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Abstract 

 

 The application of Ethereum Blockchain within IoT-based weather monitoring systems 

presents substantial potential for enhancing data security, integrity, transparency, and trust. This 

study is focused on the design, implementation, and evaluation of Ethereum Blockchain as a 

robust data security mechanism in an IoT weather monitoring system. The system is configured 

to monitor environmental parameters, specifically temperature and humidity, using DHT22 

sensors, with data securely stored and processed through smart contracts on a locally deployed 

Ethereum network. The research utilizes the Proof of Authority consensus mechanism, assessing 

data transmission and storage latency across varying mining intervals. The findings reveal 

minimal transmission delays, whereas storage delays on the blockchain exhibit variability, 

influenced by the duration of the mining period. Specifically, longer mining intervals contribute 

to increased delays in data storage. These results underscore the necessity of optimizing the 

mining interval to ensure complete and synchronized data storage, thereby enhancing the 

accuracy and reliability of the weather monitoring system. This study demonstrates the efficacy 

of Ethereum Blockchain in addressing critical challenges related to data security and integrity 

within IoT applications, highlighting its potential as a promising solution for secure data 

management.  
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I. INTRODUCTION 

 

he Internet of Things (IoT) enables various sensors, actuators, and microcontrollers to connect 

and communicate online through the internet. IoT represents a network of interconnected 

devices that collect and exchange data regarding usage patterns and the environment in which 

these devices operate [1]. The deployment of IoT has significantly contributed to technological 

advancements by facilitating real-time data acquisition for more efficient analysis. IoT 

applications span a wide range of fields, including agriculture, energy, environmental monitoring, 

smart homes, healthcare, and transportation. Among these applications, weather monitoring is a 

key area where IoT is utilized to gather meteorological information and provide weather forecasts 

for specific regions [2]. 

 

Accurate environmental assessment necessitates the monitoring of various weather 

parameters, such as air temperature, atmospheric pressure, humidity, and precipitation [3]. IoT 

devices equipped with sensors are employed to collect data on these weather parameters, which 

is then transmitted to a central database server. However, the transmission and storage of IoT data 

require robust security and privacy measures, including data integrity, confidentiality, and 
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authentication. Many IoT devices and applications are not originally designed to address these 

security and privacy concerns, highlighting the need for efficient data transmission and storage 

mechanisms to safeguard connected devices from hackers and intruders. 

 

Addressing security challenges in IoT systems necessitates careful consideration of 

hardware that can securely run an operating system, including loading trusted firmware onto smart 

devices to establish secure communication channels with backend systems. The security of 

information obtained from IoT devices can be ensured through the implementation of hash 

algorithms, cryptography, and digital signatures, which provide confidentiality, authentication, 

and data integrity [4]. 

 

Blockchain technology has emerged as a promising solution due to its transparency, 

immutability, security, and decentralization [5]. Decentralization offers an effective approach for 

managing the growing complexity of networks, which often require expensive and insecure 

information and communication infrastructure. Blockchain enables dynamic integration and 

management of network components [6]. In recent years, blockchain has been increasingly 

applied in IoT systems to provide a decentralized and secure method for storing and processing 

data, facilitating data exchange among interconnected IoT devices. 

 

Several studies have explored the application of blockchain in enhancing security and data 

integrity within IoT systems. Kumar et al. [7] investigated the secure storage of IoT data using a 

combination of on-chain (Ethereum Blockchain) and off-chain (IPFS and Ethereum) storage, 

addressing technical challenges in securely storing IoT data. Chen et al. [8] proposed a 

blockchain-based community safety and security system integrated with IoT devices, aiming to 

enhance security through the decentralized nature of blockchain and the secure communication 

capabilities of IoT devices. Chaganti et al.  examined a cloud-based agricultural security 

monitoring system that leverages Ethereum Blockchain to ensure the security of agricultural data 

by integrating various components such as sensors, AWS cloud, and smart contracts. 

 

The application of Ethereum Blockchain for data security in IoT-based weather monitoring 

systems holds significant potential. The integration of blockchain with IoT can enhance data 

security, integrity, transparency, and trust across various applications, including IoT-based 

weather monitoring systems. This research aims to design, develop, and investigate the 

application of Ethereum Blockchain as a data security system within an IoT-based weather 

monitoring framework. 

 

II. RESEARCH METHODOLOGY 

 

This research propose the implementation of Ethereum Blockchain as a security system for 

data storage in an IoT-based weather monitoring system. Ethereum Blockchain has been widely 

applied theoretically and it can be integrated into IoT systems through smart contracts validated 

by the blockchain when IoT devices operate. The weather monitoring system collects data from 

sensors that measure environmental conditions, including temperature and humidity. In this study 

Ethereum Blockchain is applied to ensure that the data obtained from weather monitoring sensors 

is securely stored. The smart contract on Ethereum is designed with functions to fetch and store 

sensor data. The use of hash algorithms ensures security and maintains public transparency by 

recording transactions on the Ethereum network.  

2.1. Software, Hardware, and Runtime Environment 

The implementation of the Ethereum Blockchain systems for IoT based weather monitoring 

requires specific hardware such as laptop/pc, Raspberry Pi 4B, and DHT22 sensor. 

The The software tools used in this research include: 
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a. Publisher MQTT (mqtt_publisher.py): Program on Raspberry Pi 4B for collecting data 

from the DHT22 sensor and publishing it to the broker. 

b. Subscriber MQTT (mqtt_subscriber.py): Program on a local computer that subscribes to 

the MQTT broker and receives sensor data. 

c. Smart Contract (iot.sol): A Solidity-based smart contract that stores sensor data on the 

blockchain, manages read and write operations, and enforces conditions for transaction 

execution. 

d. Deploy Program (deploy.py): Used to deploy the smart contract on the Ethereum network. 

e. Data Storage Program (store.py): Responsible for storing sensor data on the Ethereum 

network by interacting with the smart contract. 

f. Data Retrieval Program (retrieve.py): Fetches block data and transactions at specific 

addresses on the Ethereum network. 

g. Web Backend (app.py): Flask-based program acting as a server intermediary between the 

web interface and the blockchain. 

h. Web Interface (index.html): Template file used by app.py to display sensor data and data 

hash values on the web interface. 

The runtime environment for this research consists of simulated Ethereum Virtual Machine 

that running on a local computer connected to the blockchain network, smart contract deployment 

to implemented on the local Ethereum network, and sensor data collection and transmission using 

MQTT and stored on the Ethereum network, with data displayed on a local host dashboard. 

 

2.2. Weather Monitoring Design 

The weather monitoring system is designed with components including the DHT22 sensor 

and Raspberry Pi 4B. The Raspberry Pi 4B is connected to a monitor to display sensor data, 

including temperature, humidity, and rainfall. Data collection is done using a Python program on 

Raspberry Pi Debian, utilizing the integrated Wi-Fi module on the Raspberry Pi 4B. The design 

of the IoT-based weather monitoring device is illustrated in Figure 1 

.  

Figure 1 Weather Monitoring Hardware Design 

2.3. System Architecture Design 

The implementation of Ethereum Blockchain is designed to secure data in the IoT-based 

weather monitoring system. The process starts with connecting the DHT22 sensor to Raspberry 

Pi 4B to collect temperature and humidity data. This data is then sent to the MQTT broker with 

IP 10.6.6.13 using the mqtt_publisher.py program. On the local computer, the MQTT subscriber 

receives the data along with a timestamp. Ethereum network runs on the local machine, where the 

Smart Contract is deployed using the deploy.py program. The sensor data is then stored on the 

Ethereum network in real-time using the store.py program, and the data, along with the transaction 

hash, is displayed on a local web interface using the Flask-based app.py and index.html programs. 

The overall system architecture is illustrated in Figure 2. 
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Figure 2 System Design 
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Figure 3 Block Diagram  

The entire process begins with mining on node 1, where the Smart Contract is deployed on 

the Ethereum network. Data collected by the Raspberry Pi 4B from the DHT22 sensor is sent to 

node 1 via MQTT, where it is stored using the store.py program. Node 1 validates the blockhash, 

ensuring data security. The stored data is then retrieved and displayed on the local web interface. 

All of the process is illustrated in Figure 3.  

 

2.4. Ethereum Blockchain Development 

The Ethereum Blockchain is implemented on a local network, following these steps: 

a. Geth Installation: Go Ethereum (Geth) is used to run Ethereum nodes, mine, and manage 

accounts. The version used is Geth 1.13.15-stable-c5ba367e, supporting Proof of Authority 

(PoA) consensus. 

b. Account Creation: New Ethereum accounts are created using geth account new, with 

specific nodes acting as validator and non-validator nodes. 

c. Genesis Block Initialization: The first block in the Ethereum Blockchain is initialized using 

the genesis.json file with the geth init genesis.json command. 
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d. Node Deployment: Nodes are deployed using geth –networkid [network id] to identify the 

private network used in this research. 

e. Smart Contract Deployment: The smart contract, written in Solidity, is compiled and 

deployed on the Ethereum network using ABI and BIN files. 

 

2.5. Ethereum Network Configuration 

To create the first block on the Ethereum private blockchain, we need to configure the 

Genesis Block. The Genesis Block is initialized using the genesis.json file. In the alloc section, 

initial ether balances are assigned to specific accounts. For Node 1 and Node 2, each account is 

allocated 50,000 ETH. The extraData field is used to store specific network information or 

identifiers, and in this Genesis file, the address of Node 1 is added as a validator node. 

{ 
    "config": { 
        "chainId": 5335, 
        "homesteadBlock": 0, 
        "eip150Block": 0, 
        "eip150Hash": 0, 
        "eip155Block": 0, 
        "eip158Block": 0, 
        "byzantiumBlock": 0, 
        "constantinopleBlock": 0, 
        "petersburgBlock": 0, 
        "istanbulBlock": 0, 
        "muirGlacierBlock": 0, 
        "berlinBlock": 0, 
        "londonBlock": 0, 
        "clique": { 
            "period": 5, 
            "epoch": 30000 
        } 
    }, 
    "difficulty": "1", 
    "gasLimit": "9000000000", 
    "alloc": { 
        "0xd273F775d819136cfE8e85BeC3cde5309b67908C": { 
            "balance": "50000000000000000000000" 
        }, 
        "0x3DB911686aD77068Dc5d7cB96eCD86Db5d934501": { 
            "balance": "50000000000000000000000" 
        } 
    }, 
    "coinbase": "0x0000000000000000000000000000000000000000", 
    "timestamp": "0x00", 
    "extraData": 
"0x0000000000000000000000000000000000000000000000000000000000000000d273F775d819
136cfE8e85BeC3cde5309b67908C000000000000000000000000000000000000000000000000000
0000000000000" 
} 

The local Ethereum Blockchain network is run on a laptop's localhost. Node 1 and Node 2 

are created on the localhost (127.0.0.1), with different ports assigned to each. Node 1 uses port 

30304 for peer-to-peer communication, and Node 2 uses port 30305. For HTTP access, Node 1 



       ◼          ISSN: 1978-1520 

IJCCS  Vol. x, No. x,  July 201x :  first_page – end_page 

6 

uses HTTP port 8552, and Node 2 uses HTTP port 8554, which handle HTTP API requests from 

Geth (Go Ethereum). 

In the Ethereum network, an enode (Ethereum Node) serves as a URI (Uniform Resource 

Identifier) to identify and connect with other nodes. The enode includes information such as the 

public key, IP address, and port needed to communicate with other nodes in the Ethereum 

network. 

2.6. Smart Contract Implementation 

After the Ethereum network is set up, the Smart Contract is developed using Solidity 

(version 0.8.0). The contract ensures sensor data is stored securely and is immutable. The contract 

code is provided below: 

// SPDX-License-Identifier: MIT 
pragma solidity ^0.8.0; 
 
contract IoTData { 
    struct Data { 
        uint256 timestamp; 
        string data; 
    } 
 
    Data[] public dataList; 
 
    function storeData(string memory _data) public { 
        dataList.push(Data(block.timestamp, _data)); 
    } 
 
    function retrieveData(uint256 _index) public view returns (uint256, string memory) { 
        require(_index < dataList.length, "Index out of bounds"); 
        Data storage data = dataList[_index]; 
        return (data.timestamp, data.data); 
    } 
 
    function getDataCount() public view returns (uint256) { 
        return dataList.length; 
    } 
} 

After compilation, ABI and BIN files are generated for contract deployment. Smart contract 

deployed in the Ethereum network and the sensors data can be stored in the Ethereum network as  

transactions that stored within recipient as contract address. To deploy the Ethereum Blockchain 

network, in this case will be create 2 nodes. The following commands is used to run node1 and 

node2. 

geth --datadir node1 --syncmode "full" --port 30304 --http --http.addr "127.0.0.1" --http.port 8552 --
http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --unlock 
0xd273F775d819136cfE8e85BeC3cde5309b67908C --allow-insecure-unlock --password pwd.txt --
authrpc.port 8553 --ipcdisable --config config.toml --mine --miner.etherbase 
0xd273F775d819136cfE8e85BeC3cde5309b67908C 
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geth --datadir node2 --syncmode "full" --port 30305 --http --http.addr "127.0.0.1" --http.port 8554 --
http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --allow-insecure-unlock --
authrpc.port 8555 --ipcdisable --config config.toml 

2.7.  Store and Retrieve Data 

Once the subscriber receives the data, it is stored on the locally running Ethereum Blockchain 

network using the `store.py` program. This program logs the data, including date, time, 

temperature, and humidity, as transactions on the Ethereum network, generating a unique 

transaction hash. Web3 is used to facilitate this process. The stored data can later be retrieved 

using the `retrieve.py` program, which ensures transparency by displaying all stored data without 

any modifications. The `store.py` connects to Node 1, while `retrieve.py` connects to Node 2. 

 

III. RESULTS AND DISCUSSION 

 

This study focuses on implementing an Ethereum network to store IoT weather monitoring 

data, specifically temperature and humidity readings. 

 

3.1. Results of the Ethereum Blockchain Network Implementation 

Once the command for Node 1 is executed, Node 1 starts the Ethereum network based on 

the genesis file and the specific commands written for it. The implementation result for Node 1 

is shown in Figure 4. 
 

 
Figure 4 Ethereum network run on node1  

The node performs mining at 5-second intervals, as specified in the genesis.json file. Node 

1 begins peer-to-peer communication by activating its enode and searching for connected peers. 

If no peers are found, the peer count remains at 0. After Node 1 is running, Node 2 is then started 

with its specific command. The result of the Node 2 implementation is shown in Figure 6.2. Once 

running, Node 2 starts peer-to-peer communication using its enode. If Node 1 and Node 2 

successfully connect, Node 2 will immediately begin synchronizing blocks from the existing 

Ethereum Blockchain network. If the blocks match the latest block in the network, Node 2 will 

import new chain segments from Node 1. 
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Figure 5 Ethereum network on node 2 

The network operates on a local network with a chain ID of 5335, as configured in the 

genesis file, and uses the Proof of Authority (PoA) consensus mechanism. This indicates that the 

network is not running on the main Ethereum network or any other public Ethereum network. 

 

3.2.  Data Storage 

The running Ethereum network is used to implement data storage from sensor readings 

transmitted via MQTT. The storage program (store.py) is combined with a user interface program 

(app.py), as shown in Figure 6. 

 
Figure 6 Data sensor stored 

Data sent by the publisher from the Raspberry Pi and received by the subscriber on the 

laptop is directly stored on the running Ethereum Blockchain network. Each piece of data sent is 

stored on the blockchain as a transaction by Node 1. Data storage occurs whenever data is received 

by the subscriber. An example of successful data storage on the Ethereum network is shown in 

Figure 6.5. Each successful transaction stored at the contract address generates a transaction hash 

and a "nonce" value, indicating the order of stored data in the blockchain. The hash value is 

displayed on the web interface along with the data sent by the Raspberry Pi. If the Raspberry Pi 

does not send any data, the Ethereum network will continue running without storing information, 

resulting in no transactions by Node 1. The app.py program displays the most recently stored data 

transaction on the network, as shown in Figure 7. 
 

 
 

Figure 7 Transaction on Ethereum Network from node 1 

To read data stored on the blockchain, the retrieve.py program can be used, which reads 

data from the Ethereum Blockchain as long as the network is running. The data retrieved includes 

the first data stored on the blockchain up to the last data at the time the retrieve.py program is 

executed. The result of the retrieve.py implementation is shown in Figure 8. The retrieve program 

reads all stored data from the start of the Ethereum Blockchain network, allowing any changes in 

data to be visible and recorded. 

 
Figure 8 Data retieved from node 2 
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The web interface is accessed through http://127.0.0.1:5000. The result of the web 

implementation for the user interface, which is based on Flask and runs on localhost, is shown in 

Figure 9. 

 
Figure 9 User interface 

When the Ethereum network is running and sensor data is sent, the data is displayed on the 

web interface as shown in Figure 9. The displayed data includes the timestamp of data sent from 

the Raspberry Pi, the sensor readings, the transaction hash of the data storage on the Ethereum 

Blockchain, the last updated timestamp, and additional data already stored on the network. The 

displayed data is updated every second. The data sent by the publisher, received by the subscriber, 

and retrieved data is stored in a CSV file as a backup, updated every minute. 

 

3.3.  Network Latency 

During the data storage process, which begins with data transmission by the publisher, 

reception by the subscriber, and storage on the blockchain until the data is retrieved, there is a 

time delay in each process. To measure network latency, tests were conducted by varying the data 

transmission interval from the Raspberry Pi. The test was performed with transmission intervals 

of 0, 5, 10, 15, 20 and 30 seconds, using 20 batch sensor readings. To ensure any delays in the 

data storage process on the Ethereum Blockchain, tests were also conducted on the Ethereum 

network with different mining periods, specifically 5 seconds and 10 seconds.  

Figure 10 and Figure 11 showed the most stable delay observed during the data 

transmission process without any data loss. This stability is achieved by carefully optimizing the 

interval between data transmission from the publisher and the mining period within the Ethereum 

Blockchain network. The graph shows that when the transmission interval is synchronized with 

the blockchain's mining period, data is consistently stored without loss, and the delay remains 

within an acceptable range. This result underscores the importance of aligning data transmission 

intervals with the blockchain's processing capabilities to ensure data integrity and real-time 

synchronization. 
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Figure 10 Latency for 5 seconds mining period within 10 seconds data transmission 

 
Figure 11 Latency for 10 seconds mining period within 20 seconds data transmission 

The results indicate that when the data transmission interval exceeds the mining period, all 

transmitted data is successfully stored in the blockchain. However, the delay in storing data varies 

depending on the transmission interval. This study tested mining periods of 5 and 10 seconds, 

revealing several key points regarding real-time data transmission and transaction recording: 

1. Publisher-Subscriber Delay: There is a consistent delay of about 1 second between the 

publisher and subscriber. This delay does not significantly impact data storage in the 

Ethereum Blockchain when using a 5-second mining period. The subscriber has 

approximately 4 seconds to process and prepare the data for storage. In contrast, with a 10-

second mining period, data transmission from the publisher to the subscriber occurs without 

noticeable delay, and only occasionally experiences a 1-second lag. 

2. Subscriber-to-Storage Delay: With a 5-second mining period, the delay from the subscriber 

to data storage varies between 2 to 6 seconds. For the 10-second mining period, this delay 

ranges from 3 to 12 seconds. This variability is crucial as it sometimes exceeds the mining 

period. When this happens, the transaction cannot be included in the current block and must 

wait for the next one. Such delays can lead to inconsistencies in blockchain data recording, 

potentially affecting the real-time nature of the system. Delays that exceed the mining 

period can cause significant temporal lags in data availability on the blockchain. 

3. Overall Process Delay: The total delay from the publisher to data storage ranges from 3 to 

7 seconds for the 5-second mining period. While most data can be processed within the 5-

second window, some transactions may still experience delays. Similarly, for the 10-second 

mining period, the total process delay ranges from 3 to 12 seconds. This delay could lead 

to scenarios where data is not immediately synchronized on the blockchain, which is critical 

for applications requiring up-to-date information. 

The overall delay in the data flow, especially from the subscriber to data storage, directly 

impacts the efficiency and timeliness of transaction recording on the blockchain. Minimizing this 

delay is crucial to ensure that transactions consistently meet the mining period, thus maintaining 

the integrity and real-time nature of data processing. 
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Implementing a blockchain-based data storage system for weather monitoring presents 

both opportunities and challenges. Managing data from approximately 200 weather stations in 

Indonesia requires careful consideration of latency, transaction costs, and data management 

strategies. The main challenge is ensuring timely data availability and optimizing the system to 

handle large data volumes efficiently. Given that real-time data is typically transmitted to the 

BMKG server every 10 minutes, this interval provides sufficient time for data collection and 

storage before being added to the blockchain. Efficient data storage mechanisms could involve 

storing only metadata and recorded hashes in the blockchain. Additionally, transaction costs or 

gas fees on the Ethereum Blockchain must be considered. Reducing gas fees can be achieved by 

minimizing the total number of required transactions and combining data from multiple stations 

into a single transaction. 

 
 

IV. CONCLUSION 
 

This research implemented an Ethereum Blockchain with a Proof of Authority consensus 

to ensure the integrity and transparency of IoT data from weather monitoring stations, transmitted 

via the MQTT protocol at intervals of 0, 5, 10, 15, and 20 seconds with mining periods of 5 and 

10 seconds. The findings indicate that the maximum delay in data transmission from the publisher 

to the subscriber was consistently around 1 second. The delay in storing data on the Ethereum 

Blockchain from the subscriber showed greater variability, ranging from 2 to 6 seconds for a 5-

second mining period and 3 to 12 seconds for a 10-second mining period.  

The study also revealed that a 5-second mining period with transmission intervals of 0 and 

5 seconds resulted in different storage delays compared to intervals of 10, 15, and 20 seconds, 

which had similar variability. Similarly, for a 10-second mining period, data storage delays 

stabilized with similar variability when the transmission intervals were 15, 20, and 30 seconds. 

The delay in data storage is closely related to the mining period applied on the Ethereum 

Blockchain network, impacting the completeness and timing of data storage from IoT devices. To 

avoid incomplete data storage, it is recommended to set a mining period slower than the data 

transmission interval from IoT devices, allowing for more synchronized data transmission and 

storage, leading to more accurate and complete data on the blockchain. 

 

 

V. FUTURE WORKS 

 

Future research should consider developing the Ethereum Blockchain network on a public 

network to expand its applicability to broader systems. Additionally, it would be beneficial to 

conduct studies involving larger data volumes or more varied IoT devices to assess the 

performance of the Ethereum Blockchain network in storing data on a larger scale. 
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