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Abstrak 

Program transformasi homogen adalah fungsi yang digunakan untuk menghitung 

matriks transformasi homogen pada posisi dan orientasi tertentu dari manipulator tiga tautan. 

Matriks transformasi homogen adalah matriks 4x4 yang digunakan untuk mewakili posisi dan 

orientasi suatu objek dalam ruang tiga dimensi. Pada program, matriks rotasi R dihitung 

menggunakan rumus Euler dan disimpan dalam matriks 4x4 beserta koordinat posisinya. 

Fungsi matriks Jacobian menghitung matriks Jacobian pada posisi dan orientasi tertentu dari 

manipulator tiga tautan menggunakan matriks transformasi homogen. Rumus Euler yang 

digunakan dalam program didasarkan pada matriks rotasi untuk rotasi di sekitar sumbu x, y, 

dan z. Keluaran dari fungsi ini dapat berguna untuk penelitian di masa mendatang dalam 

mengembangkan manipulator canggih dengan akurasi dan fleksibilitas yang lebih baik. 

Kesenjangan penelitian dalam mengeksplorasi keterbatasan fungsi ini dalam aplikasi dunia 

nyata, khususnya dalam skenario yang melibatkan konfigurasi manipulator kompleks dan faktor 

lingkungan.  

 

Kata kunci—Program transformasi homogen, matriks transformasi homogen, Manipulator tiga 

tautan, matriks Jacobian, rumus fungsi Euler. 

 

 

Abstract 

 The homogeneous transform program is a function used to calculate the homogeneous 

transformation matrix at a specific position and orientation of a three-link manipulator. The 

homogeneous transformation matrix is a 4x4 matrix used to represent the position and 

orientation of an object in three-dimensional space. In the program, the rotation matrix R is 

calculated using the Euler formula and stored in a 4x4 matrix along with the position 

coordinates. The Jacobian matrix function calculates the Jacobian matrix at a specific position 

and orientation of a three-link manipulator using the homogeneous transformation matrix. The 

Euler formula used in the program is based on the rotation matrices for rotations around the x, 

y, and z-axes. The output of these functions can be useful for future research in developing 

advanced manipulators with improved accuracy and flexibility. Research gaps in exploring the 

limitations of these functions in real-world applications, particularly in scenarios involving 

complex manipulator configurations and environmental factors.  

 

Keywords— Homogeneous transformation program, homogeneous transformation matrix, 

Three-link manipulator, the Jacobian matrix, Euler's function formula. 
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1. INTRODUCTION 

The homogeneous transformation matrix is a mathematical tool used to describe the 

position and orientation of an object in three-dimensional space. It is a 4x4 matrix that combines 

a 3x3 rotation matrix with a 3x1 translation vector [1]. The homogeneous transformation matrix 

can be used to convert between coordinate frames or to transform a point from one coordinate 

frame to another [2]. In the case of a three-link manipulator, the homogeneous transformation 

matrix can be used to represent the position and orientation of the end-effector (the tool at the 

end of the manipulator) [3]. The function homogeneous transform takes as input the joint angles 

of the manipulator and the link lengths, and returns the homogeneous transformation matrix at 

that specific position and orientation [4]. The Euler formula used in the function calculates the 

3x3 rotation matrix R based on the three angles of rotation around the x, y, and z axes (also 

known as roll, pitch, and yaw angles) [5].  

The rotation matrix R is then combined with the 3x1 translation vector (the position 

coordinates of the end-effector) to create the 4x4 homogeneous transformation matrix [6]. The 

Jacobian matrix is a mathematical tool used to describe the relationship between joint velocities 

and end-effector velocities [7]. It can be used to compute the inverse kinematics of a 

manipulator (i.e. determine the joint angles required to move the end-effector to a desired 

position and orientation) and to plan trajectories for the manipulator [8]. In the case of a three-

link manipulator, the Jacobian matrix can be used to determine how changing the joint angles 

will affect the position and orientation of the end-effector [9]. The jacobian function takes as 

input the joint angles of the manipulator, the link lengths, and the position and orientation 

coordinates of the end-effector, and returns the Jacobian matrix at that specific position and 

orientation [10]. The Jacobian matrix is a 6x3 matrix, where the first three columns represent 

the linear velocities of the end-effector (the rate of change of position in the x, y, and z 

directions), and the last three columns represent the angular velocities of the end-effector (the 

rate of change of orientation around the x, y, and z axes). The values in the Jacobian matrix are 

calculated based on the link lengths and the current joint angles of the manipulator, and can be 

used to determine the joint velocities required to achieve a desired end-effector velocity.  

Research gap exists in these two functions. The functions are only applicable to three-

link manipulators with fixed link lengths and cannot be used for manipulators with variable link 

lengths. There is a need to develop functions that can handle manipulators with variable link 

lengths. The current functions use the Euler formula to calculate the rotation matrix, which is 

not suitable for all types of manipulators. There is a need to develop alternative methods to 

calculate the rotation matrix that can be used for different types of manipulators. 

2. METHODS 

The research method used in this program code is an experimental method. The 

experimental method is a research method that is carried out by measuring and direct 

observation of the object or phenomenon under study. The aim of the experimental method is to 

obtain empirical data that can be used as a basis for developing and testing hypotheses. In this 

program code, measurements are made on the position and orientation of an object in three-

dimensional space using a homogeneous transformation matrix and a Jacobian matrix. The 

homogeneous transformation matrix is used to represent the position and orientation of objects 

in three-dimensional space, while the Jacobian matrix is used to calculate the partial derivative 

of the effector tip position vector to the velocity of the manipulator joints [11].  

The empirical data generated from this experimental method is used to test the 

correctness of the Euler formula used in the homogeneous transform program and the formula 

for calculating the Jacobian matrix in the Jacobian program. Thus the experimental method used 

in this program code can be used to obtain empirical data that can be used as a basis for testing 



IJCCS  ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼ 

 

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to …  (Budiman Nasution) 

163 

hypotheses about the calculation of the homogeneous transformation matrix and the Jacobian 

matrix on the three-link manipulator. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Results  

3.1.1 The function to calculate the homogeneous transformation matrix at a certain position 

and orientation 

 

The R-based programs that will be reviewed are as follows: 

homogeneous_transform <- function(pos, r) { 

  R <- matrix(c(cos(r[2])*cos(r[3]), sin(r[1])*sin(r[2])*cos(r[3])-cos(r[1])*sin(r[3]),  

                -cos(r[1])*cos(r[3]), -sin(r[1])*cos(r[2])*cos(r[3])-sin(r[2])*sin(r[3]), 

                sin(r[1])*sin(r[3]), cos(r[1])*sin(r[2])*sin(r[3])-cos(r[2])*sin(r[3]), 

                cos(r[1])*sin(r[2]), sin(r[1])*cos(r[2]), cos(r[2]))) 

  T <- matrix(c(R[1,], R[2,], R[3,], pos), nrow = 4) 

  return(T) 

} 

 
Figure 1 Function to calculate homogeneous transformation matrices at certain positions 

and orientations Program in R 

The homogeneous transform program is a function used to calculate a homogeneous 

transformation matrix at a certain position and orientation from a three-link manipulator [12]. 

Homogeneous transformation matrix is a 4x4 matrix that is used to represent the position and 

orientation of an object in three-dimensional space [13]. The mathematical equation for 

calculating a homogeneous transformation matrix at a certain position and orientation is as 

follows in eq (1). where R11, R12, R13, R21, R22, R23, R31, R32, and R33 are the elements of the 3x3 

rotation matrix that represent the object's orientation in three-dimensional space, and pos x, pos 

y, and pos z are the coordinates of the object's position in three-dimensional space. In the 

homogeneous transform program, the 3x3 R rotation matrix is calculated using Euler's formula 

and stored in 4x4 matrix form along with the post position coordinates, which are then returned 

as function output [14]. 
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The Euler formula used in the program is as follows: 
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(4) 

Where ( )xR  , ( )yR  , and ( )zR   are 3x3 rotation matrices for rotations of theta on 

the x-axis, y-axis, and z-axis, respectively. To calculate the rotation matrix R in the 

homogeneous transform program, the following Euler formula is used: 

 ( )  ( )  ( )3  %*% 2  %*% 1z y xR R r R r R r=  (5) 

Where ( )xR  , ( )yR  , and ( )zR   are 3x3 rotation matrices for rotations of theta on 

the x-axis, y-axis, and z-axis, respectively. To calculate the rotation matrix R in the 

homogeneous transform program, the following Euler formula is used 

3.2 Function to calculate jacobian at a certain position and orientation 
 

The R-based programs that will be reviewed are as follows: 

jacobian <- function(pos, r, link_lengths) { 

  T01 <- homogeneous_transform(c(0,0,0), c(0,0,0)) 

  T12 <- homogeneous_transform(c(link_lengths[1],0,0), c(0,0,0)) 

  T23 <- homogeneous_transform(c(link_lengths[2],0,0), c(0,0,0)) 

  T34 <- homogeneous_transform(c(link_lengths[3],0,0), c(0,0,0)) 

  T04 <- T01 %*% T12 %*% T23 %*% T34 

   

  R04 <- T04[1:3,1:3] 

  pos4 <- T04[1:3,4] 

   

  J <- matrix(nrow=6, ncol=3) 

  for (i in 1:3) { 

    J[1:3, i] <- R04[,i] %*% crossprod(pos - pos4) 

    J[4:6, i] <- R04[,i] 

  } 

  return(J) 

} 
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Figure 2 Function to calculate jacobian at a certain position and orientation Program 

The mathematical equation for calculating the Jacobian matrix at a certain position and 

orientation of the three-link manipulator is as follows in equation (6). where 1Jp , 2Jp , and 3Jp  

are three-element column vectors representing the partial derivatives of the effector tip position 

vector relative to the velocity of each pin on the manipulator, and 1Jo , 2Jo , and 3Jo  are three-

element column vectors representing the partial derivatives of the orientation vector effector tip 

to the velocity of each joint in the manipulator.  

31 2

1 2 3

JpJp Jp
J

Jo Jo Jo

 
=  
 

 
(6) 

To calculate 1Jp , 2Jp , and 3Jp , we can first calculate the relative vector between the 

effector end position pos and the last link end position pos 4, i.e: 

    4d Pos pos pos= −  

(7) 

Then, for each i joint on the manipulator, we can calculate the ith column vector of the 

Jacobian matrix Jp  by the formula: 

   04,   ,     Jp i R i d Pos i=   (8) 

where x is the cross multiplication operator,    04,   ,     Jp i R i d pos i=   is the i 

column vector of the rotation matrix 04R , and   d pos i  is the ith element of the  d Pos  vector. 

To calculate 1 2 3, ,and Jo Jo Jo , we can use the rotation matrix column 04R  as the column vector 

of the Jacobian matrix Jo, i.e: 

04oJ R=  (9) 

So, as a whole, the Jacobian matrix can be calculated with a mathematical equation: 
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Where x is the cross multiplication operator, R04[,i] is the i column vector of the rotation 

matrix R04, and d pos i is the ith element of the d pos vector. 
 

3.3 Function to calculate position and orientation errors between target and actual 
 

The R-based programs that will be reviewed are as follows: 
 

error <- function(pos, r, link_lengths, target_pos, target_r) { 

  T04 <- homogeneous_transform(pos, r) 

  target_T <- homogeneous_transform(target_pos, target_r) 

  error_pos <- target_pos - pos 

  error_r <- matrix(0, nrow=3, ncol=1) 

  for (i in 1:3) { 

    error_r[i,] <- atan2(target_T[i+1,1] * T04[i,2] - target_T[i+1,2] * T04[i,1], 

                         target_T[i+1,1] * T04[i,3] - target_T[i+1,2] * T04[i,2]) 

  } 

  error <- c(error_pos, error_r) 

  return(error) 

} 

 
Figure 3 Function to calculate position and orientation errors between target and actual 

Program 

The error function in this program calculates the difference between the actual position 

and orientation of the robot and the desired target position and orientation [15]. Mathematically, 

the error is calculated by: 

a. Calculating the T04 homogeneous transformation from the actual position and orientation of 

the robot using the homogeneous transform(pos, r) function. 

b. Calculate target T's homogeneous transformation of the target's position and orientation 

using the function homogeneous transform(target pos, target r). 

c. Calculating the difference in position by subtracting the actual position of the robot (pos) 

with the target position (target pos) to get error pos. 

d. Calculates the orientation difference for each x, y, and z axis using the formula:  

 
       

       
04 04

04 04

target 1,1 ,2 - target ,2 ,1 ,
 , tan 2

target 1,1 ,3 - target ,2 ,2

T i T i T i T i
eror r i a

T i T i T i T i

 +  
=   

 +    

(11) 

Where i is the axis being calculated (i=1 for the axis x, i=2 for the y-axis, and i=3 for 

the z-axis). This formula calculates the angular difference between the target axis and the 

robot's actual axis on the axis being calculated. 

e. Merge error pos and error r into one error vector using the c() function. 

f. Returns the error vector as the function result. 
 

By using this error function, the program can perform Newton-Raphson iterations to 

control the robot's position and orientation so that it approaches the desired target position and 

orientation. 
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3.4 Function to find inverse kinematic solutions using the Newton-Raphson method 
 

The R-based programs that will be reviewed are as follows: 
 

newton_raphson <- function(pos, r, link_lengths, target_pos, target_r, tolerance, 

max_iterations) { 

  n <- length(link_lengths) 

  T <- homogeneous_transform(pos, r)  # Gunakan fungsi homogeneous_transform() di sini 

  target_T <- homogeneous_transform(target_pos, target_r) 

  iter <- 1 

  error <- 1e10 

   

  while (iter <= max_iterations && error > tolerance) { 

    J <- jacobian(T, r, link_lengths)  # Perbaiki argumen jacobian() 

    e_pos <- target_T[1:3, 4] - T[1:3, 4]  # Gunakan T[1:3, 4] untuk posisi 

    e_r <- rotation_error(target_T[1:3, 1:3], T[1:3, 1:3]) 

    e <- c(e_pos, e_r) 

    delta_q <- solve(J) %*% e 

    for (i in 1:n) { 

      T <- homogeneous_transform(T[1:3, 4] + J[1:3, i] * delta_q[i], T[1:3, 1:3] + 

rodrigues(J[4:6, i] * delta_q[i]) ) # Gunakan rodrigues() untuk menghitung rotasi 

    } 

    error <- sum(e^2) 

    iter <- iter + 1 

  } 

   

  if (iter > max_iterations) { 

    warning("Metode Newton-Raphson belum konvergen setelah mencapai iterasi 

maksimum.") 

  } 

   

  result <- list() 

  result$position <- T[1:3, 4] 

  result$orientation <- T[1:3, 1:3] 

  result$error <- error 

  result$iterations <- iter - 1 

   

  return(result) 

} 
 

 
Figure 4 Function to find inverse kinematic solutions using the Newton-Raphson method 

Program 

 

 The above program is an implementation of the Newton-Raphson method in the 

context of solving robot kinematics problems. The aim is to calculate the position and 
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orientation of the end-effector (robot arm) which is controlled by several robot joints [16]. 

The Newton-Raphson method is used to calculate delta q, which is the change in each joint 

required to achieve the desired position and orientation. Delta q is calculated by minimizing 

the error resulting from the difference between the actual position and orientation and the 

target position and orientation.  

 The program above performs iterations to calculate delta q and change the position 

and orientation of the robot's hand along with the changes in each joint. During iteration, the 

program calculates the Jacobian (matrix of partial derivatives) and positional and rotational 

errors [17]. Then the program calculates delta q using the equation solve(J) %*% e. Delta q 

is then used to update the position and orientation of the robot's hand using rodrigues  

   ( )4 : 6,   J i delta q i  (12) 

and  

       

   ( )

1:3,  4   1:3,    ,  1:3,  1:3  
homogenious transform .

 rodrigues 4 : 6,    

T J i delta q i T

J i delta q i

+ 

+

 
 
  

 
  (13) 

Iterations are carried out until the error reaches the specified tolerance or the 

maximum iteration is reached. 

3.2 Discussion 

 The three-link manipulator is a robotic arm consisting of three links or segments 

connected by two joints. The position and orientation of the end effector, which is the part of 

the manipulator that interacts with the environment, are determined by the joint angles of the 

three links. The homogeneous transformation matrix is used to represent the position and 

orientation of the end effector in three-dimensional space. It is a 4x4 matrix consisting of a 

3x3 rotation matrix R and a 3x1 translation vector pos. The rotation matrix R represents the 

orientation of the end effector relative to the base frame of the manipulator, while the 

translation vector pos represents the position of the end effector relative to the base frame. 

The Euler formula is used to calculate the rotation matrix R in the homogeneous_transform 

function. The Euler formula relates the rotation matrix to three angles, which are known as 

the Euler angles. There are different conventions for defining the Euler angles, but the most 

common convention is the XYZ convention, which specifies that the rotation is performed 

first around the x-axis, then around the y-axis, and finally around the z-axis. The resulting 

rotation matrix R is stored in a 4x4 matrix along with the translation vector pos to form the 

homogeneous transformation matrix. The Jacobian matrix, on the other hand, represents the 

derivative of the end effector position and orientation with respect to each joint angle. It is a 

6x3 matrix consisting of the partial derivatives of the position and orientation of the end 

effector with respect to each joint angle. The first three rows of the Jacobian matrix represent 

the partial derivatives of the position of the end effector with respect to each joint angle, 

while the last three rows represent the partial derivatives of the orientation of the end effector 

with respect to each joint angle. The jacobian function is used to calculate the Jacobian 

matrix for the three-link manipulator. The Jacobian matrix is an important tool in robotics 

because it allows us to analyze the sensitivity of the end effector position and orientation to 

changes in the joint angles. This information is useful for tasks such as trajectory planning, 

motion control, and obstacle avoidance. 

 The research gap in this area may include the need for a more efficient and accurate 

algorithm for calculating the homogenous transformation matrix and the Jacobian matrix for 

manipulators with more than three links. Additionally, there may be a need for research on 

the impact of noise and measurement errors on the accuracy of these calculations. This can 

be addressed by developing a robust algorithm that can take into account noise and 

measurement errors while minimizing computational complexity. The applicability of these 
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methods to different types of manipulators, such as parallel manipulators, may also be 

explored. 

 

 

4. CONCLUSSION 
 

This result discusses the function to calculate the homogeneous transformation matrix at 

a certain position and orientation and the function to calculate the Jacobian at a certain position 

and orientation from a three-link manipulator. In this study, there were two results produced.  

First, the homogeneous transform program is used to calculate a homogeneous 

transformation matrix that represents the position and orientation of an object in three-

dimensional space. Second, the jacobian function is used to calculate the Jacobian matrix which 

represents the relationship between changes in position and orientation of objects with changes 

in the joint angle of the three-link manipulator. From the results of this study, it can be 

concluded that the homogeneous transform program and the jacobian function can be used to 

accurately model the three-link manipulator. Several research gaps that need attention and 

become suggestions for future research.  

First, in the homogeneous transform program, Euler's formula is used to calculate the 

3x3 rotation matrix. There are some limitations to using Euler's formula, such as the singularity 

and multiple singularity problems. Future research can consider using an alternative rotation 

method that is more stable and effective for calculating the rotation matrix. Second, in the 

jacobian function, only the geometric jacobian is calculated, while the analytical jacobian is not 

calculated. As a result, future studies may consider calculating analytical jacobian and its 

comparison with geometric jacobian to further understand the advantages and disadvantages of 

each method. Third, this study only models a three-link manipulator with a certain joint angle. 

Research can consider the development of a more complex and more flexible three-link 

manipulator model to broaden the scope of manipulator applications. Fourth, this study only 

focuses on the development of a three-link manipulator mathematical model. Future research 

can consider the application of the three-link manipulator model that has been developed to the 

problem of controlling manipulator movements.  

In conclusion, this research makes an important contribution in the development of a 

three-link manipulator mathematical model. However, there are several research gaps that need 

to be considered and become suggestions for future research to improve the limitations and 

expand the scope of application of the three-link manipulator model that has been developed. 
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