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Abstrak 

Permasalahan bin packing adalah sebuah permasalahan di mana barang dengan volume 

dan dimensi berbeda dimasukkan ke dalam sebuah wadah sehingga volume barang yang 

dimasukkan maksimal. Permasalahan bin packing multi objektif adalah permasalahan yang lebih 

umum ditemukan di kehidupan sehari-hari, karena yang diperhatikan dalam pengepakan 

biasanya tidak hanya volume. 

Pada penelitian ini diajukan sebuah algoritma genetika multi objektif untuk 

menyelesaikan permasalahan bin packing multi objektif. Algoritma genetika yang diajukan 

menggunakan metode non-dominated sorting dan crowding distance untuk mendapatkan solusi 

yang terbaik untuk tiap objektifnya dan menghindari adanya bias. Algoritma kemudian diuji 

dengan beberapa kelas uji yang menyatakan kombinasi ukuran barang dan wadah yang berbeda. 

Dari hasil pengujian yang dilakukan didapatkan bahwa algoritma yang diajukan dapat 

menemukan beberapa solusi yang merupakan kandidat solusi terbaik untuk tiap objektif. 

Didapatkan juga bagaimana korelasi tiap objektif pada populasi. 

 

Kata kunci—Algoritma genetika, bin packing problem, multi objektif, multi solusi, non-

dominated sorting 

 

 

Abstract 

The bin packing problem is a problem where goods with different volumes and 

dimensions are put into a container so that the volume of goods inserted is maximized. The 

problem of multi-objective bin packing is a problem that is more commonly found in everyday 

life, because what is considered in packing is usually not only volume. 

In this research, a multi-objective genetic algorithm is proposed to solve the multi-

objective bin packing problem. The proposed genetic algorithm uses non-dominated sorting and 

crowding distance methods to get the best solution for each objective and to avoid bias. The 

algorithm is then tested with several test classes that represent different combinations of item and 

container sizes. 

From the results of the tests carried out, it was found that the proposed algorithm can 

find several solutions which are the best candidate solutions for each objective. Also found how 

the correlation of each objective in the population. 

 

Keywords—Genetic algorithm, bin packing problem, multi objective, multi solution, non-

dominated sorting 
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1. INTRODUCTION 

 

The bin packing problem is a problem where goods with different volumes and 

dimensions are provided, then these goods must be put into a number of containers (bins) so as to 

maximize the volume used [1]. There are many variations of the bin packing problem, for example 

2D packing, linear packing, and 3D packing. This bin packing problem in computational 

complexity theory belongs to the NP-Hard problem and is difficult to solve [2]. 

There are many approaches used by various researchers in solving the bin packing 

problem with a single objective. [3] solved the multiple bin packing problem with a single 

objective using the mixed genetic algorithm method with the heuristic packing method using the 

deepest bottom left first.  [4] proposed an algorithm to solve the three-dimensional multiple bin 

packing problem. The proposed method is to use mixed integer programming and tabu search 

combined with sub-volume based heuristics. 

There are research that uses evolutionary algorithm to solve the multi objective bin 

packing problem. The existence of this multi-objective problem is due to the fact that in everyday 

life, in arranging goods into containers, sometimes what is taken into account is not only the use 

of volume, it can also be taken into account the weight or value of the goods. In a study conducted 

by [5], a multi-objective genetic algorithm was used to determine the solution for the arrangement 

of goods in containers. In the study by [5], three objective functions were used, namely the number 

of goods, the weight of the goods, and the volume of goods. [6] solved multi objective bin packing 

problem using discrete particle swarm optimization method to find the order and rotation of 

packing goods, while binary space partitioning was used for container arrangement. [7] conducted 

a study to solve the single container loading problem with two objective functions, namely the 

value of goods and the use of space in the container. Here [7] using a multi-objective multi-

population genetic algorithm and supported by a fuzzy logic controller to optimize the genetic 

algorithm parameters used. [8] proposed a solution using particle swarm optimization. The 

objective that is trying to be solved is to minimize the use of containers, and optimize the center 

of gravity according to preferences. 

Some research did not use the evolutionary algorithm to solve multi objective bin packing 

problem instead using non heuristic approach. [9] carried out research using the greedy method, 

using a layer-based approach. The objective function that is taken into account is the number of 

bins used to minimize and balance the weight of each bin. [10] uses the greedy bottom left fill 

and bottom-up left-justified methods. The objective function that is calculated is the same as the 

research by [9], namely the number of bins used and balancing the weight of each bin. 

In [11] a genetic algorithm with non-dominated sorting method was found that can be 

used to obtain a set of solutions that are superior to other solutions of a multi-objective problem. 

This set of solutions is known as non-dominated solutions or Pareto optimal solutions. By using 

this non-dominated sorting method, there will be no bias in the selection process and the results 

of the genetic algorithm are in the form of a set of solutions (Pareto optimal solutions) not just 

one solution. 

In this study, a genetic algorithm with a non-dominated sorting method was used which 

was adopted from the research of [12] which is the development of research by [11]. The method 

used is coupled with a strategy called crowding distance which makes the solutions on the Pareto 

front more evenly distributed. The objective function used in this research is to maximize the 

weight of the goods, maximize the use of space, and balance the weight of the bin. 

 

 

2. METHODS 
 

In this section, we will discuss how the proposed algorithm works. It will also explain 

how the algorithm can produce a solution for each objective. 
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2.1 Algorithm Design 

 
  

Figure 1 above is a flow chart of the algorithm that will be used in this study. In this study, 

the input of the algorithm is a box list that is generated randomly, then the output of the algorithm 

is a set (pareto optimal solution) which contains the order of packing of the box list into a bin. 

The algorithm built in this study uses a genetic algorithm. The next section will explain in more 

detail step by step the algorithm that will be used. 

2. 1.1 Box list generation 
The box list generation is divided into several classes , each of which has a different 

percentage of the number of small, medium, and large boxes described in Table 1. 

𝑙𝑖,w𝑖 ,h𝑖,ψ𝑖denotes the length, width, height, and weight of the box. The box list will be generated 

randomly with the percentage rules for the number of types of box type in Table 2. 
 

Table 1 Box type 
Size Small Medium Large 

𝑙𝑖,w𝑖 ,h𝑖 (0, 5] (5, 10] (10, 15] 

𝜓𝑖 (0, 5] (10, 20] (30, 45] 

 

Table 2 Box class rules 

Class 1 2 3 4 5 6 7 

Small Box Type 100% 0% 0% 33% 50% 50% 0% 

Medium Box Type 0% 100% 0% 33% 50% 0% 50% 

Large Box Type 0% 0% 100% 33% 0% 50% 50% 

 

Figure 1 Algorithm flow chart 
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2. 1.2 Chromosome coding 
If 𝑛 is the number of boxes, then the solution is encoded with a representation in the form 

of a string s=s1,s2,...,s𝑛 ,sn+1,sn+2,...,s2𝑛  . Genes in the sequence 𝑠1 to 𝑠𝑛contain number markers in 

the box, while the sequence states the order of packing into bins. While the genes in the sequence 

𝑠n+1 to 𝑠2𝑛represent the rotation of the box in the same order. The rotation value is 1 if the box is 

rotated 90° with respect to the horizontal plane, and is 0 if no rotation is carried out. Table 3 is an 

example of chromosome coding. 
 

Table 3 Chromosome coding example 

Packing order 2 3 1 4 6 5 9 8 7 10 

Rotation 1 1 0 1 0 0 1 1 0 1 

2. 1.3 Population Initialization 
The initialization process is carried out by generating a solution with a random packing 

sequence and rotation. 
 

2. 1.4 S-DBLF Packing 

 Simple Deepest Bottom Left with Fill (S-DBLF) is a packing method that has been 

proposed by [13]. In the S-DBLF method, it tries to pack into the first available and valid place 

with the DBL sequence. Packing can be said to be valid if it meets the following conditions. 

a) Box does not exceed the size limit of the bin. 

b) Boxes do not intersect with other boxes. 

c) The box does not hang, meaning all the space under the box to be placed must be filled 

by another box. 

 Figure 2 is the pseudocode of the S-DBLF packing method. 

 
procedure S-DBLF packing: 
begin 
initialize position set P; 
 for each i ∈ B do 
  check := false; 
  sort position set P according to DBL order; 
  for each j ∈ P do 
   if i can be packed into j do 
    check := false; 
    set j as packing position of i; 
    update position set P; 
    break; 
   end if 
  end for 
  if check == false then break; 
 end for 
end 

Figure 2 S-DBLF pseudocode 

2. 1.5 Objective Function and Fitness Evaluation 
 In this study, three objective functions and fitness function will be used. The following is 

an explanation of the three objective functions and the fitness function. Below is an explanation 

of the variables that will be used in the calculation of the objective function and the fitness 

function. 
 

L,W Length and width of bin. 

𝐻 Packing height. 

𝑙𝑖,w𝑖 ,h𝑖,ψ𝑖 Length, width, and height of box i 

posX𝑖,posY𝑖 ,posZ𝑖 Deepest bottom left position in x, y, and z 
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axis of box i 

𝑥𝑖 A binary number that is 1 if the box i is in 

the bin, and 0 if it is not. 

𝑛 Box count. 

𝑐𝑥 The bin's center of gravity is on the x-axis. 

𝑐𝑦 The bin's center of gravity is on the y-axis. 

 

1. Volume utilization 

The fitness function and the objective function for volume optimization aim to maximize 

the use of space so that there is less free space in the bin. Equation 1 is the fitness function 

for the volume utilization. While equation 2 is an objective function for the volume 

utilization. 

𝑓1 =∑𝑥𝑖

𝑛

i=1

𝑙𝑖𝑤𝑖ℎ𝑖 (1) 

𝑧1=maximize (∑𝑥𝑖

𝑛

i=1

𝑙𝑖𝑤𝑖ℎ𝑖) (2) 

2. Total box weight 

The fitness function and objective function for the total weight of the box aims to 

maximize the weight of the items packed into the bin. In this fitness function, the total 

weight of all items that packed to the bin is calculated. Equation 3 is the fitness function 

for the total weight. While equation 4 is the objective function for the total weight. 

𝑓2 =∑𝑥𝑖

𝑛

i=1

𝜓𝑖 (3) 

𝑧2=maximize (∑𝑥𝑖

𝑛

i=1

𝜓𝑖) (4) 

3. Bin balance 

The fitness function and objective function for bin balance aim to make the center of 

gravity of all items that packed to the bin as close as possible to the midpoint of the bin 

to the horizontal plane. To calculate the proximity, a calculation using the Euclidean 

distance from the center of gravity of all items combined with the midpoint of the bin is 

used. Equations 5, 6, 7,  and 8 are the fitness functions for the bin balance. While equation 

9 is the objective function for bin balance. 

𝑐𝑥 =
∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖 (posX𝑖 +

𝑙𝑖
2)

∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖

 (5) 

𝑐𝑦 =
∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖 (posY𝑖 +

𝑤𝑖

2 )

∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖

 (6) 

𝑐𝑧 =
∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖 (posZ𝑖 +

ℎ𝑖
2 )

∑ 𝑥𝑖
𝑛
i=1 𝜓𝑖

 (7) 

𝑓3 = √((
𝐿

2
) − 𝑐𝑥)

2

+ ((
𝑊

2
) − 𝑐𝑦)

2

+ ((
𝐻

2
) − 𝑐𝑧)

2

 (8) 

𝑧3=minimize(√((
𝐿

2
) − 𝑐𝑥)

2

+ ((
𝑊

2
) − 𝑐𝑦)

2

+ ((
𝐻

2
) − 𝑐𝑧)

2

) (9) 
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2. 1.6 Fast Non-dominated Sort (FNDS) 
 The fast non-dominated sorting algorithm proposed by [12],  

Figure 3 is the pseudocode of the fast non-dominated sorting algorithm. 

 
procedure fast-non-dominated-sort(P): 
P = population 
ni = domination counter of solution i 
Fi = i-th front 
P-rank = pareto ranking 
begin 
 for each p ∈ P do 
  Sp = ∅ 
  np = 0 
  for each q ∈ P do 
   if p dominates q do 
    Sp = Sp ∪ {q} 
   else if q dominates p do 
    np = np + 1 
  if np = 0 do 
   P-rank = 1 
   F1 = F1 ∪ {p} 
 i = 1 
 while Fi != ∅ do 
  Q = ∅ 
  for each p ∈ Fi do 
   for each q ∈ Sp do 
    nq = nq – 1 
    if nq = 0 do 
     q-rank = i + 1 
     Q = Q ∪ {q} 
  i = i + 1 
  Fi = Q 
end 

 

Figure 3 Fast non-dominated sorting pseudocode 

2. 1.7 Crowding Distance Calculation 
 The crowding distance calculation algorithm proposed by [12].  

Figure 4 is the pseudocode of the crowding distance calculation. 

 
procedure crowding-distance-assignment(F): 
F = a pareto front 
begin 
 l = |F| 
 for i = 1 to l do 
  F[i].distance = 0 
  for each objektif m do 
   F = sort(F, m) 
  F[1].distance = infinity 
  F[l].distance = infinity 
  for i = 2 to (l – 1) do 
   F[i].distance = F[i].distance + (F[i+1].m – 

F[i-1].m) / (fmax(m) – fmin(m)) 
end 

 

Figure 4 Crowding distance calculation pseudocode 

 

2. 1.8 Parent Selection (Tournament Selection) 
 The type of tournament selection that will be used is binary tournament selection, where 

two chromosomes will be selected at random and then compared which one is better. Two 
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chromosomes compared to which one has the smaller pareto front. If they are the same, the one 

with the larger crowding distance will be chosen. 

2. 1.9 Crossover 
 The type of crossover used is the PMX crossover. The number of offspring resulting from 

this crossover process is 𝑛. Each parent pair will produce one offspring, so the crossover process 

will be performed 𝑛 times. 

2. 1.10 Mutation 
 The mutation process is done by generating a random value between 0-1, and then. 

a) Swapping the packing order at random if random number less than 0.5. 

b) Reverse the rotation of a box randomly otherwise. 

2. 1.11 Generation Update 
 After the genetic process, 2𝑛 individuals will be obtained. Then 𝑛 best individuals will be 

selected in the order as in the parent selection process. 

2. 1.12 Stopping Criteria 
 The algorithm will be terminated when the specified maximum number of generations is 

reached. 

2. 1.13 Solution Selection 
 There are 4 solutions selected from the final population, namely the solution with the 

largest fitness volume, the solution with the largest weight fitness, the solution with the smallest 

box balance fitness, and the solution with the largest total fitness normalization. Equation 10 is 

the for calculating normalized fitness. 
 

𝑓norm =
𝑓1

∑ 𝑙𝑖
𝑛
i=1 𝑤𝑖ℎ𝑖

+
𝑓2

∑ 𝜓𝑖
𝑛
i=1

+
𝑓3 −

√𝐿2+W2+H2

2

√𝐿2+W2+H2

2

 (10) 

 

 
 

3. RESULTS AND DISCUSSION 

  

 In this section, we will discuss the tests that have been carried out on the classes that have 

been described previously. In this test, algorithm performance, algorithm parameters, and the 

correlation between objectives will be discussed. For each class will be tested against various 

pairs of parameters as well as the number of boxes and bin size large or small. The small bin size 

is the minimum size to place 50 boxes, while the large bin size is the minimum size to place 100 

boxes. Each parameter pair will be tested 10 times then averaged. 

3.1 Algorithm Performance 

 Based on the data in Table 4 the algorithm in this study runs best according to its fitness 

in class 1 which contains 100% small size boxes. While the worst performance of the algorithm 

occurs in class 3 which contains 100% of large boxes. Classes that have large box compositions 

all occupy the last few rankings. Class 7 is ranked 4th with a composition of 50% medium-sized 

boxes and 50% large-sized boxes. Then class 4 ranks 5th with a composition of 33% small boxes, 

33% medium boxes, and 33% large boxes. Class 6 is ranked 6th with a composition of 50% big 

boxes and 50% small boxes. 
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 Then the other 2 classes that do not have a large box composition are ranked 2 and 3. At 

rank 3 there is class 5 with a composition of 50% small boxes and 50% medium boxes. Class 2 is 

ranked 2nd with a composition of 100% medium-sized boxes. Class ranking if it is not viewed 

from its fitness, but from each objective, the ranking obtained is also similar to a difference of 1-

2 ranks compared to the ranking for its fitness. 
 

Table 4 Average objective score for each class 

Class Average Fitness Average Volume 

Percentage 

Average Center of 

Mass 

Average Density 

1 2.71172402221213 0.87716516385453 0.151958186541507 0.143035417790328 

2 2.48244756200641 0.818417399588127 0.492967490751399 0.0327068522914782 

3 2.29893548164599 0.759072594519474 1.52388922083252 0.0180606920020255 

4 2.36125433833604 0.769041349289125 0.935078296442724 0.0226068402123578 

5 2.42686603714604 0.812025304831673 0.83973258910332 0.037875160208339 

6 2.33319489465164 0.789263348939289 1.63140833396836 0.0192526904079276 

7 2.41978143075527 0.829655733297394 0.656049039699358 0.0207811766493336 
 

 If the performance of the algorithm is viewed from the number of boxes and bin size pairs 

in Table 5 for fitness, volume, and density in the 50-small and 100-big pairs the results are not 

much different. The difference is in the center of mass, for the 100-big pair it is worse than the 

50-small pair. As for the 100-small pair, it is better for all objectives, this shows that the algorithm 

has succeeded in selecting the box so that the objective value is better. As for the fitness in the 

100-small pair, it tends to be smaller because the fitness divisor calculation on the weight 

objective is dynamic. 
 

Table 5 Average objective value for each pair of box count and bin size 
Box 

Count 

Bin 

Size 

Average Fitness Average Volume 

Percentage 

Average Center of 

Mass 

Average Density 

50 small 2.66861924034999 0.775656668459268 0.73843626014872 0.0212326581762687 

100 big 2.61081513124255 0.778747216076289 1.3097258297426 0.0217711861219594 

100 small 1.99909139500773 0.872356842546794 0.596841983013724 0.0238808231659094 

3.2 Genetic Algorithm Parameters 

 When viewed from the type of class in Table 6, for all classes, both mode and median, the 

best population size data is 100 individuals. For the number of generations in both the mode and 

median parameter data, the best is 500 generations with different classes being class 5 with 300 

generations. Of the 7 classes, there are 6 classes that have a mode of the number of generations 

of 500 and also a median of 500 or 450 which indicates half or more of the data has a number of 

generations of 500 because the number of generations of 500 is the largest value of the 5 values 

of the number of generations tested. As for the mutation probability parameter, the best parameter 

for the majority of classes is 10%. Of the 7 classes, there are 5 classes with a mode of 10% and 

also a median of 10% which indicates half or more of the data has a mutation probability of 10%. 
 

Table 6 The best genetic algorithm parameters by class 

Class 
Modus Median 

Population Size Generation Mutation Probabilty Population Size Generation Mutation Probabilty 

1 100 500 5 100 500 7.5 

2 100 500 10 100 500 10 

3 100 500 10 100 500 10 

4 100 500 10 100 500 10 

5 100 300 5 100 400 5 

6 100 500 10 100 500 10 

7 100 500 10 100 450 10 
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 When viewed from the type of solution in Table 7, both the mode and the median have 

the same value. To get the type of solution with the best fitness, volume, and center of mass, 

genetic algorithm parameters are used for population size of 100, number of generations of 500, 

and mutation probability of 10%. To get the type of solution with the best weight, the parameters 

of the genetic genetic algorithm are population size 100, the number of generations is 500, and 

the mutation probability is 5%. For each type of solution, the number of generations parameter 

has a mode of 500 and a median of 500 which indicates half or more of the data has a number of 

generations of 500. Meanwhile, of the 4 types of solutions, there are 3 types of solutions that have 

a mutation probability mode of 10% and a median of 10% also which indicates half or more than 

the data has a mutation probability of 10%. 
 

Table 7 The best genetic algorithm parameters based on the solution type 

Solution 

Type 

Modus Median 

Population 

Size 

Generation 

 

Mutation 

Probabilty 

Population 

Size 

Generation 

 

Mutation 

Probabilty 

fitness 100 500 10 100 500 10 

volume 100 500 10 100 500 10 

weight 100 500 5 100 500 5 

center of 

mass 100 500 10 100 500 10 

  

 Table 8 shows the best genetic algorithm parameters when viewed based on pairs of box 

count and bin size. Almost all of the data obtained for the mode and median use population size 

parameters of 100, number of generations of 500 and mutation probability of 10%. The median 

value equal to the mode indicates that half or more of the data use the genetic algorithm's 

parameters. There is only one median difference in the 100-big pair with 400 generations. 

 

Table 8 Genetic algorithm parameters for each pair of box count and bin size 
Box 

Count 

Bin 

Size 
Modus Median 

  
Population 

Size 

Generation 

 

Mutation 

Probabilty 

Population 

Size 

Generation 

 

Mutation 

Probabilty 

50 small 100 500 10 100 500 10 

100 big 100 500 10 100 400 10 

100 small 100 500 10 100 500 10 

3.3 Correlation Between Objectives 

 Table 9 shows the correlation between the objective pairs by class. In class 4-7 the 

correlation for the volume-weight pair is close to 0 which indicates there is no correlation between 

the two objectives. Whereas in the objective pair of volume-center of mass and weight-center of 

mass there is a positive correlation which means that the greater the volume/weight value, the 

greater the center of mass value. This positive correlation means that if the volume/weight is 

getting bigger (improved) then the objective value of the center of mass is getting bigger which 

means it is getting worse because the objective of the center of mass is to minimize its value. 

When viewed in class 1-3 there is a positive correlation in the objective pair of volume-weight, 

whereas in the objective pair of volume-center of mass and weight-center of mass the same as in 

class 4-7 there is a positive correlation. It can also be noted that in class 1-3 the composition of 

the box consists of only one type of box, while in class 4-7 the composition is mixed. 
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Table 9 Average correlation between objective pairs by class 

Class Average Correlation 

 Volume-Weight Volume-Center of Mass Weight-Center of Mass 

1 0.320652782220033 0.733352027377626 0.604236122614511 

2 0.247556934983511 0.683192431069511 0.7184163420218 

3 0.526396116180746 0.804763271855138 0.798589719150745 

4 

0.054536284657405

6 0.638709584620526 0.485946235119459 

5 

0.023314568331822

1 0.485921758011147 0.597245619584405 

6 

-

0.018910774504487

3 0.544167487826542 0.518894180091024 

7 

0.004767520723517

74 0.641608540664168 0.56899275000019 

 

 If the correlation between the objectives is seen from the data in Table 10 which shows 

the correlation between the objectives based on the type of solution, the correlation values 

generated for each pair of objectives tend not to differ much. For the three objective pairs there is 

a positive correlation, where the volume-weight pair has a correlation value that is not as large as 

the other pairs. 

 

Table 10 Average correlation between objective pairs by solution type 
Best Individual 

Type 
Average Correlation 

 Volume-Weight Volume-Center of Mass Weight-Center of Mass 

fitness 

0.165363593026

624 0.632974723938897 0.622243934219339 

volume 

0.156549338232

462 0.654358870264465 0.597110214844801 

weight 

0.140873429841

239 0.636367076817193 0.585069795072851 

center of mass 

0.198360557124

406 0.664994063438903 0.647757541730327 

 

 Table 11 shows the correlation between the objective pairs when viewed from the number 

of boxes and bin size pairs. For the volume-center-of-mass pairs for all pairs of box count and bin 

size there is a positive correlation, the objective pair of weight-center of mass also has positive 

correlation. Meanwhile, for the volume-weight objective pair, there is only a positive correlation 

in the 50-small and 100-big pairs, while in the 100-big pair the correlation value is close to zero. 

This might happen because the box selection has been optimized so that the volume and weight 

objectives are no longer correlated, and what remains is the box settings in the bin. 

 

Table 11 Average correlation between objective pairs based on pairs of box count and bin size 
Box 

Count 
Bin Size Average Correlation 

  
Volume-Weight 

Volume-Center of 

Mass 

Weight-Center of 

Mass 

50 small 

0.24534562234797

5 0.611516971621104 0.678986501388532 

100 big 

0.25589855927625

3 0.712128134288087 0.608605393677066 

100 small 

-

0.01448053532015

12 0.615051485827796 0.549876783980437 
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4. CONCLUSIONS 

 

From the research that has been done, several conclusions were obtained. The algorithm 

proposed in this study succeeded in finding several optimal solutions by considering three 

different objectives. The optimal solution for each objective is found and there is no bias towards 

a single objective in the final population. The algorithm works best on small box types and worst 

on large boxes for cube-shaped bins. The best genetic algorithm parameters in general to produce 

the most optimal solution are population size of 100, number of generations of 500, and mutation 

probability of 10%. There is a positive correlation in the objective pair of volume-center of mass 

and weight-center of mass. Meanwhile, the volume-weight pair is also positively correlated but 

its value tends to be closer to zero. 

In this research there is still much that can be done to improve it in the future. First, the 

algorithm can be tested on bins with shapes other than cubes. Then it can be tested for mutation 

probability above 10%. After that, the weight objective can be given a maximum value limit that 

can be entered into the bin so that when calculating fitness it can be divided by a non-dynamic 

divisor so that the test is more measurable. 
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