOLOv5 on Raspberry Pi. In 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 443-447). IEEE.

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1