
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.18, No.1, January 2024, pp. 95~106

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.90437 ◼ 95

Received November 6th,2023; Revised December 13th, 2023; Accepted December 22th, 2023

Effect of Hyperparameter Tuning Using Random Search

on Tree-Based Classification Algorithm for Software

Defect Prediction

Muhammad Hevny Rizky1, Mohammad Reza Faisal*2, Irwan Budiman3, Dwi Kartini4,

Friska Abadi5

1,2,3,4,5Department of Computer Science, Faculty of Mathematics and Natural Science,

 Lambung Mangkurat University, Banjarbaru, Indonesia

e-mail: 1hevnyrizky12@gmail.com, *2reza.faisal@ulm.ac.id, 3irwan.budiman@ulm.ac.id,
4dwikartini@ulm.ac.id, 5friska.abadi@ulm.ac.id

Abstrak

Bidang teknologi informasi sekarang membutuhkan perangkat lunak. Namun,

perangkat lunak yang bermasalah masih menimbulkan masalah besar. Untuk meningkatkan

kualitas dan keandalan perangkat lunak, prediksi kerusakan menjadi penting. Dalam bidang

ini, algoritma berbasis pohon seperti Random Forest, Deep Forest, dan Decision Tree

menunjukkan banyak prospek. Konfigurasi hyperparameter yang tepat sangat penting untuk

mencapai hasil yang optimal. Dalam penelitian ini, Teknik Pengaturan Hyperparameter

Random Search ditunjukkan sebagai metode inovatif untuk memprediksi cacat perangkat lunak.

Metodologi ini memungkinkan penyelidikan parameter algoritma secara efektif, yang pada

akhirnya akan meningkatkan keakuratan perkiraan kerusakan perangkat lunak. Kami

melakukan penelitian ini dengan menggunakan kumpulan data ReLink yaitu, Apache, Safe, dan

Zxing. Ini memungkinkan kami untuk menemukan parameter algoritma berbasis pohon yang

paling efektif untuk prediksi kerusakan perangkat lunak. Hasilnya menunjukkan bahwa

Decision Tree, Random Forest, dan Deep Forest masing-masing memiliki rata-rata AUC

0.73,0.79 dan 0.79 untuk pengaturan hyperparameter menggunakan Pencarian Acak. Hasilnya

menunjukkan bahwa metode yang menggunakan penyetelan hyperparameter dengan Pencarian

Acak mengungguli algoritma berbasis pohon lainnya. Khususnya, dalam kasus Random Forest,

kontribusi utama penelitian ini terletak pada pendekatan metode inovatif yang menggunakan

teknik penyetelan hyperparameter Pencarian Acak, yang mencakup pencarian parameter

ekstensif. Penemuan kami secara signifikan menekankan keunggulan Pencarian Acak

dibandingkan dengan algoritma berbasis pohon lainnya.

Kata kunci—Prediksi Cacat Software, Hyperparameter Tuning, Decision Tree, Random Forest,

Deep Forest.

Abstract

The field of information technology requires software, which has significant issues.

Quality and reliability improvement needs damage prediction. Tree-based algorithms like

Random Forest, Deep Forest, and Decision Tree offer potential in this domain. However,

proper hyperparameter configuration is crucial for optimal outcomes. This study demonstrates

using the Random Search Hyperparameter Setting Technique to predict software defects,

improving damage estimation accuracy. Using ReLink datasets, we found effective algorithm

parameters for predicting software damage. Decision Tree, Random Forest, and Deep Forest

achieved an average AUC of 0.73, 0.79, and 0.79 with Random Search. Random Search

outperformed other tree-based algorithms. The main contribution is the innovative Random

Search hyperparameter tuning, mainly for Random Forest. Random Search has distinct

advantages over other tree-based algorithms.

Keywords—Software Defect Prediction, Hyperparameter Tuning, Decision Tree, Random

Forest, Deep Forest.

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

96

1. INTRODUCTION

The expanding influence and complexity of software are being observed across diverse

domains of our lives. Software becomes more intricate, the process of rectifying failures or

defects becomes increasingly challenging [1]. It is possible to anticipate software failures by

forecasting software defects in the preliminary stages of software development, as rectifying

them in the later stages would be more costly and challenging to identify. Software defects

denote flaws, inaccuracies, or malfunctions within a computer system or program, which may

lead to unexpected or erroneous outcomes, thereby impeding the intended functionality of the

software and causing a decline in its quality. This deterioration in software quality in itself poses

a disadvantage. To ensure the attainment of high-quality software, the final product must exhibit

minimal defects. Early identification of software defects can curtail development expenses and

rework efforts and yield more dependable software [2]. Predicting software defects is of utmost

significance to address software issues while enhancing software quality [3]. The prediction of

software defects involves scrutinizing software metrics and subsequently constructing models

for defect prognostication. Defect defects in software modules are identified through

classification, a method commonly employed by numerous studies [4]. Using metrics to predict

software damage is pivotal in developing prognostic models to enhance software quality by

forecasting the maximum number of software breakdowns.

In Andini et al.'s research using tree-based classification with Grid Search

hyperparameter tuning, the average AUC value obtained was 0.69. Random Forest generated an

average AUC value of 0.76, whereas Deep Forest produced an average AUC value of 0.79 [5].

In the second research, Afrizal et al. adopted the technique of hyperparameter tuning using

Random Search to increase the performance of software defect prediction as the selection of

hyperparameters. According to the study's results, hyperparameter tuning by Random Search

was useful for the tuning parameter search issue. As a result, without hyperparameter change,

the XGBoost classification obtained an accuracy of 95.34%, a recall of 93.78%, and a precision

of 95.63%. With hyperparameter tuning, XGBoost classification achieved an accuracy of

95.34%, recall of 95.63%, and precision of 98.44%. Using Random Search in XGBoost for

hyperparameter tuning resulted in an estimated 2.35% improvement in accuracy, 2.55% rise in

recall, and 2.81% increase in precision [6]. In another study, Zhou et al. offered numerous

approaches for software defect prediction, including Random Forest (RF), Naive Bayes (NB),

Support Vector Machine (SVM), Logistic Regression (LR), and Deep Belief Networks (DBN).

NASA, PROMISE, AEEEM, and ReLink databases were all used. Based on the comparative

findings, it was discovered that DPDF performed the best for the NASA dataset, with the AUC

increasing and reaching the maximum value of 92%. DPDF also outperformed the others in the

PROMISE and AEEEM datasets, delivering score gains of 89% and 86%, respectively.

However, in several ReLink datasets, DPDF did not outperform RF and DBN, with a maximum

score of 75% [7].

Based on previous researchers' exposure to improved performance, this study will

employ the utilization of hyperparameters in order to make predictions regarding software

defects. This research will be achieved by implementing Random Search techniques for tree-

based classifications, specifically decision trees, random forests, and deep forests.

2. METHODS

This research method provides a detailed account of the datasets that were utilized in

this study. It also explains the preprocessing techniques employed to prepare the data for

analysis. It also dives into the categorization algorithms used, Decision Tree, Random Forest,

and Deep Forest are a few examples. Additionally, it elucidates the validation test conducted

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Effect of Hyperparameter Tuning Using Random Search on … (Muhammad Hevny Rizky)

97

using cross-validation, which ensured the results' robustness. Moreover, it highlights the

hyperparameter search that was conducted using Random Search, which aimed to optimize the

performance of the classification algorithms. Lastly, it discusses the performance measurement

employed, namely the AUC evaluation method. Moving on to the research procedures that will

be carried out, Figure 1 depicts the flow of this study and serves as a reference for the remaining

stages that will be conducted.

Figure 1 Research flow

The first stage of this research was to assemble the ReLink datasets, which included

Apache, Safe, and Zxing. The dataset was then preprocessed using label encoding and z-score

normalization. Following that, data exchange was achieved by cross-validation. This research

used 10-fold cross-validation as its validation approach. Each ReLink dataset was separated into

ten pieces, nine of which were allocated for training and the remaining portions for testing.

Following that, an ideal tuning hyperparameter search was performed using Random Search

prior to the learning phase. This study's learning phase included three distinct scenarios:

classification using a Decision Tree, classification using a Random Forest, and classification

using a Deep Forest. The mean AUC ratings were used to evaluate this research.

2.1 Data Collection

The study employed a software metric dataset called ReLink, composed of Apache,

Safe, and Zxing data. This dataset is accessible for download at the subsequent hyperlink:

https://github.com/bharlow058/AEEEM-and-other-SDP-datasets/tree/master/dataset/Relink.

Table 1 shows the broad range of data volumes within each ReLink dataset, notably

Apache with 194 modules, Safe with 56 modules, and Zxing with 399 modules. Furthermore, it

provides a complete summary of the software metrics covered by the ReLink data set, divided

into two unique categories: Complexity Metrics (CPM) and Counts Metrics (CTM). It is worth

noting that it displays an equal amount of software metrics from the ReLink dataset.

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

98

Table 1 Number of ReLink Software Metrics

Matrix

Category
Attribute

Relink Datasets

Apache Safe Zxing

CPM

"AvgCyclomatic" ✓ ✓ ✓

“AvgCyclomaticModified” ✓ ✓ ✓

“AvgCyclomaticStrict” ✓ ✓ ✓

“AvgEssential” ✓ ✓ ✓

“MaxCyclomatic” ✓ ✓ ✓

“MaxCyclomaticModified” ✓ ✓ ✓

“MaxCyclomaticStrict” ✓ ✓ ✓

“RatioCommentToCode” ✓ ✓ ✓

“SumCyclomatic” ✓ ✓ ✓

“SumCyclomaticModified” ✓ ✓ ✓

“SumCyclomaticStrict” ✓ ✓ ✓

“SumEssential” ✓ ✓ ✓

CTM

“AvgLine” ✓ ✓ ✓

“AvgLineBlank” ✓ ✓ ✓

“AvgLineCode” ✓ ✓ ✓

“AvgLineComment” ✓ ✓ ✓

“CountLine” ✓ ✓ ✓

“CountLineBlank” ✓ ✓ ✓

“CountLineCode” ✓ ✓ ✓

“CountLineCodeDecl” ✓ ✓ ✓

“CountLineCodeExe” ✓ ✓ ✓

“CountLineComment” ✓ ✓ ✓

“CountSemicolon” ✓ ✓ ✓

“CountStmt” ✓ ✓ ✓

“CountStmtDecl” ✓ ✓ ✓

“CountStmtExe” ✓ ✓ ✓

 Module 194 56 399

 Attribute (Metrics) 26 26 26

 Number of bug classes 98 22 118

 Number of clean classes 96 34 281

2.2 Preprocessing

Prior to the execution of data sharing, the data shall be subjected to adjustments in order

to cater to the requirements of the algorithm. The process of preprocessing serves the purpose of

customizing the data to suit classification algorithms, which can enhance the performance

outcomes of classification models [5]. The preprocessing of the data employed in this study

encompasses label encoding and normalization. Label Encoding refers to transforming label

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Effect of Hyperparameter Tuning Using Random Search on … (Muhammad Hevny Rizky)

99

values into numeric representation [8]. For each model utilized to handle class labels

effectively, it is imperative to substitute the label values within the ReLink dataset with their

corresponding numeric equivalents. Normalization is a crucial procedure employed during the

preprocessing stage whereby numerical attribute data is decomposed, enabling the conversion of

values within the data into a specific range [9]. It serves as a technique for effectively mapping

data across various scales. Among the diverse array of normalization techniques available, the

z-score method stands out. Equation (1) visually represents the z-score normalization technique

[5].

 (1)

where X represents the value that has been observed, referred to as the original data. Mean

denotes the average value, while Std signifies the standard deviation value. The corresponding

z-score will adopt a positive value when the value exceeds the average. Conversely, if the value

falls below the average, the z-score will assume a negative value. The ReLink dataset

encompasses a range that varies for each feature. Consequently, it becomes imperative to

perform a normalization process.

2.3 Cross Validation

The introduction of cross-validation reduces overfitting in random sampling on data

sets. Cross-validation, a popular machine learning approach, divides the original dataset into

training and test data. This section aims to ensure successful training and reliable assessment of

classification models using training and test data. Data is divided into K subsets, commonly

known as validation sets, with K set to 10 by default. K Fold Cross Validation is a cyclic

procedure repeated on each validation subset. This procedure ensures that each subset is used

only once as the validation set, with the remaining subsets used as training data. The drawback

of K Fold Cross Validation is that data sharing is not proportionate, leading to potential data

loss, especially when imbalanced data is used [10]. In order to prevent errors from imbalanced

data, we utilize stratified K fold (SKF) cross-validation (CV) to distribute the data evenly.

Stratified 10 Fold cross-validation ensures that the distribution of data samples is equal across

classes and that all instances are tested [11].

2.4 Learning and Hyperparameter Tuning

The Decision Tree (DT) is a widely used and successful approach that finds applications

in several disciplines, including machine learning, classification, image processing, and pattern

detection. The model's output is determined by sequentially traversing a tree structure consisting

of decision nodes [12]. The primary objective of the DT is to construct a training model capable

of making predictions regarding the value or variable of a target based on decision rules derived

from training data. As its name suggests, the Decision Tree is portrayed as a hierarchical

structure consisting of three distinct types of nodes. Embarking from a root node, which

symbolizes the initial point of the tree's formation n, the internal nodes serve as pivotal points

for branching. In contrast, the leaf node, representing the ultimate node, pertains to the class

label. The classification process is executed by segregating the tree branches, whereby each

division corresponds to a test conducted on a specific attribute. This branching process persists

until the terminal level is attained, wherein the data tuples of each node solely comprise samples

belonging to a singular class. The algorithm concludes the partitioning process once the training

tuples are exclusively assigned to a single class. Finally, the leaf nodes furnish predictions for

the class. The configuration of the Decision Tree model is visually depicted in Figure 2.

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

100

Figure 2 Decision Tree Structure

Random Forest (RF) is an extension of the Decision Tree method. The fundamental

concept behind Random Forest is to derive conclusions by using a sequence of determinations

represented in the structure of a Decision Tree. This technique is a collection of learning

approaches that use the Decision Tree as a created and merged basis classifier. Staying true to

its name, Random Forest constructs a forest comprising multiple trees. Within the Random

Forest framework, individual DT are responsible for generating predictions for each distinct

class. In order to mitigate correlations between DT, RF introduces random feature projection

during the growth of each tree. This technique of random feature projection significantly

diminishes inter-tree correlations since different trees develop on different sets of features. By

adopting a mean prediction approach, RF enhances the Decision Tree algorithm by

amalgamating the output of multiple DT to yield a predicted outcome. The model for RF is

illustrated in Figure 3.

Figure 3 Random Forest Structure

Deep Forest (DF) is commonly known as an alternative Deep Neural Network (DNN).

Deep forests consist of layer-by-layer structures known as cascade forests. The structure of each

layer in the cascade forest resembles the backpropagation of DNNs, with the distinction that it

contains multiple Random Forests instead of neurons [3]. Cascade forest refers to a class

distribution each tree generates for every instance. These distributions are calculated by

employing the ratios of the various classes within the instances.

Consequently, a class vector is obtained from the average distribution of classes across

all the trees and forests. The deep forest algorithm follows a layered and overlaid flow process

at each layer level. The first layer receives input from attributes or features in the original

dataset, which are then processed alongside Random Forest in the subsequent layer. The layer

terminates either when the process generated by Random Forest no longer improves or when the

result on the given layer decreases. From each existing layer level, the algorithm evenly

distributes the results from layer to layer until the last layer is reached and the maximum value

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Effect of Hyperparameter Tuning Using Random Search on … (Muhammad Hevny Rizky)

101

is obtained. Despite taking longer than Random Forest, Deep Forest performs better when

dealing with small-scale data [13]. The depiction of the cascade forest's groove can be observed

in Figure 4.

Figure 4 Deep Forest Structure

Hyperparameter tuning refers to searching for the most optimal values for a set of

parameters, wherein one must initially specify a list of parameters and their corresponding

search ranges [14]. When selecting a tuning strategy, it becomes necessary to identify the list of

parameters and their respective search ranges while also considering the option of utilizing

default values. In the context of DT, RF, and DF, these models possess sets of hyperparameters

that can be configured. Specifically, in the case of the Decision Tree, the parameter

min_samples_leaf determines the minimum number of samples required at a leaf node. Another

parameter, min_samples_split, controls the minimum number of samples to split internal

vertices.

Furthermore, the parameter max_depth determines the depth of the tree, while

min_impurity_decrease plays a role in regulating the growth of the tree based on impurity,

which is assessed through metrics such as the Gini index and entropy [15]. Like the Decision

Tree algorithm, RF also has a parameter called max_depth that regulates the depth of the trees

within the forest [16]. Additionally, RF and DF have a parameter called n_estimators, which

governs the number of trees in the forest. However, it is crucial to acknowledge a distinction in

the role of n_estimators between DF and RF. Within the context of DF, this particular parameter

governs the abundance of forest in each layer. In contrast, in the case of RF, it dictates the

number of trees within each forest [8].

The process of Random Search commences with the random selection of hyper-

parameter pairs, which are subsequently used to train the model. Following this, the training

results are recorded, and validation is conducted. These steps are repeated numerous times to

generate multiple potential candidates. The validation scores of all the obtained candidates are

then compared, and the highest scores are selected. This comparative analysis yields the optimal

configuration of parameters. Figure 5 graphically depicts the steps of Random Search.

Figure 5 Stages of a Random Search

2.5 Evaluation

The classification performance of DT, RF, and DF models on each ReLink dataset is

evaluated using AUC values. The selection of AUC as the evaluation method is based on its

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

102

appropriateness for assessing the predictive performance of datasets with imbalanced class

issues [5]. Table 2 provides comprehensive guidelines for the classification of AUC values.

Table 2 AUC Value Category [5]
Category Range

Excellent 0.90 To 1.00

Good 0.80 To 0.90

Pretty good 0.70 To 0.80

Not good 0.60 To 0.70

Failure Less than <0.60

3. RESULTS AND DISCUSSION

This section presents the research findings achieved through the stages of encoding

labels. The ReLink dataset contains a module consisting of 649 label classes that have not

undergone encoding based on the requirements of the model. Therefore, it is necessary to

convert the label values in the ReLink dataset into binary numbers, specifically 0 for clean and 1

for defective. Following the label encoding stage, the normalization process is conducted using

z-score, as outlined in Equation (1). In this process, if a value exceeds the average, the z-score is

positive, while if it falls below the average, the z-score is negative. The data that has undergone

normalization can be observed in Table 3, which displays the results of z-score normalization.

Table 3 Z-score results
AvgCyclomatic AvgCyclomaticModified … SumCyclomaticStrict SumEssential Label

1.105313 1.292224 … 0.993067 0.471288 1

-0.964815 -1.118271 … -0.690226 -0.660408 0

… … … … … …

-0.102261 -0.022591 0.876742 0.583060 0

0.07024 0.196545 … -0.183870 -0.367005 1

The ReLink dataset was subsequently divided using cross-validation techniques,

specifically employing data-sharing training and testing with stratified 10-fold cross-validation

rules. Following this, a learning (classification) process was carried out. Classification was

performed at this stage utilizing the Decision Tree, Random Forest, Deep Forest algorithms, and

Random Search with hyperparameter tuning. The classification procedure encompassed the

entire ReLink dataset, consisting of the Apache, Safe, and Zxing subsets.

A Random Search was conducted for 30 iterations, producing 30 optimal

hyperparameter candidates. The parameter range for the model is provided in Table 4.

Table 4 Hyperparameter Search Ranges

Model Parameter Description Range

DT

“min_impurity_decrease” Impurity 0 2

“min_samples_split” The minimum number of samples required to create an

internal node

2 20

“max_depth” Maximum depth of tree 1 20

“min_samples_leaf” The minimum number of samples required to be at a leaf

node

1 10

RF
“n_estimators” Number of Individual trees 100 2000

“max_depth”’ Maximum depth of an individual tree 10 100

DF

“n_estimators” Number of forests in each layer 3 11

“n_trees” Number of trees in each forest 50 1000

“max_depth” Maximum depth of an individual tree 10 100

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Effect of Hyperparameter Tuning Using Random Search on … (Muhammad Hevny Rizky)

103

The parameter search produces optimal parameters using Random Search, which gives

the best prediction performance results showing the AUC value produced from each model. The

results of evaluating optimal parameter values and AUC are shown in Table 5.

Table 5 Apache Dataset AUC Result

Model Parameter Optimal AUC

DT
“min_sample_split: 18, min_sample_leaf: 10, min_impunity_decrease: 0,

max_depth: 1”
0.74

RF “n_estimators: 500, max_depth: 80” 0.79

DF “max_depth': 30 n_trees: 200, 30 n_estimators: 7” 0.78

The evaluation results on the Safe dataset produce optimal parameters and AUC, as seen

in Table 6.

Table 6 Dataset Safe AUC Results

Model Parameter optimal AUC

DT
“min_impunity_decrease: 0, min_sample_split: 8, max_depth: 13,

min_sample_leaf: 5”
0.83

RF “n_estimators: 100, max_depth: 40” 0.86

DF “max_depth: 10 n_estimators: 3, n_trees: 250” 0.86

The evaluation results on the Zxing dataset produce optimal parameters and AUC, as

seen in Table 7.

Table 7 Zxing Dataset AUC Results

Model Parameter optimal AUC

DT “min_sample_split: 8, min_sample_leaf: 5, max_depth: 13,

min_impunity_decrease: 0”

0.63

RF “max_depth: 40, n_estimators: 100” 0.74

DF “max_depth: 10 n_estimators: 3, n_trees: 250” 0.73

Table 8 illustrates the mean AUC outcomes derived from hyperparameter tuning via the

Random Search approach across the complete range of ReLink datasets.

Table 8 Performance Results of All Datasets

Dataset DT RF DF

Apache 0.74 0.79 0.78

Safe 0.83 0.86 0.86

Zxing 0.63 0.74 0.73

Average 0.73 0.79 0.79

The Random Forest model outperforms the Decision Tree model regarding average AUC

values on the ReLink dataset. Deep Forest achieved an overall AUC value of 0.79 in the study.

The performance on Safe data was particularly impressive, with a result of 0.86. Similarly,

Random Forest had an average AUC score of 0.79, with its highest performance on Safe data at

0.86. In contrast, the Decision Tree model performed poorly compared to the other models. It

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

104

achieved an average AUC value of 0.73 for the generated dataset, with its highest performance

on Safe data reaching 0.83. The overall performance of the average AUC values provided by

Random Forest and Deep Forest is superior.

The comparison of the outcomes obtained from the previous studies indicated that the

method of hyperparameter tuning Random Search, which was applied to the entire tree-based

algorithm, successfully enhanced the prediction of software defects compared to the previous

studies. This improvement was discovered by comparing the average performance of each

suggested approach to that of the prior study method. Compared to the decision tree method

with grid search tuning, Random Search revealed a 4% improvement. Furthermore, the

suggested random forest approach, which combines hyperparameter tuning RS with

hyperparameter tuning Grid Search (GS), outperformed grid search hyperparameter tuning by

3%. The deep forest approach used Random Search hyperparameter tweaking and produced the

same AUC value of 0.79 as earlier researchers who used previously investigated

hyperparameters.

In a previous study, hyperparameters were adjusted using the grid search method. The leaf

node parameters were set from 1 to 10, internal nodes from 2 to 10, tree depth from 1 to 10, and

impurity from 0 to 3. The decision tree algorithm classification resulted in an average AUC

value of 0.69. Furthermore, the classification using the random forest algorithm with grid search

tuning had the parameters set from 100 to 500 for the number of trees and from 1 to 5 for the

tree depth, resulting in an average AUC value of 0.76. Lastly, the deep forest classification with

grid search tuning had the parameters set from 2 to 11 for the number of forests and from 100 to

2000 for the number of trees, yielding an average AUC value of 0.79.

In this study, the hyperparameter tuning was performed using a Random Search with the

parameters outlined in Table 4 for the decision tree classification algorithm, resulting in an

average AUC value of 0.73. For the random forest algorithm, the average AUC value obtained

was 0.79. Similarly, the deep forest algorithm yielded an average AUC value of 0.79. A

comparison of the AUC values is presented in Table 9.

Table 9 Comparison of AUC Values

Dataset
Previous research methods [5] Proposed research method

DT RF DF DT RF DF

Apache 0.76 0.76 0.81 0.74 0.79 0.78

Safe 0.68 0.87 0.85 0.83 0.86 0.86

Zxing 0.63 0.64 0.71 0.63 0.74 0.73

Average 0.69 0.76 0.79 0.73 0.79 0.79

Table 10 presents a comprehensive analysis of the overall outcomes compared to previous

research endeavours that employed various methodologies, including LR, DF, SVM, NB, and RF.

It becomes apparent that the findings derived from this investigation surpass those of its

precursors. More specifically, the average AUC value achieved through utilising DT, RF, and DF

classification techniques, employing the Random Search hyperparameter tuning approach,

outperforms the average AUC value obtained by applying alternative methodologies.

Table 10 Comparison of AUC Results with Other Research Methods

Dataset
Previous research methods[7] Proposed research method

NB LR SVM RF DF DT RF DF

Apache 0.74 0.70 0.76 0.76 0.75 0.74 0.79 0.78

Safe 0.69 0.67 0.69 0.73 0.73 0.83 0.86 0.86

Zxing 0.61 0.57 0.66 0.67 0.70 0.63 0.74 0.73

Average 0.68 0.64 0.70 0.72 0.73 0.73 0.79 0.79

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Effect of Hyperparameter Tuning Using Random Search on … (Muhammad Hevny Rizky)

105

4. CONCLUSIONS

This particular study focuses on predicting software defects in ReLink datasets. The

prediction is done using tree-based categorization models, namely DT, RF, and DF. The models

are further enhanced by conducting hyperparameter tuning using the Random Search technique.

The performance of these models is found to vary, as indicated by the results obtained from

various trials and comparisons. Applying hyperparameter tuning using Random Search

improves the AUC metric's performance significantly. This improvement is particularly

noteworthy compared to previous studies that utilized hyperparameter tuning with Grid Search

for tree-based classification.

Interestingly, the Random Search approach outperforms other studies that employed

NB, LR, and SVM with default parameter configurations. Regarding RF and DF, the RF

parameters mainly focus on the number of trees within a specified range, typically from 100 to

1000. On the other hand, DF introduces an additional parameter, namely the number of forests,

with possible values of 3, 4, and 5. In this study, the average AUC value achieved by the RF

model was 0.72, while the DF model performed slightly better with an average AUC of 0.73.

The results of this research clearly show that using hyperparameter tweaking with

Random Search in combination with the RF classification model produces improved results.

This superiority is evident from the obtained average AUC value of 0.79. This result further

solidifies the effectiveness of the Random Search technique in optimizing the parameter search

process compared to the commonly used Grid Search approach in tree-based classification.

In future investigations, there is a possibility of incorporating a parameter candidate

search range into the Random Search parameter search algorithm by expanding the parameter

candidate range. The primary objective of this endeavour is to ascertain the degree to which the

performance of Random Search can be optimized in terms of parameter search, thereby yielding

superior performance values. By expanding the range within which potential parameter

candidates are considered, researchers can delve into the realm of possibility and explore the

potential benefits and drawbacks of this novel approach.

ACKNOWLEDGEMENTS

This article results from a final assignment in the Department of Computer Science,

Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru,

Indonesia.

REFERENCES

[1] A. Elmishali and M. Kalech, “Issues-Driven features for software fault prediction,”

Information and Software Technology, vol. 155, 2023, doi:

10.1016/j.infsof.2022.107102.

[2] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect prediction

techniques,” International Journal of Applied Science and Engineering, vol. 17, no. 4,

pp. 331–344, 2020, doi: 10.6703/IJASE.202012_17(4).331.

[3] W. Zheng, S. Mo, X. Jin, Y. Qu, Z. Xie, and J. Shuai, “Software defect prediction model

based on improved deep forest and AutoEncoder by forest,” Proceedings of the

International Conference on Software Engineering and Knowledge Engineering, SEKE,

vol. 2019-July, no. 3, pp. 419–424, 2019, doi: 10.18293/SEKE2019-008.

[4] M. A. Mabayoje, A. O. Balogun, H. A. Jibril, J. O. Atoyebi, H. A. Mojeed, and V. E.

Adeyemo, “Parameter tuning in KNN for software defect prediction: an empirical

analysis,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 4, pp. 121–126, 2019, doi:

10.14710/jtsiskom.7.4.2019.121-126.

[5] E. Andini, M. Reza Faisal, R. Herteno, R. Adi Nugroho, and F. Abadi,

“PENINGKATAN KINERJA PREDIKSI CACAT SOFTWARE DENGAN

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 95 – 106

106

HYPERPARAMETER TUNING PADA ALGORITMA KLASIFIKASI DEEP

FOREST,” Jurnal MNEMONIC, vol. 5, no. 2, 2022, [Online]. Available:

https://github.com/bharlow058/AEEEM-and-other-

[6] M. Ryan Afrizal, R. Adi Nugroho, D. Kartini, R. Herteno, J. Ahmad Yani Km, and K.

Selatan, “XGBOOST DENGAN RANDOM SEARCH HYPER-PARAMETER

TUNING UNTUK KLASIFIKASI SITUS PHISING,” 2022.

[7] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect prediction with deep

forest,” Information and Software Technology, vol. 114, no. July 2018, pp. 204–216,

2019, doi: 10.1016/j.infsof.2019.07.003.

[8] A. Javeed, S. Zhou, L. Yongjian, I. Qasim, A. Noor, and R. Nour, “An Intelligent

Learning System Based on Random Search Algorithm and Optimized Random Forest

Model for Improved Heart Disease Detection,” IEEE Access, vol. 7, pp. 180235–180243,

2019, doi: 10.1109/ACCESS.2019.2952107.

[9] H. Aji Prihanditya and N. Hestu Aji Prihanditya, “The Implementation of Z-Score

Normalization and Boosting Techniques to Increase Accuracy of C4.5 Algorithm in

Diagnosing Chronic Kidney Disease,” 2020.

[10] B. Kovalerchuk, “Enhancement of Cross Validation Using Hybrid Visual and Analytical

Means with Shannon Function,” Studies in Computational Intelligence, vol. 835, pp.

517–543, 2020, doi: 10.1007/978-3-030-31041-7_29.

[11] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based ensembles,”

PROMISE 2020 - Proceedings of the 16th ACM International Conference on Predictive

Models and Data Analytics in Software Engineering, Co-located with ESEC/FSE 2020,

pp. 1–10, 2020, doi: 10.1145/3416508.3417114.

[12] M. Joye and F. Salehi, Private yet efficient decision tree evaluation, vol. 10980 LNCS.

Springer International Publishing, 2018. doi: 10.1007/978-3-319-95729-6_16.

[13] L. V. Utkin, “An imprecise deep forest for classification,” Expert Systems with

Applications, vol. 141, p. 112978, 2020, doi: 10.1016/j.eswa.2019.112978.

[14] H. Alibrahim and L. Simone A., “2021 IEEE Congress on Evolutionary Computation,”

IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 5, pp.

740–740, 2020, doi: 10.1109/tetci.2020.3020707.

[15] R. G. Mantovani, T. Horváth, R. Cerri, S. B. Junior, J. Vanschoren, and A. C. P. de L. F.

de Carvalho, “An empirical study on hyperparameter tuning of decision trees,” no.

December, 2018, [Online]. Available: http://arxiv.org/abs/1812.02207

[16] M. Daviran, A. Maghsoudi, R. Ghezelbash, and B. Pradhan, “Computers and

Geosciences A new strategy for spatial predictive mapping of mineral prospectivity :

Automated hyperparameter tuning of random forest approach,” Computers and

Geosciences, vol. 148, no. January, p. 104688, 2021, doi: 10.1016/j.cageo.2021.104688.

