
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.17, No.2, April 2023, pp. 161~170

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: 10.22146/ijccs.82781 ◼ 161

Received March 6th,2023; Revised April 29th, 2023; Accepted April 30th, 2023

Inverse Kinematic Algorithm with Newton-Raphson

Method iteration to Control Robot Position and

Orientation based on R programming language

Budiman Nasution*1, Lulut Alfaris2, Ruben Cornelius Siagian3

1,3Departemen of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri

Medan, Medan, Indonesia
2Department of Marine Technology, Politeknik Kelautan dan Perikanan, Pangandaran,

Indonesia

e-mail: *1BudimanNasutuon@unimed.ac.id, 2lulut.alfaris@pkpp.ac.id,
3Rubensiagian775@gmail.com

Abstrak

Program transformasi homogen adalah fungsi yang digunakan untuk menghitung

matriks transformasi homogen pada posisi dan orientasi tertentu dari manipulator tiga tautan.

Matriks transformasi homogen adalah matriks 4x4 yang digunakan untuk mewakili posisi dan

orientasi suatu objek dalam ruang tiga dimensi. Pada program, matriks rotasi R dihitung

menggunakan rumus Euler dan disimpan dalam matriks 4x4 beserta koordinat posisinya.

Fungsi matriks Jacobian menghitung matriks Jacobian pada posisi dan orientasi tertentu dari

manipulator tiga tautan menggunakan matriks transformasi homogen. Rumus Euler yang

digunakan dalam program didasarkan pada matriks rotasi untuk rotasi di sekitar sumbu x, y,

dan z. Keluaran dari fungsi ini dapat berguna untuk penelitian di masa mendatang dalam

mengembangkan manipulator canggih dengan akurasi dan fleksibilitas yang lebih baik.

Kesenjangan penelitian dalam mengeksplorasi keterbatasan fungsi ini dalam aplikasi dunia

nyata, khususnya dalam skenario yang melibatkan konfigurasi manipulator kompleks dan faktor

lingkungan.

Kata kunci—Program transformasi homogen, matriks transformasi homogen, Manipulator tiga

tautan, matriks Jacobian, rumus fungsi Euler.

Abstract

 The homogeneous transform program is a function used to calculate the homogeneous

transformation matrix at a specific position and orientation of a three-link manipulator. The

homogeneous transformation matrix is a 4x4 matrix used to represent the position and

orientation of an object in three-dimensional space. In the program, the rotation matrix R is

calculated using the Euler formula and stored in a 4x4 matrix along with the position

coordinates. The Jacobian matrix function calculates the Jacobian matrix at a specific position

and orientation of a three-link manipulator using the homogeneous transformation matrix. The

Euler formula used in the program is based on the rotation matrices for rotations around the x,

y, and z-axes. The output of these functions can be useful for future research in developing

advanced manipulators with improved accuracy and flexibility. Research gaps in exploring the

limitations of these functions in real-world applications, particularly in scenarios involving

complex manipulator configurations and environmental factors.

Keywords— Homogeneous transformation program, homogeneous transformation matrix,

Three-link manipulator, the Jacobian matrix, Euler's function formula.

mailto:*1BudimanNasutuon@unimed.ac.id
mailto:2lulut.alfaris@pkpp.ac.id
mailto:3Rubensiagian775@gmail.com

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 17, No. 2, April 2023 : 161 – 170

162

1. INTRODUCTION

The homogeneous transformation matrix is a mathematical tool used to describe the

position and orientation of an object in three-dimensional space. It is a 4x4 matrix that combines

a 3x3 rotation matrix with a 3x1 translation vector [1]. The homogeneous transformation matrix

can be used to convert between coordinate frames or to transform a point from one coordinate

frame to another [2]. In the case of a three-link manipulator, the homogeneous transformation

matrix can be used to represent the position and orientation of the end-effector (the tool at the

end of the manipulator) [3]. The function homogeneous transform takes as input the joint angles

of the manipulator and the link lengths, and returns the homogeneous transformation matrix at

that specific position and orientation [4]. The Euler formula used in the function calculates the

3x3 rotation matrix R based on the three angles of rotation around the x, y, and z axes (also

known as roll, pitch, and yaw angles) [5].

The rotation matrix R is then combined with the 3x1 translation vector (the position

coordinates of the end-effector) to create the 4x4 homogeneous transformation matrix [6]. The

Jacobian matrix is a mathematical tool used to describe the relationship between joint velocities

and end-effector velocities [7]. It can be used to compute the inverse kinematics of a

manipulator (i.e. determine the joint angles required to move the end-effector to a desired

position and orientation) and to plan trajectories for the manipulator [8]. In the case of a three-

link manipulator, the Jacobian matrix can be used to determine how changing the joint angles

will affect the position and orientation of the end-effector [9]. The jacobian function takes as

input the joint angles of the manipulator, the link lengths, and the position and orientation

coordinates of the end-effector, and returns the Jacobian matrix at that specific position and

orientation [10]. The Jacobian matrix is a 6x3 matrix, where the first three columns represent

the linear velocities of the end-effector (the rate of change of position in the x, y, and z

directions), and the last three columns represent the angular velocities of the end-effector (the

rate of change of orientation around the x, y, and z axes). The values in the Jacobian matrix are

calculated based on the link lengths and the current joint angles of the manipulator, and can be

used to determine the joint velocities required to achieve a desired end-effector velocity.

Research gap exists in these two functions. The functions are only applicable to three-

link manipulators with fixed link lengths and cannot be used for manipulators with variable link

lengths. There is a need to develop functions that can handle manipulators with variable link

lengths. The current functions use the Euler formula to calculate the rotation matrix, which is

not suitable for all types of manipulators. There is a need to develop alternative methods to

calculate the rotation matrix that can be used for different types of manipulators.

2. METHODS

The research method used in this program code is an experimental method. The

experimental method is a research method that is carried out by measuring and direct

observation of the object or phenomenon under study. The aim of the experimental method is to

obtain empirical data that can be used as a basis for developing and testing hypotheses. In this

program code, measurements are made on the position and orientation of an object in three-

dimensional space using a homogeneous transformation matrix and a Jacobian matrix. The

homogeneous transformation matrix is used to represent the position and orientation of objects

in three-dimensional space, while the Jacobian matrix is used to calculate the partial derivative

of the effector tip position vector to the velocity of the manipulator joints [11].

The empirical data generated from this experimental method is used to test the

correctness of the Euler formula used in the homogeneous transform program and the formula

for calculating the Jacobian matrix in the Jacobian program. Thus the experimental method used

in this program code can be used to obtain empirical data that can be used as a basis for testing

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to … (Budiman Nasution)

163

hypotheses about the calculation of the homogeneous transformation matrix and the Jacobian

matrix on the three-link manipulator.

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 The function to calculate the homogeneous transformation matrix at a certain position

and orientation

The R-based programs that will be reviewed are as follows:

homogeneous_transform <- function(pos, r) {

 R <- matrix(c(cos(r[2])*cos(r[3]), sin(r[1])*sin(r[2])*cos(r[3])-cos(r[1])*sin(r[3]),

 -cos(r[1])*cos(r[3]), -sin(r[1])*cos(r[2])*cos(r[3])-sin(r[2])*sin(r[3]),

 sin(r[1])*sin(r[3]), cos(r[1])*sin(r[2])*sin(r[3])-cos(r[2])*sin(r[3]),

 cos(r[1])*sin(r[2]), sin(r[1])*cos(r[2]), cos(r[2])))

 T <- matrix(c(R[1,], R[2,], R[3,], pos), nrow = 4)

 return(T)

}

Figure 1 Function to calculate homogeneous transformation matrices at certain positions

and orientations Program in R

The homogeneous transform program is a function used to calculate a homogeneous

transformation matrix at a certain position and orientation from a three-link manipulator [12].

Homogeneous transformation matrix is a 4x4 matrix that is used to represent the position and

orientation of an object in three-dimensional space [13]. The mathematical equation for

calculating a homogeneous transformation matrix at a certain position and orientation is as

follows in eq (1). where R11, R12, R13, R21, R22, R23, R31, R32, and R33 are the elements of the 3x3

rotation matrix that represent the object's orientation in three-dimensional space, and pos x, pos

y, and pos z are the coordinates of the object's position in three-dimensional space. In the

homogeneous transform program, the 3x3 R rotation matrix is calculated using Euler's formula

and stored in 4x4 matrix form along with the post position coordinates, which are then returned

as function output [14].

11 12 13

21 22 23

31 32 33

 y

 z

0 0 0 1

R R R Pos x

R R R Pos
T

R R R Pos

 
 
 =
 
 
 

(1)

The Euler formula used in the program is as follows:

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 17, No. 2, April 2023 : 161 – 170

164

() () ()

() ()

1 0 0

0 cos sin

0 sin cos

xR   

 

 
 

= − 
 
 

(2)

()

() ()

() ()

cos 0 sin

0 1 0

sin 0 cos

yR

 



 

 
 

=  
 − 

(3)

()

() ()

() ()

cos sin 0

sin cos 0

0 0 1

zR

 

  

− 
 

=  
 
 

(4)

Where ()xR  , ()yR  , and ()zR  are 3x3 rotation matrices for rotations of theta on

the x-axis, y-axis, and z-axis, respectively. To calculate the rotation matrix R in the

homogeneous transform program, the following Euler formula is used:

 ()  ()  ()3 %*% 2 %*% 1z y xR R r R r R r= (5)

Where ()xR  , ()yR  , and ()zR  are 3x3 rotation matrices for rotations of theta on

the x-axis, y-axis, and z-axis, respectively. To calculate the rotation matrix R in the

homogeneous transform program, the following Euler formula is used

3.2 Function to calculate jacobian at a certain position and orientation

The R-based programs that will be reviewed are as follows:

jacobian <- function(pos, r, link_lengths) {

 T01 <- homogeneous_transform(c(0,0,0), c(0,0,0))

 T12 <- homogeneous_transform(c(link_lengths[1],0,0), c(0,0,0))

 T23 <- homogeneous_transform(c(link_lengths[2],0,0), c(0,0,0))

 T34 <- homogeneous_transform(c(link_lengths[3],0,0), c(0,0,0))

 T04 <- T01 %*% T12 %*% T23 %*% T34

 R04 <- T04[1:3,1:3]

 pos4 <- T04[1:3,4]

 J <- matrix(nrow=6, ncol=3)

 for (i in 1:3) {

 J[1:3, i] <- R04[,i] %*% crossprod(pos - pos4)

 J[4:6, i] <- R04[,i]

 }

 return(J)

}

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to … (Budiman Nasution)

165

Figure 2 Function to calculate jacobian at a certain position and orientation Program

The mathematical equation for calculating the Jacobian matrix at a certain position and

orientation of the three-link manipulator is as follows in equation (6). where 1Jp , 2Jp , and 3Jp

are three-element column vectors representing the partial derivatives of the effector tip position

vector relative to the velocity of each pin on the manipulator, and 1Jo , 2Jo , and 3Jo are three-

element column vectors representing the partial derivatives of the orientation vector effector tip

to the velocity of each joint in the manipulator.

31 2

1 2 3

JpJp Jp
J

Jo Jo Jo

 
=  
 

(6)

To calculate 1Jp , 2Jp , and 3Jp , we can first calculate the relative vector between the

effector end position pos and the last link end position pos 4, i.e:

 4d Pos pos pos= −

(7)

Then, for each i joint on the manipulator, we can calculate the ith column vector of the

Jacobian matrix Jp by the formula:

   04, , Jp i R i d Pos i=  (8)

where x is the cross multiplication operator,    04, , Jp i R i d pos i=  is the i

column vector of the rotation matrix 04R , and d pos i is the ith element of the d Pos vector.

To calculate 1 2 3, ,and Jo Jo Jo , we can use the rotation matrix column 04R as the column vector

of the Jacobian matrix Jo, i.e:

04oJ R= (9)

So, as a whole, the Jacobian matrix can be calculated with a mathematical equation:

 

 

 

 

 

 
04 04 04

04 04 04

,1 , 2 2 ,3 3

,1 ,2 ,3

R d Pos i R d pos R d pos
J

R R R

   
=  
  

(10)

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 17, No. 2, April 2023 : 161 – 170

166

Where x is the cross multiplication operator, R04[,i] is the i column vector of the rotation

matrix R04, and d pos i is the ith element of the d pos vector.

3.3 Function to calculate position and orientation errors between target and actual

The R-based programs that will be reviewed are as follows:

error <- function(pos, r, link_lengths, target_pos, target_r) {

 T04 <- homogeneous_transform(pos, r)

 target_T <- homogeneous_transform(target_pos, target_r)

 error_pos <- target_pos - pos

 error_r <- matrix(0, nrow=3, ncol=1)

 for (i in 1:3) {

 error_r[i,] <- atan2(target_T[i+1,1] * T04[i,2] - target_T[i+1,2] * T04[i,1],

 target_T[i+1,1] * T04[i,3] - target_T[i+1,2] * T04[i,2])

 }

 error <- c(error_pos, error_r)

 return(error)

}

Figure 3 Function to calculate position and orientation errors between target and actual

Program

The error function in this program calculates the difference between the actual position

and orientation of the robot and the desired target position and orientation [15]. Mathematically,

the error is calculated by:

a. Calculating the T04 homogeneous transformation from the actual position and orientation of

the robot using the homogeneous transform(pos, r) function.

b. Calculate target T's homogeneous transformation of the target's position and orientation

using the function homogeneous transform(target pos, target r).

c. Calculating the difference in position by subtracting the actual position of the robot (pos)

with the target position (target pos) to get error pos.

d. Calculates the orientation difference for each x, y, and z axis using the formula:

 
       

       
04 04

04 04

target 1,1 ,2 - target ,2 ,1 ,
 , tan 2

target 1,1 ,3 - target ,2 ,2

T i T i T i T i
eror r i a

T i T i T i T i

 +  
=   

 +   

(11)

Where i is the axis being calculated (i=1 for the axis x, i=2 for the y-axis, and i=3 for

the z-axis). This formula calculates the angular difference between the target axis and the

robot's actual axis on the axis being calculated.

e. Merge error pos and error r into one error vector using the c() function.

f. Returns the error vector as the function result.

By using this error function, the program can perform Newton-Raphson iterations to

control the robot's position and orientation so that it approaches the desired target position and

orientation.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to … (Budiman Nasution)

167

3.4 Function to find inverse kinematic solutions using the Newton-Raphson method

The R-based programs that will be reviewed are as follows:

newton_raphson <- function(pos, r, link_lengths, target_pos, target_r, tolerance,

max_iterations) {

 n <- length(link_lengths)

 T <- homogeneous_transform(pos, r) # Gunakan fungsi homogeneous_transform() di sini

 target_T <- homogeneous_transform(target_pos, target_r)

 iter <- 1

 error <- 1e10

 while (iter <= max_iterations && error > tolerance) {

 J <- jacobian(T, r, link_lengths) # Perbaiki argumen jacobian()

 e_pos <- target_T[1:3, 4] - T[1:3, 4] # Gunakan T[1:3, 4] untuk posisi

 e_r <- rotation_error(target_T[1:3, 1:3], T[1:3, 1:3])

 e <- c(e_pos, e_r)

 delta_q <- solve(J) %*% e

 for (i in 1:n) {

 T <- homogeneous_transform(T[1:3, 4] + J[1:3, i] * delta_q[i], T[1:3, 1:3] +

rodrigues(J[4:6, i] * delta_q[i])) # Gunakan rodrigues() untuk menghitung rotasi

 }

 error <- sum(e^2)

 iter <- iter + 1

 }

 if (iter > max_iterations) {

 warning("Metode Newton-Raphson belum konvergen setelah mencapai iterasi

maksimum.")

 }

 result <- list()

 result$position <- T[1:3, 4]

 result$orientation <- T[1:3, 1:3]

 result$error <- error

 result$iterations <- iter - 1

 return(result)

}

Figure 4 Function to find inverse kinematic solutions using the Newton-Raphson method

Program

 The above program is an implementation of the Newton-Raphson method in the

context of solving robot kinematics problems. The aim is to calculate the position and

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 17, No. 2, April 2023 : 161 – 170

168

orientation of the end-effector (robot arm) which is controlled by several robot joints [16].

The Newton-Raphson method is used to calculate delta q, which is the change in each joint

required to achieve the desired position and orientation. Delta q is calculated by minimizing

the error resulting from the difference between the actual position and orientation and the

target position and orientation.

 The program above performs iterations to calculate delta q and change the position

and orientation of the robot's hand along with the changes in each joint. During iteration, the

program calculates the Jacobian (matrix of partial derivatives) and positional and rotational

errors [17]. Then the program calculates delta q using the equation solve(J) %*% e. Delta q

is then used to update the position and orientation of the robot's hand using rodrigues

   ()4 : 6, J i delta q i (12)

and

       

   ()

1:3, 4 1:3, , 1:3, 1:3
homogenious transform .

 rodrigues 4 : 6,

T J i delta q i T

J i delta q i

+ 

+

 
 
  

 (13)

Iterations are carried out until the error reaches the specified tolerance or the

maximum iteration is reached.

3.2 Discussion

 The three-link manipulator is a robotic arm consisting of three links or segments

connected by two joints. The position and orientation of the end effector, which is the part of

the manipulator that interacts with the environment, are determined by the joint angles of the

three links. The homogeneous transformation matrix is used to represent the position and

orientation of the end effector in three-dimensional space. It is a 4x4 matrix consisting of a

3x3 rotation matrix R and a 3x1 translation vector pos. The rotation matrix R represents the

orientation of the end effector relative to the base frame of the manipulator, while the

translation vector pos represents the position of the end effector relative to the base frame.

The Euler formula is used to calculate the rotation matrix R in the homogeneous_transform

function. The Euler formula relates the rotation matrix to three angles, which are known as

the Euler angles. There are different conventions for defining the Euler angles, but the most

common convention is the XYZ convention, which specifies that the rotation is performed

first around the x-axis, then around the y-axis, and finally around the z-axis. The resulting

rotation matrix R is stored in a 4x4 matrix along with the translation vector pos to form the

homogeneous transformation matrix. The Jacobian matrix, on the other hand, represents the

derivative of the end effector position and orientation with respect to each joint angle. It is a

6x3 matrix consisting of the partial derivatives of the position and orientation of the end

effector with respect to each joint angle. The first three rows of the Jacobian matrix represent

the partial derivatives of the position of the end effector with respect to each joint angle,

while the last three rows represent the partial derivatives of the orientation of the end effector

with respect to each joint angle. The jacobian function is used to calculate the Jacobian

matrix for the three-link manipulator. The Jacobian matrix is an important tool in robotics

because it allows us to analyze the sensitivity of the end effector position and orientation to

changes in the joint angles. This information is useful for tasks such as trajectory planning,

motion control, and obstacle avoidance.

 The research gap in this area may include the need for a more efficient and accurate

algorithm for calculating the homogenous transformation matrix and the Jacobian matrix for

manipulators with more than three links. Additionally, there may be a need for research on

the impact of noise and measurement errors on the accuracy of these calculations. This can

be addressed by developing a robust algorithm that can take into account noise and

measurement errors while minimizing computational complexity. The applicability of these

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to … (Budiman Nasution)

169

methods to different types of manipulators, such as parallel manipulators, may also be

explored.

4. CONCLUSSION

This result discusses the function to calculate the homogeneous transformation matrix at

a certain position and orientation and the function to calculate the Jacobian at a certain position

and orientation from a three-link manipulator. In this study, there were two results produced.

First, the homogeneous transform program is used to calculate a homogeneous

transformation matrix that represents the position and orientation of an object in three-

dimensional space. Second, the jacobian function is used to calculate the Jacobian matrix which

represents the relationship between changes in position and orientation of objects with changes

in the joint angle of the three-link manipulator. From the results of this study, it can be

concluded that the homogeneous transform program and the jacobian function can be used to

accurately model the three-link manipulator. Several research gaps that need attention and

become suggestions for future research.

First, in the homogeneous transform program, Euler's formula is used to calculate the

3x3 rotation matrix. There are some limitations to using Euler's formula, such as the singularity

and multiple singularity problems. Future research can consider using an alternative rotation

method that is more stable and effective for calculating the rotation matrix. Second, in the

jacobian function, only the geometric jacobian is calculated, while the analytical jacobian is not

calculated. As a result, future studies may consider calculating analytical jacobian and its

comparison with geometric jacobian to further understand the advantages and disadvantages of

each method. Third, this study only models a three-link manipulator with a certain joint angle.

Research can consider the development of a more complex and more flexible three-link

manipulator model to broaden the scope of manipulator applications. Fourth, this study only

focuses on the development of a three-link manipulator mathematical model. Future research

can consider the application of the three-link manipulator model that has been developed to the

problem of controlling manipulator movements.

In conclusion, this research makes an important contribution in the development of a

three-link manipulator mathematical model. However, there are several research gaps that need

to be considered and become suggestions for future research to improve the limitations and

expand the scope of application of the three-link manipulator model that has been developed.

REFERENCES

[1] D. Rozenberszki and A. L. Majdik, “LOL: Lidar-only Odometry and Localization in 3D

point cloud maps,” presented at the 2020 IEEE International Conference on Robotics

and Automation (ICRA), 2020, pp. 4379–4385.

[2] Y. Cai, Y. Wang, and M. Burnett, “Using augmented reality to build digital twin for

reconfigurable additive manufacturing system,” Journal of Manufacturing Systems, vol.

56, pp. 598–604, 2020.

[3] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. John

Wiley & Sons, 2020.

[4] S. Jaladi, T. Rao, and A. Srinath, “Inverse kinematics analysis of serial manipulators

using genetic algorithms,” in Soft Computing for Problem Solving: SocProS 2018,

Volume 1, Springer, 2019, pp. 519–529.

[5] V. Mansur, S. Reddy, R. Sujatha, and R. Sujatha, “Deploying Complementary filter to

avert gimbal lock in drones using Quaternion angles,” presented at the 2020 IEEE

◼ ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 17, No. 2, April 2023 : 161 – 170

170

International Conference on Computing, Power and Communication Technologies

(GUCON), 2020, pp. 751–756.

[6] A. Noccaro, A. Mioli, M. D’Alonzo, M. Pinardi, G. Di Pino, and D. Formica,

“Development and validation of a novel calibration methodology and control approach

for robot-aided transcranial magnetic stimulation (TMS),” IEEE Transactions on

Biomedical Engineering, vol. 68, no. 5, pp. 1589–1600, 2021.

[7] Z. Fu, E. Spyrakos-Papastavridis, Y. Lin, and J. S. Dai, “Analytical expressions of serial

manipulator jacobians and their high-order derivatives based on lie theory,” presented at

the 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020,

pp. 7095–7100.

[8] W. Xu, Z. Mu, T. Liu, and B. Liang, “A modified modal method for solving the

mission-oriented inverse kinematics of hyper-redundant space manipulators for on-orbit

servicing,” Acta Astronautica, vol. 139, pp. 54–66, 2017.

[9] I. Chavdarov and B. Naydenov, “Algorithm for Determining the Types of Inverse

Kinematics Solutions for Sequential Planar Robots and Their Representation in the

Configuration Space,” Algorithms, vol. 15, no. 12, p. 469, 2022.

[10] X. Shi, Y. Guo, X. Chen, Z. Chen, and Z. Yang, “Kinematics and singularity analysis of

a 7-DOF redundant manipulator,” Sensors, vol. 21, no. 21, p. 7257, 2021.

[11] B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, “Control-oriented models for

hyperelastic soft robots through differential geometry of curves,” Soft Robotics, 2022.

[12] S. Baressi Šegota, N. Anđelić, I. Lorencin, M. Saga, and Z. Car, “Path planning

optimization of six-degree-of-freedom robotic manipulators using evolutionary

algorithms,” International journal of advanced robotic systems, vol. 17, no. 2, p.

1729881420908076, 2020.

[13] D. I. Migranov, “A Library for Visualizing Three-Dimensional Non-Euclidean Spaces,”

presented at the 2022 IEEE 23rd International Conference of Young Professionals in

Electron Devices and Materials (EDM), 2022, pp. 646–650.

[14] I. Agustian, N. Daratha, R. Faurina, and A. Suandi, “Robot Manipulator Control with

Inverse Kinematics PD-Pseudoinverse Jacobian and Forward Kinematics Denavit

Hartenberg,” arXiv preprint arXiv:2103.10461, 2021.

[15] T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina, and M. Roriz, “Inverse kinematic analysis

of 4 DOF pick and place arm robot manipulator using fuzzy logic controller.,”

International Journal of Electrical & Computer Engineering (2088-8708), vol. 10, no.

2, 2020.

[16] A. AlAttar and P. Kormushev, “Kinematic-model-free orientation control for robot

manipulation using locally weighted dual quaternions,” Robotics, vol. 9, no. 4, p. 76,

2020.

[17] A. Muñoyerro, A. Hernández, M. Urizar, and O. Altuzarra, “A general automatic

method for mechanism optimization based on kinematic constraints and analytical

Jacobian matrix,” Proceedings of the Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science, p. 09544062221147829, 2023.

