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Abstrak 

Electroencephalogram (EEG) merekam aktivitas otak sebagai arus listrik untuk melihat 

emosi. Seiring dengan meningkatnya minat terhadap hubungan emosional antara manusia dan 

komputer, algoritma pengenalan emosi yang dapat diandalkan menjadi sangat penting. 

Penelitian ini mengklasifikasikan gelombang EEG menggunakan machine learning dan deep 

learning. Muse EEG headband dengan empat saluran merekam emosi netral, negatif, dan positif 

pada dataset Feeling Emotions EEG yang tersedia untuk umum. Convolutional Neural Networks 

(CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU) digunakan untuk 

deep learning dalam penelitian ini, sementara SVM, K-NN, dan MLP digunakan untuk 

pembelajaran mesin. Model-model tersebut dievaluasi berdasarkan akurasi, presisi, recall, dan 

F1-Score. SVM, K-NN, dan MLP memiliki nilai akurasi sebesar 0.98, 0.95, dan 0.97. Metode 

deep learning CNN, LSTM, dan GRU memiliki akurasi 0,98, 0,82, dan 0,97. SVM dan CNN 

unggul dalam hal akurasi, presisi, recall, dan F1-Score. Penelitian ini menunjukkan bahwa 

machine learning dan deep learning dapat mengklasifikasikan sinyal EEG untuk mengidentifikasi 

emosi. Hasil akurasi yang tinggi, terutama dari SVM dan CNN, menunjukkan bahwa model-

model ini dapat digunakan dalam sistem interaksi manusia-komputer yang sadar akan emosi. 

Penelitian ini menambah penelitian klasifikasi emosi berbasis EEG dengan mengungkapkan 

pemilihan model dan strategi penyesuaian parameter untuk klasifikasi yang lebih baik. 

 

Kata kunci— deep learning, electroencephalogram, emosi, klasifikasi, machine learning 

 

Abstract 

 Electroencephalogram (EEG) records brain activity as electrical currents to discern 

emotions. As interest in human-computer emotional connections rises, reliable and 

implementable emotion recognition algorithms are essential. This study classifies EEG waves 

using machine and deep learning. A four-channel Muse EEG headband recorded neutral, 

negative, and positive emotions for the publicly available Feeling Emotions EEG dataset. 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent 

Unit (GRU) were utilized for deep learning, while SVM, K-NN, and MLP were used for machine 

learning. The models were assessed for accuracy, precision, recall, and F1-Score. SVM, K-NN, 

and MLP have accuracy scores of 0.98, 0.95, and 0.97. Deep learning methods CNN, LSTM, and 

GRU had 0.98, 0.82, and 0.97 accuracy. SVM and CNN surpassed other approaches in accuracy, 

precision, recall, and F1-Score. The research shows that machine learning and deep learning 

can classify EEG signals to identify emotions. High accuracy results, especially from SVM and 

CNN, suggest these models could be used in emotion-aware human-computer interaction systems. 

This study adds to EEG-based emotion classification research by revealing model selection and 

parameter tweaking strategies for better categorization. 
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1. INTRODUCTION 

 

Neuroscience and computer science studies have intertwined. In recent years, neural 

networks and deep learning in neuroscience have garnered interest for their ability to analyze 

complicated neurological data using artificial intelligence methods like machine learning and 

deep learning. Today, commercial headsets can collect EEG signals from our brains to provide 

neurological data. EEG measures brain activity through electric currents. Electrodes on the scalp 

detect brain neural activity to measure and record brain activity.   

EEG signals are often used to identify emotions. Over the past decade, several studies 

have examined the relationship between EEG waves and emotions. EEG measures brain 

responses to emotional stimuli non-invasively, quickly, and affordably [1]. As technology 

becomes part of our daily lives, EEG data for emotion classification can help create personalized 

apps that dynamically adapt to users' changing emotions and provide a more personalized and 

responsive user experience. With freely available EEG datasets like EEG Brain Wave Data Set: 

Feeling Emotions [2], [3], [4] EEG-based emotion analysis research is advancing.  

As the scientific community seeks to create major emotional exchanges between humans 

and machines, reliable and implementable methods for recognizing human emotions are needed. 

[5]. Many studies have utilized machine learning and deep learning to classify EEG signals 

because they can recognize and learn from complex patterns. Classification techniques anticipate 

data classes, including assigning emotions to EEG signals. Our investigations are based on several 

machine learning and deep learning research on EEG-based emotion classification. Multiple 

machine learning-based techniques, such as Multi-Layer Perceptron (MLP) [1], [2], [6], K-

Nearest Neighbor (K-NN) [6], [7], [8], [9] and Support Vector Machine (SVM) [2], [6], [8], [9] 

For EEG classification. In the research performed by [6] MLP has the best accuracy of 96.53%, 

KNN at 94.70%, and SVM at 96.90%. Various deep learning techniques, such as Convolutional 

Neural Networks[1], [9], [10], [11] (CNN), Long Short-Term Memory (LSTM) [12], [13], and 

Gated Recurrent Unit (GRU) [1], [12] are also used in EEG classification and provide excellent 

results. In the research performed by [1] CNN had the greatest average accuracy of 98.13%, GRU 

at 97.19%, and LSTM with 97.42 accuracy. 

Our research utilized machine learning methods such as MLP, KNN, and SVM, as well 

as deep learning techniques including CNN, LSTM, and GRU. The differences from earlier 

research are seen in our different network architectures, parameter configurations, selection of 

activation functions, and utilization of cross-validation techniques. In addition, we employed grid 

search to choose the most suitable model by evaluating different combinations of parameters. 

 

2. METHODS 

 

An overview of the research methodology used in this research is illustrated in Figure 1. 

This research consists of five stages, from dataset preprocessing to performance evaluation, which 

will be explained in the sub-chapters. We can investigate a person's emotional reactions to specific 

surroundings by directly accessing their brainwave patterns [5]. Since emotions are encoded 

within chemical compositions that directly influence electrical brain activity, they may be 

classified using statistical aspects of the resulting brainwaves [4].  An electroencephalogram 

(EEG) is a test that measures and records electrical activity generated by the brain. EEG detects 

voltage variations that are caused by ionic current flows within brain neurons. In other words, it 

reads scalp electrical activity created by brain structures [14]. This research used a publicly 

accessible EEG dataset used for the emotion classification tasks. This dataset can be accessed 

online on the Kaggle website with the name EEG Brain Wave Data Set: Feeling Emotions [2], 

[3], [4], [13]. This dataset was collected using the Muse Headband sensors that have four electrode 

channels (AF7, AF8, TP9, and TP10). To minimize noise and preserve brainwave data, the Muse 

EEG headband uses a variety of artifact separation techniques. The dataset is taken from one male 
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and one female participant for six minutes per emotion. The emotions of participants were evoked 

using six movie clip stimuli that represent positive and negative emotions. The dataset consists of 

2132 samples 2548 input columns and 1 label column that indicates the emotion. There are 716 

samples from the dataset labeled ‘NEUTRAL’, 708 are labeled ‘NEGATIVE’, and 708 are 

‘POSITIVE’. 

 
Figure 1. Research methodology overview. 

 

2.1 Dataset Preprocessing 

Initially, the data pre-processing step split the dataset into the input data (2548 × 2132 

samples) and label data (1 × 2132 samples). The input data is then scaled using a standard scaler 

so that all the inputs are in the same data range. The standard scaler is a method that normalizes 

features by removing the mean and scaling them to have a variance of one. This implies that it 

alters the data to ensure the final distribution of each characteristic will have an average of 0 and 

a standard deviation of 1. The scaled input data was then divided into train and test sets at a ratio 

of 80:20. The last process in preprocessing is reshaping the data so that the data can be as a 

compatible input for CNN. 

 

2.2 Model Training 

To assess machine learning algorithms in robust situations, 5-fold cross-validation was 

applied. The training phase used 80% of the data, while the remaining 20% was used for testing. 

 

2.2.1 Multi-Layer Perceptron (MLP) 

Multi-Layer Perceptron (MLP) is a sort of supervised artificial neural network that is 

made up of an input layer, at least one hidden layer, and an output layer. Backpropagation is used 

by MLP during the training phase. The MLP architecture used in this research is depicted in 

Figure 2. In this research, several MLP parameter combinations were examined to find the best 

ones. One buried layer has 50 neurons, two have 50 and 25, and three have 100, 50, and 25. The 

activation functions were ReLU and Tanh, while the solvers were Adam and SGD. Learning rates 

range from 0.0001 to 0.01. The learning rate might be constant, in scaling, or adjustable. Iterations 

are limited to 300.  
 

 
Figure 2. MLP architecture visualization showing the input, hidden, and output layers  

for EEG-based emotion classification 

 

 

 

Dataset Preprocessing

Model Training

Parameter Tuning

Choosing The Best Model

Performance Evaluation



◼          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. x, No. x,  July 201x :  first_page – end_page 

4 

2.2.2 K-Nearest Neighbor (K-NN) 

K-NN assumes that similar items have small distances or are close to each other. The 

value of K represents the number of nearest neighbors to be considered in predicting a class of 

new data. This research tested several K-NN parameter combinations to determine the best. Odd 

neighbor values from 3 to 30 were utilized; Manhattan and Euclidean distance metrics were 

utilized in this experiment, along with uniform and distance weights.  

 

2.2.3 Support Vector Machine (SVM) 

SVM operates by finding the optimal hyperplanes that separate data into different classes. 

The kernel function and penalty coefficient parameters have an impact on SVM performance; for 

this reason, improving the parameters added to SVM classifiers is crucial [15]. This research 

investigated several combinations of SVM parameters in an attempt to find the best combinations. 

C values in SVM varied between 0.1, 1, 10, and 100; Four types of kernels used were linear, RBF, 

poly, and sigmoid. The gamma values used were scale, auto, 0.1, 1, and 10.  

 

2.2.1 Convolutional Neural Network (CNN) 

CNN has convolutional layers that apply convolution operations to input data using filters 

to extract feature maps. Hyperparameters like the number of convolutional layers, size, and 

number of kernels, as well as pooling windows, have a significant impact on CNN performance 

[15]. Figure 3 shows the architecture of CNN that was used in this research. Several CNN 

parameter combinations were tested in this research to determine the optimal parameter 

combinations. 

 
Figure 3. CNN architecture visualization for EEG-based emotion classification  

Showing the input, convolutional layers, pooling layers, and fully connected layers. 

 

First and second Conv1D layers employed filters between 64 and 128 and 128 and 256, 

respectively. Next to Conv1D is a max pooling layer with pool size 2. One flat layer precedes the 

thick layer. The dense layer has 25 neurons. Relu activation was used in the Conv1D and dense 

layers. The overall epoch was 15–25. The output (dense) layer used softmax activation. The Adam 

optimizer was used with learning rates of 0.001 and 0.01 for each combination. 

 

2.2.2 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a type of ANN that consists of several Recurrent 

Neural Networks (RNN) that will make predictions based on previous states. The network's long-

term dependencies are maintained by its gating mechanisms. Based on the gating mechanism, 

memory in the network can be released or stored on demand. The basic three components of an 

LSTM cell are gates. The first component is the forget gate, the second is the input gate, and the 

third is the output gate [12]. Figure 4 shows the LSTM architecture used in this research. In this 

research, several combinations of LSTM parameters were used, so that we can find the best 

parameter combinations. The variations of 64 and 128 for total units were used in the first LSTM 
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layer, and 16 total units were used in the second LSTM layer; variations of 0.001 and 0.01 were 

used for the learning rate, and 15 and 25 were used for the total epoch. The activation function 

sigmoid was used in the LSTM layers. The first dense layer used the ReLU activation function 

with a total of neurons of 25, and in the output layer, the softmax activation function was used 

with a total of 3 neurons. Adam optimizer was used for all the combinations. 

 
Figure 4. LSTM architecture visualization for EEG-based emotion classification  

Showing the input, LSTM layers, and fully connected layers.  

 

2.2.3 Gated Recurrent Unit (GRU)  

GRU is a newer form of RNN that is used in similar tasks as LSTM. GRU solves the 

classic RNN problem by combining two gates: the update gate and the reset gate. The gating 

mechanism in GRU allows it to update and reset its hidden state selectively. Portrayed in Figure 

5 is the GRU architecture used in this research. This study examined many GRU parameter 

combinations to find the best. In the first GRU layer, the learning rate was 0.001 and 0.01; the 

total epoch was 15 and 25; the total units were 64 and 128, and the total units were 16 in the 

second. The GRU layer used sigmoid activation. The first dense layer has 25 neurons and ReLu 

activation. Softmax activation was used in the 3-neuron output layer. Adam optimizer ran all 

combinations. 

 
Figure 5. GRU architecture visualization for EEG-based emotion classification  

Showing the input, GRU layers, and fully connected layers. 

 

2.3 Parameter Tuning 

The grid search method was used to assess the performance of every potential 

combination. This was done using 5-fold cross-validation in machine learning, enabling us to 

determine the set of parameters that yielded the highest performance. Through careful and precise 

adjustments of these parameters, our objective was to improve the precision and resilience of our 

models in categorizing EEG data according to emotional states.  
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2.4 Choosing the Best Model 

The model with the best parameter combination and accuracy value will then be selected 

to classify the test sets. A model that shows high accuracy and durability throughout the learning 

phase, as demonstrated by approaches like cross-validation, is more likely to effectively 

generalize to new and unexplored data. Consequently, the acquired patterns and correlations are 

transferrable to additional datasets beyond the one used for training. 

 

2.5 Performance Evaluation 

Testing results will be presented with a confusion matrix, accuracy, precision, recall, and 

F1-Score values. A comparison of four performance evaluation metrics values was conducted to 

assess the classification performance of the six classifiers. Calculations were made using the 

confusion matrix to get the true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) values.  Out of the four values indicated above, four metric values were finally 

obtained: accuracy, precision, recall, and f1-score. Equations (1), (2), (3), and (4) were used to 

calculate accuracy, precision, recall, and f1-score respectively[16].  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

To measure the classifier's performance, the classification scores were averaged over 

iterations. Accuracy and loss data during the training phase are monitored to track how well the 

deep learning classifier is learning from the training data and adapting to the underlying patterns. 

While loss measures the variation between expected and actual values, accuracy offers insights 

into the overall correctness of classification results. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Dataset Preprocessing 

The initial step in preprocessing the EEG data is to separate the labels from the data. Data 

and its label (positive, neutral, and negative) are shown in Figure 6. This separation guarantees 

that the labels (emotional states) and the features (EEG readings) can be processed independently. 

Next, the StandardScaler is employed to scale the EEG data. This scaler standardizes the features 

by removing the mean and scaling to unit variance. In essence, this phase is essential for 

guaranteeing that each feature contributes equally to the model's learning process by adjusting the 

data to have a mean of 0 and a standard deviation of 1. 

 
Figure 6. Initial data and its label; positive, neutral, and negative. 

 

Subsequently, a LabelEncoder is employed to convert the labels into numerical values. 

The original categorical classifications (negative, neutral, and positive) are converted into 

numerical values by this encoding: 0 for negative, 1 for neutral, and 2 for positive values. This 
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stage is crucial because numerical input is typically required to process machine learning 

algorithms. 

The dataset is divided into training and testing sets using an 80-20 division following 

encoding. This implies that the model is trained using 80% of the data, while the remaining 20% 

is used to evaluate its performance. The last process in preprocessing includes the reshaping of 

the data to be compatible with a Convolutional Neural Network (CNN). CNNs typically 

necessitate input data that is of a particular shape, which includes a channel dimension. As a 

consequence, the training and testing data are expanded to include an additional dimension, 

resulting in shapes of (1705, 2548, 1) for the training data and (427, 2548, 1) for the testing data. 

This new shape is essential for CNN input, as it introduces a single channel dimension. 

 

3.2 Model Training 

In the current research, different learning algorithms were applied to emotion detection 

to improve classification accuracy. As was covered in the previous part, the EEG-based emotion-

evoked signals are classified into positive, negative, and neutral emotions using six distinct 

models: machine learning-based models (MLP, K-NN, and SVM) which are implemented with 

scikit-learn, as well as deep learning-based models (CNN, LSTM, and GRU) which are 

implemented with TensorFlow. 
 

  
(a)                          (b) 

 
(c) 

Figure 7. Training and validation metrics, showing training and validation accuracy and loss for 

CNN (a), LSTM (b), and GRU (c) 
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During CNN, LSTM, and GRU training and validation, we closely monitored the 

accuracy and loss metrics of our emotion categorization models. These measurements' graphical 

displays shown in Figure 7 highlight different patterns among the architectures. During training 

and validation, the CNN model demonstrated exceptional performance, attaining maximum 

accuracy and minimum loss. The GRU model produced excellent outcomes with competitive 

accuracy and loss metrics. On the other hand, compared to CNN and GRU, the LSTM model 

showed a little poorer accuracy and a higher loss despite its effectiveness. These visual aids 

highlight CNN's ability to identify complex patterns in EEG data, and GRU's strong performance 

confirms CNN's leadership in our research. 

 

3.3 Parameter Tuning 

A GridSearchCV-based MLP, KNN, and SVM classifiers were implemented in this stage. 

A parameter grid is established to investigate a variety of configurations as stated in subsection 

2.2, such as the size of the hidden layer, the activation function, the solver, the regularisation 

strength, the learning rate, and the maximum iteration limit. GridSearchCV is implemented to 

conduct an exhaustive search of the specified parameter grid using cross-validation, to optimize 

accuracy. The model is subsequently adapted to the training data, and the most accurate 

parameters and their corresponding accuracy are printed. 

Deep learning models, CNN, LSTM, and GRU, are implemented with different 

configurations as stated in subsection 2.2 by iterating over combinations of units, learning rates, 

and epochs. For each combination, a unique deep-learning model is created and trained. During 

training, accuracy and loss metrics for both training and validation data are tracked and stored. 

The results for each model configuration, including the unit count, learning rate, and epoch 

number, are printed for easy comparison. 

 

3.4 Choosing The Best Model 

Table 1 shows the optimal MLP, K-NN, and SVM parameter combinations from training 

and parameter selection. Next, testing data was classified using the best model and parameter 

combinations. We found that SVM is better than other algorithms in classifying positive, negative, 

and neutral emotions with a 0.98 accuracy rate. MLP and K-NN have 0.97 and 0.95 accuracy. 

Table 1. Best parameter combinations for MLP, K-NN, and SVM 

MLP K-NN SVM 

Parameters Best Value Parameters Best 

Value 

Parameters Best 

Value 

Activation Function Tanh Neighbors 3 C 100 

Learning Rate 
0.0001, 

constant 
Distance Manhattan Kernel RBF 

Hidden Layer (50, 25) Weights Uniform Gamma Scale 

 

The optimal parameter combinations for CNN, LSTM, and GRU are produced by the 

training and parameter selection procedure and are displayed in Table 2. Testing data was then 

classified using the model with the best parameter combinations. According to our research, CNN 

fared better than other deep learning algorithms in terms of classification accuracy, achieving a 

0.98 accuracy rate in identifying between neutral, positive, and negative feelings. While GRU and 

LSTM had accuracy rates of 0.97 and 0.82, respectively. 

Table 2. Best parameter combinations for CNN, LSTM, and GRU 

CNN LSTM GRU 

Parameters 
Best 

Value 
Parameters 

Best 

Value 
Parameters 

Best 

Value 
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Epoch 15 Epoch 25 Epoch 25 

Learning Rate 0.01 Learning Rate 0.01 Learning Rate 0.01 

Filters in the 1st 

Conv1D Layer 
128 

Units in the 1st 

LSTM Layer 
128 

Units in the 1st 

GRU Layer 
128 

Filters in the 2nd 

Conv1D Layer 
256 

Units in the 2nd 

LSTM Layer 
16 

Units in the 2nd 

GRU Layer 
16 

 

3.5 Performance Evaluation 

Table 3 shows macro averages for precision, recall, F1-Score, and MLP, K-NN, and SVM 

accuracy. The accuracy of our SVM model was 0.98, indicating its ability to recognize good 

cases. The SVM model's recall, or sensitivity, was 0.98, indicating its ability to detect true positive 

occurrences. The F1 score showed the model's balanced performance as 0.98 from the harmonic 

mean of accuracy and recall. SVM's overall prediction accuracy was 0.98, proving its ability to 

categorize instances in all classes. 

Table 3. Performance metrics overview showing precision, recall, F1-Score, and accuracy 

values produced by the best model of MLP, K-NN, and SVM. 

 Precision Recall F1-Score Accuracy 

MLP 0.97 0.97 0.97 0.97 

K-NN 0.95 0.95 0.95 0.95 

SVM 0.98 0.98 0.98 0.98 

 

 
 (a)  (b)  

 
(c) 

Figure 8. Confusion matrix visualization for MLP (a), K-NN (b), and SVM (c) showing 

classification results for every class. 
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MLP, K-NN, and SVM confusion matrix in Figure 8 showed that our MLP model was 

good at classifying positive and negative emotions. The results of classifying neutral emotions by 

MLP are not as good as classifying negative and positive emotions; 7 neutral data were 

misclassified as positive data. Comparably, the K-NN confusion matrix revealed that this 

technique was not good enough in classifying negative emotions, compared with other emotions. 

Sixteen negative emotions were misclassified into neutral and 2 were misclassified into positive. 

This clarifies the possible drawbacks of the algorithm for classifying negative emotions. 

Furthermore, the SVM confusion matrix offered information about good classification results in 

every emotion, revealing the model's ability to identify patterns in the emotional data. 

Table 4 displays the accuracy numbers for CNN, LSTM, and GRU and the macro 

averages for precision, recall, and F1-Score value. The precision of our CNN model, which tells 

us how well positive predictions performed, came in at 0.98, indicating that it can accurately 

identify positive examples. Moreover, the recall, or sensitivity, of the CNN model also 

demonstrated a 0.98 value, demonstrating its effectiveness in identifying real positive 

occurrences. As indicated by the F1 score, the model's balanced performance was demonstrated 

by the value of 0.98 derived from the harmonic mean of precision and recall. Furthermore, we 

were able to predict with an overall CNN accuracy of 0.98, indicating that the model is capable 

of reliably classifying cases across all classes. 

Table 2. Performance metrics overview showing precision, recall, F1-Score, and accuracy 

values produced by the best model of CNN, LSTM, and GRU. 

 Precision Recall F1-Score Accuracy 

CNN 0.98 0.98 0.98 0.98 

LSTM 0.83 0.82 0.81 0.82 

GRU 0.97 0.97 0.97 0.97 

 

The accuracy and precision of our emotion categorization models are greatly impacted 

by the machine learning and deep learning approaches that we choose. The strong machine-

learning performance of the Support Vector Machine (SVM) confirms its effectiveness in 

managing the complex patterns seen in EEG data. Convolutional Neural Networks (CNNs) are a 

prominent performer in deep learning, demonstrating the capacity to extract intricate spatial 

information from neural input and deliver higher levels of accuracy. On the one hand, K-Nearest 

Neighbors (K-NN) struggle to classify negative emotions, whereas Long Short-Term Memory 

(LSTM) struggles to identify neutral emotional states. 

 

 
(a)  (b) 
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(c) 

Figure 9. Confusion matrix visualization for CNN (a), LSTM (b), and GRU (c) shows 

classification results for every class. 

 

Across all emotion classes, CNN showed the best accuracy and precision, making it the 

most reliable classifier. Although GRU performed admirably, it showed a notable 

misclassification of 6 positive instances as negative and 1 neutral instance. Conversely, although 

LSTM was able to accurately identify 78 neutral cases, it showed a significant difficulty in 

differentiating between neutral, negative, and positive emotions. It notably misclassified 30 

neutral instances as negative and 20 as positive, pointing to the model's limitations. These insights 

from the confusion matrices shown in Figure 9 show that CNN is the most adept at identifying 

the complex patterns linked to various emotional states. 

The research illustrates that the implementation of machine learning and deep learning 

methods will effectively categorize EEG signals to identify emotional states. The high precision 

scores, especially those achieved by the SVM and CNN models, demonstrate the promise of these 

models for practical use in emotion-aware human-computer interaction systems. This study adds 

to the expanding research on EEG-based emotion classification, providing valuable information 

on the selection of models and fine-tuning of parameters to enhance the accuracy of classification. 

 

4. CONCLUSIONS 

 

We investigated machine learning and deep learning techniques for categorizing 

emotions based on EEG data. The Support Vector Machine (SVM), K-Nearest Neighbours (K-

NN), and Multilayer Perceptron (MLP) achieved accuracy ratings of 0.98, 0.95, and 0.97, 

respectively, in detecting emotional states. The deep learning techniques Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) all 

achieved high accuracy in identifying emotional states, with scores of 0.98, 0.82, and 0.97 

respectively.  

Overall, the SVM and CNN models classified EEG-based emotional states well, both 

with 0.98 accuracy. Deep learning models performed similarly to typical machine learning models 

in classifying emotional states from EEG data, according to the research. This research shows that 

advanced deep learning techniques can be used with classic machine learning approaches to 

classify emotions from EEG data. These advances in emotion identification systems may benefit 

neurofeedback, mental health monitoring, and human-computer interface systems. 
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