
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.18, No.1, January 2024, pp. 73~82

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.90062 ◼ 73

Received October 23th,2023; Revised October 31th, 2023; Accepted December 22th, 2023

Maintaining Query Performance through

Table Rebuilding & Archiving

Widyastuti Andriyani*1, Pujiyanto 2

1,2 Department of Information Technology, Indonesian Digital Technology University,

Yogyakarta, Indonesia

e-mail: *1widya@utdi.ac.id, 2student.pujianto@mti.utdi.ac.id

Abstrak

Kemajuan pesat dalam akumulasi data transaksional dan frekuensi pembaruan telah

menimbulkan tantangan dalam mempertahankan kecepatan query pada database relasional,

meskipun konfigurasi sistem telah dioptimalkan. Meskipun telah ada peningkatan pada

konfigurasi dan pengaturan query sebelumnya, peningkatan volumetrik pada tabel transaksi di

database, yang ditandai dengan pertumbuhan data dan pembaruan konstan di setiap entri, telah

mempengaruhi kecepatan query. Beberapa mesin basis data saat ini kadang-kadang melewatkan

isu-isu seperti fragmentasi blok yang berdampak pada performa basis data. Mengingat data kini

merupakan aset utama bagi bisnis, menjaga kinerja query yang optimal menjadi esensial dalam

mendukung kegiatan dan pengambilan keputusan bisnis. Oleh karena itu, bagi administrator

basis data, memilih metode yang tepat untuk memastikan performa dan integritas data menjadi

hal yang krusial.

Kata kunci— Sistem Manajemen Basis Data Relasional (RDBMS), Fragmentasi basis data,

Rekonstruksi Tabel, Pengarsipan data

Abstract

Despite optimized system configurations, rapid advances in transactional data

accumulation and update frequency have created challenges in maintaining query speed on

relational databases. While there have been improvements in configuration and query settings in

the past, the volumetric increase in transaction tables in databases, characterized by data growth

and constant updates on each entry, has impacted query speed. Some current database engines

sometimes miss issues such as block fragmentation that impact database performance. Since data

is now businesses' main asset, maintaining optimal query performance is essential in supporting

business activities and decision-making. Therefore, for database administrators, choosing the

right method to ensure data performance and integrity is crucial.

Keywords— Relational Database Management System (RDBMS), Database fragmentation,

Table Reconstruction, Data archiving

1. INTRODUCTION

Relational Database Management System (RDBMS) has become one of the basic needs

for companies. Nowadays data is a valuable asset and information for the customers, and having

access to it is absolutely necessary. Obviously, a reliable RDBMS is expected to support

organizations by providing information accurately and timely[1].

Database, before being used in production systems, has been properly configured,

optimizing business process tuning, including indexing tables and performance testing [2].

mailto:1xxxx@xxxx.xxx
mailto:2student.pujianto@mti.utdi.ac.id

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 73 – 82

74

Indexing is a technique to increase the performance query of table [3]. Bitmap index is a technique

that is common to make performance databases better [4].

In a paper titled Archiving ERP data to enhance operational effectiveness: the case of

Dolphin explains that Transaction-intensive, customer-facing applications, and the most critical

high-volume ERP and CRM applications are collecting and storing huge amounts of data,

resulting in an exponential increase in the size of the database, and highlight why data archiving

is crucial for the enterprises running SAP solution in optimizing business performance[5].

All about Oracle database fragmentation, written by Craig A. Shallahamer, OraPub, Inc.

There are many types of Oracle database fragmentation. Some are harmful, and some are not. He

explains the Database Administrator (DBA) to proactive application design and space

management steps, addresses tablespace space, segment, data block, index leaf block, and row

fragmentation [6].

In a B-tree (row store) index, fragmentation exists when the index has pages where the

logical ordering in the index, based on the index key values, does not match the physical order of

the index pages. The Database Engine automatically modifies the index whenever an insert,

update, or delete operation is performed on the underlying data. For example, adding a row in a

table can cause existing pages in the row store index to split, making room for the insertion of

new rows. Over time, these modifications can cause the data in the index to be spread across the

database (fragmented). A query that reads many pages uses a full index or range scan; a highly

fragmented index can reduce query performance because additional I/O may be required to read

the data required by the query. Instead of a small number of large I/O requests, a query would

require many small I/O requests to read the same amount of data [7].

Hariprasath Rajaram explains that performance is sometimes degraded in the Online

Transaction Processing (OLTP) database environment because of table plan changes and row-

chaining and row-migration issues. Maintenance activities such as table reorganization may be

required based on transactions on the table. After table reorg, performance was seen to improve a

lot [8].

In the current study conducted at PT XYZ, both rebuild table and data archiving methods

are synergistically combined to optimize query performance. While earlier research might have

individually explored these techniques, the integration of the two within this unique context stands

out. Specifically, the study harnesses a high transaction table updating with staggering data of 45

million rows every month, a dataset scale potentially uncharted in prior investigations. Notably,

observations pointed out challenges like big datasets leading to overheating in the Database

Management System (DBMS), a revelation that could be a novel finding not addressed in earlier

works. This study also draws references from several noteworthy papers, such as those focusing

on Archiving ERP data and Oracle database fragmentation. A juxtaposition of these findings with

the current research could elucidate distinct facets. Central to this research's distinctiveness is its

contextual grounding, which is anchored in the tangible operations of PT XYZ. Such a hands-on

application in a real-world environment, emphasizing these specific methodologies, might have

been overlooked in previous scholarly endeavors.

2. METHODS

2.1. Infrastructure preparation

Besides setting up server hardware and the pre-configured Oracle version 11 database,

the database is categorized into two types based on transaction nature: Online Transaction

Processing (OLTP) and Online Analytical Processing (OLAP) [9]. The transaction schema is

designed to house transaction tables, and the history schema is dedicated to data archiving.

Archived data refers to information that remains unchanged yet is essential for reporting purposes

[10].

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Maintaining Query Performance through Table Rebuilding … (Widyastuti Andriyani)

75

Figure 1 Database OLTP OLAP https://www.geeksforgeeks.org/

2.2. Data Tablespace

Tablespace serves as a logical storage unit within a database. It may be composed of one

or multiple physical data files. Within the Transaction schema, both the transaction table and its

corresponding index have distinct tablespaces and datafiles. Similarly, in the history schema, the

index and data are allocated to separate tablespaces.

Figure 2 Logic Table Schema in Tablespace

Within the transaction schema, a data table is designed with 47 columns and nine indexes,

encompassing primary key indexes, combined indexes, and individual column indexes to expedite

query times according to the specific columns users search for.

https://www.geeksforgeeks.org/

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 73 – 82

76

3. RESULTS AND DISCUSSION

Before initiating the table rebuild and data archiving process, ensure that the table

designated to hold the data being transferred to the history schema (for archiving) is set up

according to the subsequent design.

Figure 3 OLTP and OLAP table schemas

Before proceeding with the table rebuild, transactions must be halted to ensure data

remains consistent. The rebuilding typically occurs during designated maintenance periods or

when transactions are paused. A crucial preliminary step involves drafting a DDL script detailing

the creation of tables, indexes, and constraints. During this phase, meticulous attention to detail

is required when setting up the script for object regeneration. With Oracle's Toad editor, a table

reconstruction script is available, designed to minimize potential mishaps. It's advised to keep a

copy of this rebuild script as it will be instrumental when remolding database components,

specifically tables, indexes, and constraints for table A. Following these steps, the transaction

table named 'A' should be rebranded as 'A_X.'

Before initiating the table rebuild, halt all transactions to ensure the consistency of the data. The

rebuilding process typically occurs during scheduled maintenance windows or transaction break

points. Before starting the rebuild, it's essential to draft a DDL script outlining the creation of

tables, indexes, and constraints. Precision and caution are required when devising the script for

object reestablishment. A specialized table reconstruction script has been devised using Oracle's

Toad editor to minimize potential mistakes. Ensure this rebuild script is stored securely as it will

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Maintaining Query Performance through Table Rebuilding … (Widyastuti Andriyani)

77

be crucial for reshaping database elements, particularly tables, indexes, and constraints in table

A. Subsequently, it's advisable to re-label the transaction table from 'A' to 'A_X.'

Figure 4 Rebuild and Archiving

3.1. Pre-Implementation

After setting up the infrastructure and software, the prerequisites for pre-implementation

include:

a. Establishment of both transaction and transaction index tablespaces for the logical

placement of transaction data.

b. Formulation of this tablespace and history index tablespace for relocating updated data.

It's imperative that the history tablespace and history index are situated on separate

physical drives.

c. Instituting a transaction user granted rights to store data in the transaction and transaction

index tablespaces, as well as a history user bestowed with access to the Histo tablespace

and Histo Index.

d. During the actual implementation phase, it's crucial to pinpoint tables with high

transaction volumes, encompassing both data insertions and updates alongside those

accessed frequently. Specific measures are vital at this juncture to ascertain the smooth

execution of the rebuild & archiving operations while minimizing potential hazards.

3.2. Implementation

During the table rebuilding and data archiving processes, several phases are undertaken as

described below:

a. Pinpoint tables with significant transaction volumes and frequently executed queries.

b. Within the database schema, numerous database entities exist, encompassing tables,

views, constraints, and stored procedures. Tables with minimal data and transactions, like

user information and primary data, aren't the focal points of this research as their impact

on the observation procedure is minor. Conversely, thorough preparation is required for

tables with heavy transactions, which includes understanding their interrelations and

associated entities, such as indexes and constraints, which will be essential during the

rebuild

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 73 – 82

78

c. Halt all transactions by ensuring no ongoing operations and blocking new application

session access.

d. Briefly suspend access to the database by restricting user access. This measure ensures

data consistency throughout the rebuilding and archiving stages and avoids potential

transaction mishaps.

During the process of table rebuilding and data archiving, several steps will be taken:

a. Pinpoint tables with high transaction volumes and frequently executed queries.

b. Within the database schema, numerous entities exist, encompassing tables, views,

constraints, and stored procedures. Tables that contain minimal data or experience low

transaction rates, like user and master data, aren't the primary focus of this research due

to their limited significance in the study. Conversely, it's essential to set up tables with

high transaction volumes, ensuring all related entities, such as indexes and constraints,

are in place for future rebuilding.

c. Halt all transactions, making sure that no active tasks are in progress and no fresh sessions

access the application.

d. Temporarily restrict access to the database by locking out users. This precaution ensures

data integrity throughout the rebuilding and archiving stages and mitigates potential

transactional errors.

3.3. Transaction Table Observation

Table 1 Previous Query Observations

Case Month

Number

of rows

(Million)

Time

Per

Rows

(ms)

Time Per

Month(s)

Time

All

Data

Time

difference

per (ms)

Time

difference

per

Month(s)

Time

difference

All Data

(s)

Ori 1 45 289 2 2
3 3 3

Updated 1 45 292 5 5

Ori 2 90 294 6 4
72 8 1

Updated 2 90 366 14 5

Ori 3 135 302 9 6
57 18 19

Updated 3 135 359 27 25

Ori 4 180 306 10 10
442 6 44

Updated 4 180 748 16 54

Ori 5 225 454 62 62

-80 13 7 Updated 5 270 374 75 69

Ori 6 270 840 73 64

Updated 6 270 1000 61 67 160 -12 3

Ori 7 315 100 89 96 47 2 1

Updated 7 315 1047 91 97

Every month, data accumulates at a rate of 45 million rows, with each row undergoing

updates within that same month. In this investigation, we tracked the evolution of query

performance through seven months of data accumulation. Before any updates, the average data

row is sized at 153 bytes, accounting for a total of 45,010,790 rows and 1,066,120 blocks. Post-

update, the average size of a row swells to 273 bytes, and the total row count slightly increases to

45,027,430, taking up 1,751,015 blocks. The variation in the block allocation is attributed to data

updates necessitating additional space. The preset 10% free space within a block proves

inadequate, compelling the formation of a new block to house the revised data. This initiation of

a new block paves the way for space fragmentation, leading to the potential situation where a

single data row might span across two distinct blocks. Such circumstances contribute to a sluggish

response time during data queries, especially as data volume grows and updates are frequent. To

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Maintaining Query Performance through Table Rebuilding … (Widyastuti Andriyani)

79

pinpoint this, you can utilize the following query: select a.owner, a.table_name, b.blocks, alcblks,

a.blocks usdblks, (b.blocks-a.empty_blocks-1) hgwtr from dba_tables a, dba_segments b where

a.table_name=b.segment_name and a.owner=b.owner and a.owner='OWNER' and a.blocks <>

(b.blocks-a.empty_blocks-1) and a.table_name='TABLE_NAME'.

3.4. Rebuild table

Reconstructing a table involves reproducing a specific table (TABLE A) within the

database, especially after it has experienced numerous Data Manipulation Language (DML)

activities, such as insertions and modifications. This operation mandates a pause in application

activities, typically scheduled during the early morning when transactional demands are minimal.

To prevent naming conflicts that could result in creation failures, it's imperative to first retitle the

current table (TABLE A) to another name (TABLE A_X). This renaming doesn't impact the

existing data or its indexes. However, following the renaming, any stored procedures or functions

may become dysfunctional, as they won't be able to locate TABLE A.

Table 2 Rename the transaction table

TABLE A

Month 1 45.000.000

Month 2 45.000.000

Month 3 45.000.000

Month 4 45.000.000

Month 5 45.000.000

Month 6 45.000.000

Month 7 45.000.000

.

The recreation of table A ensues, mirroring its original state, including its tablespace

positioning. During this phase, only the foundational table structure is set up, excluding any

indexes and constraints. The newly established TABLE A is then populated with specific data

based on the predetermined transaction history duration that users will access. It's essential to

highlight that the period for retaining accessible data is subject to each organization's guidelines,

which might differ. For this particular phase, the volume of data designated for reintroduction

into the new TABLE A spans the last five months, specifically from the third to the seventh

month, amassing 225,000,000 rows derived from 45,000,000 rows multiplied by five.

TABLE A_X

Month 1 45.000.000

Month 2 45.000.000

Month 3 45.000.000

Month 4 45.000.000

Month 5 45.000.000

Month 6 45.000.000

Month 7 45.000.000

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 73 – 82

80

Table 3 Insert Data Into New Table

After the insert process is complete, enter the process of creating indexes back to New

TABLE A. This needs to be done to refresh the index and serve the queries required for the

application.

Table 4 Insert Data Into Table

Column Index 1

Column Index 2

Column Index 3

Column Index 4

Column Index 5

Column Index 6

Column Index 7

Column Index 8

Column Index 9

During this phase, the transaction table, TABLE A, has been rejuvenated with fresh and

index blocks. This comes post the DML transaction, with negligible alterations in data across

rows. The culmination of this process involves instituting database attributes, specifically

constraints, and recompiling the PL/SQL stored procedures and functions that serve as the

database's business logic. This ensures the smooth operation of all business-related processes

concerning TABLE A. The final move involves table analysis to retrieve database statistical

insights and refine query optimization. Subsequently, the transaction table is primed to store data

that customers will reimburse. This regimen is periodically executed in the database's upkeep,

emphasizing transaction tables and data sustainability.

3.5. Data Archiving

At this point, it's been established that the data subject to the DML (update) has been

retained in the transaction table for the previous five months and the current month. This allows

customers to view data statuses for the most recent six months.

TABLE A_X

Month 1 45.000.000

Month 2 45.000.000

Month 3 45.000.000

Month 4 45.000.000

Month 5 45.000.000

Month 6 45.000.000

Month 7 45.000.000

NEW TABLE A

Month 3 45.000.000

Month 4 45.000.000

Month 5 45.000.000

Month 6 45.000.000

Month 7 45.000.000

NEW TABLE A

Month 3 45.000.000

Month 4 45.000.000

Month 5 45.000.000

Month 6 45.000.000

Month 7 45.000.000

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Maintaining Query Performance through Table Rebuilding … (Widyastuti Andriyani)

81

Table 5 Insert Data Into Table Histo

Column Index 1

Column Index 2

Column Index 3

Column Index 4

Column Index 5

Column Index 6

Column Index 7

Column Index 8

Column Index 9

3.6. Outcome Measurement

The following are the results of the query comparison before the rebuild was carried out.

Table 6 Comparison table of query speed before and after the update

Month Number of

Data

(Million)

Query per

rows

before

updated

(ms)

Query per

month

before

updated

(s)

Query

count all

before

update

(ms)

Query per

rows after

updated

(ms)

Query per

month

after

updated

(s)

Query

count all

before

after

(ms)

1 45 289 2 2 292 5 5

2 90 294 6 4 366 14 5

3 135 302 9 6 359 27 25

4 180 306 10 10 748 16 54

5 225 454 62 62 374 75 69

6 270 840 73 64 1000 61 67

7 315 1000 89 96 1047 91 97

The effectiveness of the rebuild is also obtained from the disk capacity used, not using the word

"essentially" to mean "approximately" or "effectively."

Table 7 Comparison of block sizes before and after rebuild

TABLE

Before Rebuild After Rebuild Result

SIZE

(GB)

INDEX SIZE

(GB)

SIZE

(GB)

INDEX SIZE

(GB)

SIZE

(GB)

INDEX SIZE

(GB)

A 92,44 104,02 68,76 48,04

A_HISTO 27,48 19,30

TOTAL 96,24 67,34 -3,8 20,72

4. CONCLUSIONS

From the research conducted, it was found that updated rows can lead to block
fragmentation in the transaction table by more than 4.9 times, impacting the query speed
depending on the table's characteristics. The solution in rebuilding the table has proven effective
by reducing table and index block fragmentation by 36 times the disk consumption. Furthermore,
after adding data, the query speed increased to 4 times faster with this rebuild process.
Additionally, after the sixth month, archiving data successfully maintained the query speed by
limiting the amount of data accessed. In the future, there may be other methods in the process of
rebuilding and archiving that are more advanced (reducing manual processes), and the impact will

TABLE A_HISTO

Month 1 45.000.000

Month 2 45.000.000

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 18, No. 1, January 2024 : 73 – 82

82

be more significant if there is a DML process several times on each row, including the process of
deleting rows before the rebuild is carried out.

REFERENCES

[1] Oracle, “Overview of SQL,” oracle.com, 2022.

[2] S. J. Kamatkar, A. Kamble, A. Viloria, L. Hernández-Fernandez, and E. García Cali,
“Database performance tuning and query optimization,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10943 LNCS,
pp. 3–11, 2018, doi: 10.1007/978-3-319-93803-5_1.

[3] D. Iskandar, M. Fachruroji, W. A. Septyo, and A. K. A, “Database Tuning in Hospital
Applications Using Table Indexing and Query Optimization,” vol. 6, pp. 1960–1967,
2022.

[4] B. Ding, S. Chaudhuri, and V. Narasayya, “Bitvector-aware Query Optimization for
Decision Support Queries,” Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 2011–2026,
2020, doi: 10.1145/3318464.3389769.

[5] S. Srivastava and R. Misra, “Archiving ERP data to enhance operational effectiveness:
The case of Dolphin,” Int. J. Inf. Technol. Manag., vol. 16, no. 2, pp. 162–172, 2017, doi:
10.1504/IJITM.2017.083866.

[6] C. Shallahamer, “All About Oracle Database Fragmentation,” White Pap. OraPub, Inc.
Lake Oswego, USA, 2000.

[7] Microsoft, “Konsep: fragmentasi indeks dan kepadatan halaman,” docs.microsoft.com,
2022.

[8] Hariprasath Rajaram, “Reorganization Table,” oracledbwr.com, 2022.

[9] Y. Liu, R. Kumar, A. Tripathi, A. Sharma, and M. Rana, “The Application of Internet of
Things and Oracle Database in the Research of Intelligent Data Management System,”
Inform., vol. 46, no. 3, pp. 403–410, 2022, doi: 10.31449/inf.v46i3.4019.

[10] P. Dix, “InfluxData (InfluxDB) | Time Series Database Monitoring & Analytics,”
InfluxData, Inc., vol. 12, no. 2, pp. 168–174, 2017, [Online]. Available:
https://www.influxdata.com

