Remodeling Capacity of Femoral Bone Defect by POP-CHA Bone Substitute: A Study in Rats’ Osteoclast (First Series of POP-based Bone Graft Improvement)

https://doi.org/10.22146/theindjdentres.10008

Steven Kumar(1*), Anne Handrini Dewi(2), Dyah Listyarifah(3), Ika Dewi Ana(4)

(1) 
(2) 
(3) 
(4) 
(*) Corresponding Author

Abstract


Reconstruction of large bone defects caused by trauma, excision of tumors, and congenital malformations can be very difficult to perform. Bone engineering offers an option to improve bone reconstruction procedures. This interdisciplinary field applies the principles of biology and engineering to the development of functional substitutes for damaged bone. Our research aimed to find the ideal scaffold for bone regeneration, focusing on Calcium and Phosphate combination. In this study, Plaster of Paris (POP) was combined with CHA and implanted in femoral condyles of rats. According to the experimental result, it can be concluded that there was no significant difference in response to the implantation of POP and POP-CHA in Sprague Dawley rat femur condyle (p<0.05). It can be stated that both POP-CHA and POP shows similar trait in bone healing.


Keywords


Plaster of Paris; carbonate apatite; osteoclast

Full Text:

PDF


References

Burchardt H, Enneking WF. 1978. Transplantaion 1. of Bone. Surg Clin North Am 58:403-427.

Kroese-Deutman HC, Wolke JGC, Spauwen PHM, 2. Jansen JA. 2006. Closing capacity of cranial bone defects by using porous CaP cement implants in a rabbit animal model. J Biomed Mater Res Part A: 503-511.

Langer R, Vacanti JP. 1993. Tissue engineering. 3. Science 260: 920-926.

Ana ID, Matsuya S, Ishikawa K. 2010. 4. Engineering of CHA bone substitute based on phase-transformation of gypsum. Journal of Engineering 2 (5): 344-352

Leeuwenburgh SCG, Ana ID, Jansen JA. 2010 Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with nanodispersed mineral phase. Acta Biomaterialia (6): 836-44

Thomas MV, Puleo DA. 2009. Review calcium sulfate: Properties and clinical application. J Biomed Mater Res Part B: Appl Biomater 88B: 597-610.

Cepelac I, Cvorisec I. 2009. Biochemical markers of 7. bone remodeling. Biochemia Medica 19(1):17-35.

Kalfas IH. 2001. Principles of bone healing. 8. Neurosurg Focus. 10(4):1-3.

Vaananen H. Zhao M. Mulari, Halleen JM. 2000. 9. The cell biology of osteoclast function. J Cell Sci 113:377–381.

Gay CV, Gilman VR, Sugiyana T. 2000. Perpectives 10. on osteoblast and osteoclast funtion. Poultry Science.78:1005-1008.

Stubbs D, Deakin M, Chapman-Sheath P, Buce 11. W, Debes J, Gillies RM, Walsh WR. 2004. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25:5037-5044.

Cabanas MV, Rodriguez-Lorenzo LM, Vallet_Regi M. 2002. Setting behavior bioactivity of hydroxyapatite/calcium sulfate cements. Chem Mater 14:3550-3555.

Nilsson M, Wang JS, Wielanek L, Tanner E, Lidgren L. 2003. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg 86:120-125.

Nandi SK, Roy. S, Mukherjee E, Kundu B, De DK, Basu D. 2010. Orthopedic applications of bone graft and graft substitutes: a review. Journal of Medical Research. 132(1):15-30.



DOI: https://doi.org/10.22146/theindjdentres.10008

Article Metrics

Abstract views : 1790 | views : 1502

Refbacks

  • There are currently no refbacks.






  
   

 

 

 

website statistics

 

View My Stats