
IJCCS, Vol.x, No.x, July xxxx, pp. 1~5

ISSN: 1978-1520 ◼ 1

Received June 1st,2012; Revised June 25th, 2012; Accepted July 10th, 2012

Ethereum Blockchain-Based Weather Data Storage

Prototype

Eris Sulistiyani1, Bambang Nurcahyo Prastowo2

1,2Gadjah Mada University; Bulaksumur, Caturtunggal, Depok, Sleman Regency, Special

Region of Yogyakarta 55281
1,2Electronics and Instrumentation, Faculty of Mathematics and Natural Sciences, UGM,

Yogyakarta

e-mail: *1erissulis05@gmail.com, 2prastowo@ugm.ac.id

Abstract

 The application of Ethereum Blockchain within IoT-based weather monitoring systems

presents substantial potential for enhancing data security, integrity, transparency, and trust. This

study is focused on the design, implementation, and evaluation of Ethereum Blockchain as a

robust data security mechanism in an IoT weather monitoring system. The system is configured

to monitor environmental parameters, specifically temperature and humidity, using DHT22

sensors, with data securely stored and processed through smart contracts on a locally deployed

Ethereum network. The research utilizes the Proof of Authority consensus mechanism, assessing

data transmission and storage latency across varying mining intervals. The findings reveal

minimal transmission delays, whereas storage delays on the blockchain exhibit variability,

influenced by the duration of the mining period. Specifically, longer mining intervals contribute

to increased delays in data storage. These results underscore the necessity of optimizing the

mining interval to ensure complete and synchronized data storage, thereby enhancing the

accuracy and reliability of the weather monitoring system. This study demonstrates the efficacy

of Ethereum Blockchain in addressing critical challenges related to data security and integrity

within IoT applications, highlighting its potential as a promising solution for secure data

management.

Keywords— Etehereum, Proof of Authority (PoA), IoT, latency

I. INTRODUCTION

he Internet of Things (IoT) enables various sensors, actuators, and microcontrollers to connect

and communicate online through the internet. IoT represents a network of interconnected

devices that collect and exchange data regarding usage patterns and the environment in which

these devices operate [1]. The deployment of IoT has significantly contributed to technological

advancements by facilitating real-time data acquisition for more efficient analysis. IoT

applications span a wide range of fields, including agriculture, energy, environmental monitoring,

smart homes, healthcare, and transportation. Among these applications, weather monitoring is a

key area where IoT is utilized to gather meteorological information and provide weather forecasts

for specific regions [2].

Accurate environmental assessment necessitates the monitoring of various weather

parameters, such as air temperature, atmospheric pressure, humidity, and precipitation [3]. IoT

devices equipped with sensors are employed to collect data on these weather parameters, which

is then transmitted to a central database server. However, the transmission and storage of IoT data

require robust security and privacy measures, including data integrity, confidentiality, and

T

mailto:2prastowo@ugm.ac.id

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

2

authentication. Many IoT devices and applications are not originally designed to address these

security and privacy concerns, highlighting the need for efficient data transmission and storage

mechanisms to safeguard connected devices from hackers and intruders.

Addressing security challenges in IoT systems necessitates careful consideration of

hardware that can securely run an operating system, including loading trusted firmware onto smart

devices to establish secure communication channels with backend systems. The security of

information obtained from IoT devices can be ensured through the implementation of hash

algorithms, cryptography, and digital signatures, which provide confidentiality, authentication,

and data integrity [4].

Blockchain technology has emerged as a promising solution due to its transparency,

immutability, security, and decentralization [5]. Decentralization offers an effective approach for

managing the growing complexity of networks, which often require expensive and insecure

information and communication infrastructure. Blockchain enables dynamic integration and

management of network components [6]. In recent years, blockchain has been increasingly

applied in IoT systems to provide a decentralized and secure method for storing and processing

data, facilitating data exchange among interconnected IoT devices.

Several studies have explored the application of blockchain in enhancing security and data

integrity within IoT systems. Kumar et al. [7] investigated the secure storage of IoT data using a

combination of on-chain (Ethereum Blockchain) and off-chain (IPFS and Ethereum) storage,

addressing technical challenges in securely storing IoT data. Chen et al. [8] proposed a

blockchain-based community safety and security system integrated with IoT devices, aiming to

enhance security through the decentralized nature of blockchain and the secure communication

capabilities of IoT devices. Chaganti et al. examined a cloud-based agricultural security

monitoring system that leverages Ethereum Blockchain to ensure the security of agricultural data

by integrating various components such as sensors, AWS cloud, and smart contracts.

The application of Ethereum Blockchain for data security in IoT-based weather monitoring

systems holds significant potential. The integration of blockchain with IoT can enhance data

security, integrity, transparency, and trust across various applications, including IoT-based

weather monitoring systems. This research aims to design, develop, and investigate the

application of Ethereum Blockchain as a data security system within an IoT-based weather

monitoring framework.

II. RESEARCH METHODOLOGY

This research propose the implementation of Ethereum Blockchain as a security system for

data storage in an IoT-based weather monitoring system. Ethereum Blockchain has been widely

applied theoretically and it can be integrated into IoT systems through smart contracts validated

by the blockchain when IoT devices operate. The weather monitoring system collects data from

sensors that measure environmental conditions, including temperature and humidity. In this study

Ethereum Blockchain is applied to ensure that the data obtained from weather monitoring sensors

is securely stored. The smart contract on Ethereum is designed with functions to fetch and store

sensor data. The use of hash algorithms ensures security and maintains public transparency by

recording transactions on the Ethereum network.

2.1. Software, Hardware, and Runtime Environment

The implementation of the Ethereum Blockchain systems for IoT based weather monitoring

requires specific hardware such as laptop/pc, Raspberry Pi 4B, and DHT22 sensor.

The The software tools used in this research include:

IJCCS ISSN: 1978-1520 ◼

Title of manuscript is short and clear, implies research results (First Author)

3

a. Publisher MQTT (mqtt_publisher.py): Program on Raspberry Pi 4B for collecting data

from the DHT22 sensor and publishing it to the broker.

b. Subscriber MQTT (mqtt_subscriber.py): Program on a local computer that subscribes to

the MQTT broker and receives sensor data.

c. Smart Contract (iot.sol): A Solidity-based smart contract that stores sensor data on the

blockchain, manages read and write operations, and enforces conditions for transaction

execution.

d. Deploy Program (deploy.py): Used to deploy the smart contract on the Ethereum network.

e. Data Storage Program (store.py): Responsible for storing sensor data on the Ethereum

network by interacting with the smart contract.

f. Data Retrieval Program (retrieve.py): Fetches block data and transactions at specific

addresses on the Ethereum network.

g. Web Backend (app.py): Flask-based program acting as a server intermediary between the

web interface and the blockchain.

h. Web Interface (index.html): Template file used by app.py to display sensor data and data

hash values on the web interface.

The runtime environment for this research consists of simulated Ethereum Virtual Machine

that running on a local computer connected to the blockchain network, smart contract deployment

to implemented on the local Ethereum network, and sensor data collection and transmission using

MQTT and stored on the Ethereum network, with data displayed on a local host dashboard.

2.2. Weather Monitoring Design

The weather monitoring system is designed with components including the DHT22 sensor

and Raspberry Pi 4B. The Raspberry Pi 4B is connected to a monitor to display sensor data,

including temperature, humidity, and rainfall. Data collection is done using a Python program on

Raspberry Pi Debian, utilizing the integrated Wi-Fi module on the Raspberry Pi 4B. The design

of the IoT-based weather monitoring device is illustrated in Figure 1

.

Figure 1 Weather Monitoring Hardware Design

2.3. System Architecture Design

The implementation of Ethereum Blockchain is designed to secure data in the IoT-based

weather monitoring system. The process starts with connecting the DHT22 sensor to Raspberry

Pi 4B to collect temperature and humidity data. This data is then sent to the MQTT broker with

IP 10.6.6.13 using the mqtt_publisher.py program. On the local computer, the MQTT subscriber

receives the data along with a timestamp. Ethereum network runs on the local machine, where the

Smart Contract is deployed using the deploy.py program. The sensor data is then stored on the

Ethereum network in real-time using the store.py program, and the data, along with the transaction

hash, is displayed on a local web interface using the Flask-based app.py and index.html programs.

The overall system architecture is illustrated in Figure 2.

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

4

Raspberry Pi 4B
MQTT Publisher

Sensor data
(temperature &

humidity) & timestamp

DHT22

MQTT
Broker 10.6.6.13

Monitor

Local computer/laptop

Node 1 Node 2

Smart
Contract

Local web
127.0.0.1

Figure 2 System Design

Laptop/Local Computer

Sensor DHT22

mqtt_subscriber.py

store.py

Smart Contract

retrieve.py

app.py
indeks.html

local web
127.0.0.1

mqtt_publisher.py

MQTT Broker
10.6.6.13

Raspberry Pi 4B

iot.sol
deploy.py

Figure 3 Block Diagram

The entire process begins with mining on node 1, where the Smart Contract is deployed on

the Ethereum network. Data collected by the Raspberry Pi 4B from the DHT22 sensor is sent to

node 1 via MQTT, where it is stored using the store.py program. Node 1 validates the blockhash,

ensuring data security. The stored data is then retrieved and displayed on the local web interface.

All of the process is illustrated in Figure 3.

2.4. Ethereum Blockchain Development

The Ethereum Blockchain is implemented on a local network, following these steps:

a. Geth Installation: Go Ethereum (Geth) is used to run Ethereum nodes, mine, and manage

accounts. The version used is Geth 1.13.15-stable-c5ba367e, supporting Proof of Authority

(PoA) consensus.

b. Account Creation: New Ethereum accounts are created using geth account new, with

specific nodes acting as validator and non-validator nodes.

c. Genesis Block Initialization: The first block in the Ethereum Blockchain is initialized using

the genesis.json file with the geth init genesis.json command.

IJCCS ISSN: 1978-1520 ◼

Title of manuscript is short and clear, implies research results (First Author)

5

d. Node Deployment: Nodes are deployed using geth –networkid [network id] to identify the

private network used in this research.

e. Smart Contract Deployment: The smart contract, written in Solidity, is compiled and

deployed on the Ethereum network using ABI and BIN files.

2.5. Ethereum Network Configuration

To create the first block on the Ethereum private blockchain, we need to configure the

Genesis Block. The Genesis Block is initialized using the genesis.json file. In the alloc section,

initial ether balances are assigned to specific accounts. For Node 1 and Node 2, each account is

allocated 50,000 ETH. The extraData field is used to store specific network information or

identifiers, and in this Genesis file, the address of Node 1 is added as a validator node.

{
 "config": {
 "chainId": 5335,
 "homesteadBlock": 0,
 "eip150Block": 0,
 "eip150Hash": 0,
 "eip155Block": 0,
 "eip158Block": 0,
 "byzantiumBlock": 0,
 "constantinopleBlock": 0,
 "petersburgBlock": 0,
 "istanbulBlock": 0,
 "muirGlacierBlock": 0,
 "berlinBlock": 0,
 "londonBlock": 0,
 "clique": {
 "period": 5,
 "epoch": 30000
 }
 },
 "difficulty": "1",
 "gasLimit": "9000000000",
 "alloc": {
 "0xd273F775d819136cfE8e85BeC3cde5309b67908C": {
 "balance": "50000000000000000000000"
 },
 "0x3DB911686aD77068Dc5d7cB96eCD86Db5d934501": {
 "balance": "50000000000000000000000"
 }
 },
 "coinbase": "0x00",
 "timestamp": "0x00",
 "extraData":
"0x00d273F775d819
136cfE8e85BeC3cde5309b67908C000
0000000000000"
}

The local Ethereum Blockchain network is run on a laptop's localhost. Node 1 and Node 2

are created on the localhost (127.0.0.1), with different ports assigned to each. Node 1 uses port

30304 for peer-to-peer communication, and Node 2 uses port 30305. For HTTP access, Node 1

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

6

uses HTTP port 8552, and Node 2 uses HTTP port 8554, which handle HTTP API requests from

Geth (Go Ethereum).

In the Ethereum network, an enode (Ethereum Node) serves as a URI (Uniform Resource

Identifier) to identify and connect with other nodes. The enode includes information such as the

public key, IP address, and port needed to communicate with other nodes in the Ethereum

network.

2.6. Smart Contract Implementation

After the Ethereum network is set up, the Smart Contract is developed using Solidity

(version 0.8.0). The contract ensures sensor data is stored securely and is immutable. The contract

code is provided below:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract IoTData {
 struct Data {
 uint256 timestamp;
 string data;
 }

 Data[] public dataList;

 function storeData(string memory _data) public {
 dataList.push(Data(block.timestamp, _data));
 }

 function retrieveData(uint256 _index) public view returns (uint256, string memory) {
 require(_index < dataList.length, "Index out of bounds");
 Data storage data = dataList[_index];
 return (data.timestamp, data.data);
 }

 function getDataCount() public view returns (uint256) {
 return dataList.length;
 }
}

After compilation, ABI and BIN files are generated for contract deployment. Smart contract

deployed in the Ethereum network and the sensors data can be stored in the Ethereum network as

transactions that stored within recipient as contract address. To deploy the Ethereum Blockchain

network, in this case will be create 2 nodes. The following commands is used to run node1 and

node2.

geth --datadir node1 --syncmode "full" --port 30304 --http --http.addr "127.0.0.1" --http.port 8552 --
http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --unlock
0xd273F775d819136cfE8e85BeC3cde5309b67908C --allow-insecure-unlock --password pwd.txt --
authrpc.port 8553 --ipcdisable --config config.toml --mine --miner.etherbase
0xd273F775d819136cfE8e85BeC3cde5309b67908C

IJCCS ISSN: 1978-1520 ◼

Title of manuscript is short and clear, implies research results (First Author)

7

geth --datadir node2 --syncmode "full" --port 30305 --http --http.addr "127.0.0.1" --http.port 8554 --
http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --allow-insecure-unlock --
authrpc.port 8555 --ipcdisable --config config.toml

2.7. Store and Retrieve Data

Once the subscriber receives the data, it is stored on the locally running Ethereum Blockchain

network using the `store.py` program. This program logs the data, including date, time,

temperature, and humidity, as transactions on the Ethereum network, generating a unique

transaction hash. Web3 is used to facilitate this process. The stored data can later be retrieved

using the `retrieve.py` program, which ensures transparency by displaying all stored data without

any modifications. The `store.py` connects to Node 1, while `retrieve.py` connects to Node 2.

III. RESULTS AND DISCUSSION

This study focuses on implementing an Ethereum network to store IoT weather monitoring

data, specifically temperature and humidity readings.

3.1. Results of the Ethereum Blockchain Network Implementation

Once the command for Node 1 is executed, Node 1 starts the Ethereum network based on

the genesis file and the specific commands written for it. The implementation result for Node 1

is shown in Figure 4.

Figure 4 Ethereum network run on node1

The node performs mining at 5-second intervals, as specified in the genesis.json file. Node

1 begins peer-to-peer communication by activating its enode and searching for connected peers.

If no peers are found, the peer count remains at 0. After Node 1 is running, Node 2 is then started

with its specific command. The result of the Node 2 implementation is shown in Figure 6.2. Once

running, Node 2 starts peer-to-peer communication using its enode. If Node 1 and Node 2

successfully connect, Node 2 will immediately begin synchronizing blocks from the existing

Ethereum Blockchain network. If the blocks match the latest block in the network, Node 2 will

import new chain segments from Node 1.

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

8

Figure 5 Ethereum network on node 2

The network operates on a local network with a chain ID of 5335, as configured in the

genesis file, and uses the Proof of Authority (PoA) consensus mechanism. This indicates that the

network is not running on the main Ethereum network or any other public Ethereum network.

3.2. Data Storage

The running Ethereum network is used to implement data storage from sensor readings

transmitted via MQTT. The storage program (store.py) is combined with a user interface program

(app.py), as shown in Figure 6.

Figure 6 Data sensor stored

Data sent by the publisher from the Raspberry Pi and received by the subscriber on the

laptop is directly stored on the running Ethereum Blockchain network. Each piece of data sent is

stored on the blockchain as a transaction by Node 1. Data storage occurs whenever data is received

by the subscriber. An example of successful data storage on the Ethereum network is shown in

Figure 6.5. Each successful transaction stored at the contract address generates a transaction hash

and a "nonce" value, indicating the order of stored data in the blockchain. The hash value is

displayed on the web interface along with the data sent by the Raspberry Pi. If the Raspberry Pi

does not send any data, the Ethereum network will continue running without storing information,

resulting in no transactions by Node 1. The app.py program displays the most recently stored data

transaction on the network, as shown in Figure 7.

Figure 7 Transaction on Ethereum Network from node 1

To read data stored on the blockchain, the retrieve.py program can be used, which reads

data from the Ethereum Blockchain as long as the network is running. The data retrieved includes

the first data stored on the blockchain up to the last data at the time the retrieve.py program is

executed. The result of the retrieve.py implementation is shown in Figure 8. The retrieve program

reads all stored data from the start of the Ethereum Blockchain network, allowing any changes in

data to be visible and recorded.

Figure 8 Data retieved from node 2

IJCCS ISSN: 1978-1520 ◼

Title of manuscript is short and clear, implies research results (First Author)

9

The web interface is accessed through http://127.0.0.1:5000. The result of the web

implementation for the user interface, which is based on Flask and runs on localhost, is shown in

Figure 9.

Figure 9 User interface

When the Ethereum network is running and sensor data is sent, the data is displayed on the

web interface as shown in Figure 9. The displayed data includes the timestamp of data sent from

the Raspberry Pi, the sensor readings, the transaction hash of the data storage on the Ethereum

Blockchain, the last updated timestamp, and additional data already stored on the network. The

displayed data is updated every second. The data sent by the publisher, received by the subscriber,

and retrieved data is stored in a CSV file as a backup, updated every minute.

3.3. Network Latency

During the data storage process, which begins with data transmission by the publisher,

reception by the subscriber, and storage on the blockchain until the data is retrieved, there is a

time delay in each process. To measure network latency, tests were conducted by varying the data

transmission interval from the Raspberry Pi. The test was performed with transmission intervals

of 0, 5, 10, 15, 20 and 30 seconds, using 20 batch sensor readings. To ensure any delays in the

data storage process on the Ethereum Blockchain, tests were also conducted on the Ethereum

network with different mining periods, specifically 5 seconds and 10 seconds.

Figure 10 and Figure 11 showed the most stable delay observed during the data

transmission process without any data loss. This stability is achieved by carefully optimizing the

interval between data transmission from the publisher and the mining period within the Ethereum

Blockchain network. The graph shows that when the transmission interval is synchronized with

the blockchain's mining period, data is consistently stored without loss, and the delay remains

within an acceptable range. This result underscores the importance of aligning data transmission

intervals with the blockchain's processing capabilities to ensure data integrity and real-time

synchronization.

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

10

Figure 10 Latency for 5 seconds mining period within 10 seconds data transmission

Figure 11 Latency for 10 seconds mining period within 20 seconds data transmission

The results indicate that when the data transmission interval exceeds the mining period, all

transmitted data is successfully stored in the blockchain. However, the delay in storing data varies

depending on the transmission interval. This study tested mining periods of 5 and 10 seconds,

revealing several key points regarding real-time data transmission and transaction recording:

1. Publisher-Subscriber Delay: There is a consistent delay of about 1 second between the

publisher and subscriber. This delay does not significantly impact data storage in the

Ethereum Blockchain when using a 5-second mining period. The subscriber has

approximately 4 seconds to process and prepare the data for storage. In contrast, with a 10-

second mining period, data transmission from the publisher to the subscriber occurs without

noticeable delay, and only occasionally experiences a 1-second lag.

2. Subscriber-to-Storage Delay: With a 5-second mining period, the delay from the subscriber

to data storage varies between 2 to 6 seconds. For the 10-second mining period, this delay

ranges from 3 to 12 seconds. This variability is crucial as it sometimes exceeds the mining

period. When this happens, the transaction cannot be included in the current block and must

wait for the next one. Such delays can lead to inconsistencies in blockchain data recording,

potentially affecting the real-time nature of the system. Delays that exceed the mining

period can cause significant temporal lags in data availability on the blockchain.

3. Overall Process Delay: The total delay from the publisher to data storage ranges from 3 to

7 seconds for the 5-second mining period. While most data can be processed within the 5-

second window, some transactions may still experience delays. Similarly, for the 10-second

mining period, the total process delay ranges from 3 to 12 seconds. This delay could lead

to scenarios where data is not immediately synchronized on the blockchain, which is critical

for applications requiring up-to-date information.

The overall delay in the data flow, especially from the subscriber to data storage, directly

impacts the efficiency and timeliness of transaction recording on the blockchain. Minimizing this

delay is crucial to ensure that transactions consistently meet the mining period, thus maintaining

the integrity and real-time nature of data processing.

IJCCS ISSN: 1978-1520 ◼

Title of manuscript is short and clear, implies research results (First Author)

11

Implementing a blockchain-based data storage system for weather monitoring presents

both opportunities and challenges. Managing data from approximately 200 weather stations in

Indonesia requires careful consideration of latency, transaction costs, and data management

strategies. The main challenge is ensuring timely data availability and optimizing the system to

handle large data volumes efficiently. Given that real-time data is typically transmitted to the

BMKG server every 10 minutes, this interval provides sufficient time for data collection and

storage before being added to the blockchain. Efficient data storage mechanisms could involve

storing only metadata and recorded hashes in the blockchain. Additionally, transaction costs or

gas fees on the Ethereum Blockchain must be considered. Reducing gas fees can be achieved by

minimizing the total number of required transactions and combining data from multiple stations

into a single transaction.

IV. CONCLUSION

This research implemented an Ethereum Blockchain with a Proof of Authority consensus

to ensure the integrity and transparency of IoT data from weather monitoring stations, transmitted

via the MQTT protocol at intervals of 0, 5, 10, 15, and 20 seconds with mining periods of 5 and

10 seconds. The findings indicate that the maximum delay in data transmission from the publisher

to the subscriber was consistently around 1 second. The delay in storing data on the Ethereum

Blockchain from the subscriber showed greater variability, ranging from 2 to 6 seconds for a 5-

second mining period and 3 to 12 seconds for a 10-second mining period.

The study also revealed that a 5-second mining period with transmission intervals of 0 and

5 seconds resulted in different storage delays compared to intervals of 10, 15, and 20 seconds,

which had similar variability. Similarly, for a 10-second mining period, data storage delays

stabilized with similar variability when the transmission intervals were 15, 20, and 30 seconds.

The delay in data storage is closely related to the mining period applied on the Ethereum

Blockchain network, impacting the completeness and timing of data storage from IoT devices. To

avoid incomplete data storage, it is recommended to set a mining period slower than the data

transmission interval from IoT devices, allowing for more synchronized data transmission and

storage, leading to more accurate and complete data on the blockchain.

V. FUTURE WORKS

Future research should consider developing the Ethereum Blockchain network on a public

network to expand its applicability to broader systems. Additionally, it would be beneficial to

conduct studies involving larger data volumes or more varied IoT devices to assess the

performance of the Ethereum Blockchain network in storing data on a larger scale.

REFERENCES

[1] K. S. Shashidhara, S. Pradeep Kumar, V. B. Ganjihal, S. S. Phatate, S. S. Shetty, and R.

Vinay, “IoT Enabled Weather Monitoring System,” in 2022 IEEE North Karnataka

Subsection Flagship International Conference, NKCon 2022, Institute of Electrical and

Electronics Engineers Inc., 2022. doi: 10.1109/NKCon56289.2022.10126649.

[2] A. S. Bin Shahadat, S. I. Ayon, and M. R. Khatun, “Efficient IoT based Weather Station,”

in Proceedings of 2020 IEEE International Women in Engineering (WIE) Conference on

Electrical and Computer Engineering, WIECON-ECE 2020, Institute of Electrical and

Electronics Engineers Inc., Dec. 2020, pp. 227–230. doi: 10.1109/WIECON-

ECE52138.2020.9398041.

 ◼ ISSN: 1978-1520

IJCCS Vol. x, No. x, July 201x : first_page – end_page

12

[3] R. K. Kodali and S. Mandal, “IoT Based Weather Station,” 2016 International Conference

on Control, Instrumentation, Communication and Computational Technologies, pp. 680–

683, 2016.

[4] S. R. Alam, S. Jain, and R. Doriya, “Security threats and solutions to IoT using

Blockchain: A Review,” in Proceedings - 5th International Conference on Intelligent

Computing and Control Systems, ICICCS 2021, Institute of Electrical and Electronics

Engineers Inc., May 2021, pp. 268–273. doi: 10.1109/ICICCS51141.2021.9432325.

[5] H. Wang and J. Zhang, “Blockchain Based Data Integrity Verification for Large-Scale IoT

Data,” IEEE Access, vol. 7, pp. 164996–165006, 2019, doi:

10.1109/ACCESS.2019.2952635.

[6] M. B. Mollah et al., “Blockchain for Future Smart Grid: A Comprehensive Survey,” Jan.

01, 2021, Institute of Electrical and Electronics Engineers Inc. doi:

10.1109/JIOT.2020.2993601.

[7] V. Kumar, C. Ramesh, and " Storing, “Storing IOT Data Securely in a Private Ethereum

Blockchain Storing IOT Data Securely in a Private Ethereum Blockchain Repository

Citation Repository Citation,” 2019, doi: 10.34917/15778410.

[8] C. L. Chen, Z. Y. Lim, and H. C. Liao, “Blockchain-based community safety security

system with iot secure devices,” Sustainability (Switzerland), vol. 13, no. 24, Dec. 2021,

doi: 10.3390/su132413994.

