
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 

Vol.14, No.4, October 2020, pp. 397~406 

ISSN (print): 1978-1520, ISSN (online): 2460-7258  

DOI: https://doi.org/10.22146/ijccs.60733             397 

 

Received October 20th,2020; Revised October 27th, 2020; Accepted October 30th, 2020 

Attention-Based BiLSTM For Negation Handling In 

Sentimen Analysis 

 
Riszki Wijayatun Pratiwi

*1
, Yunita Sari

2
, Yohanes Suyanto

3
 

1
Master Program of Computer Science, FMIPA UGM, Yogyakarta, Indonesia 

2,3
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia 

e-mail: 
*1

riszkiwijayatun@mail.ugm.ac.id, 
2
yunita.sari@ugm.ac.id, 

3
yanto@ugm.ac.id  

 

Abstrak 

Penelitian tentang analisis sentimen beberapa tahun ini telah terjadi peningkatan. Akan 

tetapi pada penelitian analisis sentimen masih sedikit yang menggagas tentang penanganan 

negasi, salah satunya dalam kalimat Bahasa Indonesia. Hal ini mengakibatkan kalimat yang 

mengandung unsur kata negasi belum ditemukan polaritasnya secara tepat. 

Tujuan dari penelitian ini adalah menganalisis pengaruh kata negasi berbahasa 

Indonesia. Berdasarkan kelas positif, netral dan negatif, dengan menggunakan attention-based 

Long Short Term Memory dan Metode ekstraksi fitur word2vec dengan arsitektur Continuous 

bag-of-word (CBOW). Dataset yang digunakan berupa data dari Twitter. Performa  model 

dilihat pada nilai akurasi. 

Penggunaan word2vec dengan arsitektur CBOW dan penambahan layer attention pada 

metode Long Short Term Memory (LSTM) dan Bidirectional Long short Term Memory 

(BiLSTM) memperoleh hasil akurasi 78.16% dan untuk BiLSTM menghasilkan akurasi 79.68%. 

sedangkan pada algoritma FSW 73.50% dan FWL 73.79%. Bisa disimpulkan attention based 

BiLSTM memiliki akurasi tertinggi, akan tetapi penambahan layer attention pada metode Long 

Short Term Memory tidak terlalu signifikan untuk penanganan negasi. karena pada 

penambahan layer attention tidak dapat menentukan kata yang ingin diperhatikan. 

 

Kata kunci— LSTM, attention-based LSTM, BiLSTM, Attention based BiLSTM Negasi, Analisis 

sentimen. 

Abstract 

  Research on sentiment analysis in recent years has increased. However, in sentiment 

analysis research there are still few ideas about the handling of negation, one of which is in the 

Indonesian sentence. This results in sentences that contain elements of the word negation have 

not found the exact polarity. 

The purpose of this research is to analyze the effect of the negation word in Indonesian. 

Based on positive, neutral and negative classes, using attention-based Long Short Term 

Memory and word2vec feature extraction method with continuous bag-of-word (CBOW) 

architecture. The dataset used is data from Twitter. Model performance is seen in the accuracy 

value. 

The use of word2vec with CBOW architecture and the addition of layer attention to the 

Long Short Term Memory (LSTM) and Bidirectional Long Short Term Memory (BiLSTM) 

methods obtained an accuracy of 78.16% and for BiLSTM resulted in an accuracy of 79.68%. 

whereas in the FSW algorithm is 73.50% and FWL 73.79%. It can be concluded that attention 

based BiLSTM has the highest accuracy, but the addition of layer attention in the Long Short 

Term Memory method is not too significant for negation handling. because the addition of the 

attention layer cannot determine the words that you want to pay attention to. 

 

Keywords—LSTM, attention-based LSTM, BiLSTM, Attention based Negation BiLSTM, 

sentiment analysis 



             ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. 14, No. 4,  October 2020 :  397 – 406 

398 

 
1.INTRODUCTION 

 

Sentiment analysis is a field of study that analyzes a opinions, sentiments, evaluations, 

attitudes and emotions from written language [1]. The are many that have applied sentiment 

analysis to review. Research by [2] utilizes a dictionary-based method (lexicon based) to 

research sentiment analysis. From this research also have problems because word of negation 

cannot be handled. The handling of the word negation in Indonesian is still under consideration 

in the sentiment analysis. Negation has a big impact on sentiment analysis, if left untreated it  

can affect the polarity value [3]. 

Research on negation handling for Indonesian tweet by [4]. In this study, using 

algorithms First Sentiment Word (FSW) and Fixed Window Length (FWL) . However, this 

research using the dictionary as its base. The more complete the sentiment dictionary you have, 

the more sentiment words that can be detected. 

Neural networks can achieve this important word using attention, focusing on part of a 

subset with information they’re given [5]. [6] Using attention to handle negation words in 

Electronic Health Center (EHR) data. Attention mechanism that is combined in  the 

Bidirectional Long Short Term Memory (BiLSTM) model is called attention-based 

BiLSTM.This shows that the attention based BiLSTM method is appropriate for classification  

of text. 

For these reasons, in this study, we will discuss the handling of negation in sentimen 

analysis which has previously been studied by [4] using FSW and FWL algorithm. This study, 

the BiLSTM method is used which refers to [6]. While for the data used from [4]. Then the 

result will be compared between the fsw and fwl algorithm with attention in the BiLSTM 

method. 

 

2. METHODS 

2.1 Architecture System 

In this research the system architecture that will be built has for parts, they are data 

collection, preprocessing, feature axtraction, the last classification and evaluation systems. The 

process can be seen in Figure 1 and Figure 2. 

 
Figure 1 Data preprocessing process 



IJCCS   ISSN (print): 1978-1520, ISSN (online): 2460-7258     

Attention-Based BiLSTM for Negation Handling in Sentimen ... (Riszki Wijayatun Pratiwi) 

399 

 
 

Figure 2 Modeling sentimen analysis 

2.2 Data Collection 

The data of reviews tweet used in this research uses a dataset from research [4]. Dataset 

used Indonesian Language tweet data that have been labelled as positive, neutral and negative. 

2.3 Preprocessing 

Preprocessing is very important in sentiment analysis, because preprocessing manage 

data to get data that is clean to be processed in the making word vectors and sentiment 

classification were more accurate [7]. As for the step in preprocessing is a) Case folding, b) 

Filtering, c) Tokenizing, d) slangwords convertion, and e) stopword removal. For example of  

the preprocessing process can be seen in Table 1: 

 

Table 1 The preprocessing Example 

Preprocessing Reviews 

Tidak salah pilihanku. Orang- orang baik sepertinya juga dukung jokowi. #Jokowimaju 

Casefolding tidak salah pilihanku. orang-orang baik sepertinya juga dukung 
jokowi #jokowimaju 

Filtering tidak salah pilihanku orang orang baik sepertinya juga dukung 
jokowi jokowimaju 

Tokenizing [tidak] [salah] [pilihanku] [orang] [orang] [baik] [sepertinya] 
[juga] [dukung] [jokowi] [jokowimaju] 

Slangwords convertion x (because in the example there are no non-standard words) 

Stopword Removal [tidak] [salah] [pilihanku] [orang] [orang] [baik] [dukung] 
[jokowi] [jokowimaju] 

 

An explanation of each step can be seeb below : 

 

2.3.1 Casefolding 

Not all text documents are letter-consistent, so in this process can be change the letter 

characters in the comment to all lowercase characters. 

2.3.2 Filtering 

In this process adjustments are made by removing special characters and reviews such 

oter characters ($,%,*, and so on). This process will be eliminates words that do not match the 

parsed results. For example usernames that start with the symbol “@”, hashtags “#”, Uniform 
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Resource Locator (URL) and emoticons. Signs, symbol or numbers are omitter because they 

have just a little effect on labelling process. 

 2.3.3 Tokenizing 

Tokenizing servers to break the review down into word units. The tokenizing process is 

carried out by looking at every space in the review. Based on these spaces the words can be 

separated. 

2.3.4 Slangword convertion 

Slangword conversion is the process of converting non-standard words into standard 

words. This stage is carried out using the help of a slangword dictionary and its equivalent in 

standard words. This stage will check the words contained in the slang word dictionary or not. If 

a nonstandard word is found in the slang word dictionary, the nonstandard word will be 

converted to the standard word found in the slang word dictionary. 

2.3.5 Stopword Removal 

This stage serves to eliminate words that have no influence (which, and, or, to, from, 

etc.) in the later classification process. 

 

2.4 Sentence Conversion 

The steps in this process creating a word dictionary, converting sentences into numbers, 

and padding. The results of this sentence conversion process will be used as input to the 

BiLSTM method. The first process is making a word dictionary that is used to provide the word 

is contained in a sentence in the tweet data that has gone through a preprocessing process 

2.5 Word2vec 

Word2Vec, developed by Thomas Mikolov, is an implementation of artificial neural 

networks that can process words from very large datasets in a relatively short time. This tool 

works by taking a corpus of text as input, then produces a vector representation of each word in 

the corpus as output [8]. There are two Word2Vec modeling architectures that can be used to 

represent word vectors, the architecture is Continuous Bag-of-word (CBOW) and Skip-gram 

[9]. In this study used Continuous bag of words (CBOW) architecture and skipgram. Vector size 

of 200 dimensions, this refers to [6]. 

2.6 Attention based bidirectional LSTM 

First, build BiLSTM as a model. Taking word embedding as input. This layer will be 

change the positive integer index in the input into a fixed-size vector based on the vector 

dimensions of the word dictionary based in word2vec model. In LSTM, this layer determines  

the previous input, whether it can pass in the cell state or not. What determines the data can be 

continued or not is the sigmoid layer called “forget gate” . Output 1 means “let pass” and 0 

means “forget information” [10]. The calculation ot the forget gate value was with equation (1). 
ft = σ (Wf . [ht−1, xt] + bi)       (1) 

  

For the next step was to determine the new information that were going to be stored in 

the cell state. First sigmoid layer was called the input gate which determined which part to 

update. Then, the tanh layer created a new candidate value vector, 𝑐𝑡 to be added to the cell 

state. And the next step, the two were combiner to make an update to the state. To calculate the 

input gate value with equation (2) and the new candidate value with equation (3). 
𝑖𝑡 = 𝜎 (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 )                    (2) 

𝑐𝑡   = 𝑡𝑎𝑛ℎ (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)   (3) 

 

Then next step to updating the old cell state 𝐶𝑡−1 into the new cell state 𝐶𝑡. By 

multiplying the old cell state with the forget gate 𝑓𝑡 then added 𝑖𝑡 ∗ 𝑐𝑡  . To be clearer, in the 

equation (4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶 𝑡 (4) 
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Next step is output gate. First, runing the sigmoid layer which determined which cell 

would be the output, then place the cell state through the tanh and increased the output of the 

sigmoid gate. So that only the part we specified was the output. Calculation of output gate with 

equation (5) and (6). 

 
𝑂𝑡 = 𝜎 (𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

 

All hidden states are fed into a subsequent attention layer [11]. We added attention layer 

because not all words contribute equally to the negation detection. The normalized word weight 

is 𝛼𝑡 obtained through a softmax function equation (8). The aggregate of all information in the 

sentence v is the weighted sum of each ht with 𝛼𝑡 , as corresponding weights. 

 

𝑢𝑡    = tanh(𝑊𝛼   ℎ 𝑡  + 𝑏𝛼)                                                   (7)                                                    

 

                                                  (8)                                                                      

𝑣 =  ∑𝑡𝛼𝑡ℎ𝑡                                                   (9)                                                                    

 

 

This vector v is then fed to a fully connected layer with softmax activation to perform 

the final classification. The prediction is a vector y ∈ R2 with the probabilities of being positive, 

netral or negative. The model architecture is shown in Figure 3 and Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The architecture of attention based LSTM [11] 
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Figure 4 The architecture of attention based BiLSTM [11] 

 

 

3. RESULTS AND DISCUSSION 

 

This section discusses the results of sentiment classification test from the model that  

had been built. Sentiment classification test was done by measuring the values of accuracy, 

precicion, recall and f1 score. 

Total tweet rivew data used were 612 data for positive, neutral and negative sentiment. 

The training data used was 80% of the total data. While 20% of the total data was used as test 

data. 

Classification test was done by measuring the value of accuracy, precision, recall and f1 

score obtained by comparing each review with the results of the calculation of the attention 

based Bidirectional Long Short Term Memory method carried out by the system. There were 

two architecture of the attention based Long Short Term Memory method tested, attention based 

LSTM and attention based BiLSTM which were compared with LSTM, BILSTM model and 

First sentiment window and fixed window length algoritm. 
 

3.1 Attention based LSTM Classification Test 

The classification results of the calculation sentiment classification using the attention 

based LSTM method is shown in Table 2. 
 

Table 2 attention based LSTM tets result 
Parameter Value Accuracy 

Word2vec architecture CBOW  

78.15% 
Neuron 200 

Epoch 20 

L2 regularization 0.00001 

Activation function softmax 
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Based on Table 2, it shows that the best accuracy result in the overall test of the attention based 

LSTM method was 78.15%. with the best parameters of CBOW architecture, 200 neurons each 

layer, 20 epochs, L2 regularitation of 0.00001 and softmax activation function. 

 

3.2 Attention based BiLSTM Classification Test 

While overall in the test result from the calculation of sentiment classification using the 

attention based BiLSTM method showed that the accuracy value was better than the attention 

based LSTM. The overall accuracy value was 79.68%. This means that by increasing added 

BiLSTM model, it can increase the results of sentiment classification accuracy. The results 

sentiemn classification using the attention based BiLSTM method are shown in Table 3. 

 

Table 3 attention based BiLSTM test result 
Parameter Value Accuracy 

Word2vec architecture CBOW  
 

79.68% 
Neuron 200 

Epoch 20 

L2 regularization 0.00001 

Activation function softmax 

 

Based on Table 3, it shows that the best accuracy result in the overall test of the attention based 

BiLSTM method was 79.68% with the best test parameters of CBOW architecture, 200 neurons 

each layer, 200 epoch, L2 regularization of 0.00001 and softmax activation function. 

 

3.4 LSTM Classification Test 

To see the attention gain performance with LSTM model, we will compare it with 

LSTM model without attention model. And the result can be seen in Table 4. 

Table 4 LSTM test result 
Parameter Value Accuracy 

Word2vec architecture CBOW  

75.60% 
Neuron 200 

Epoch 20 

L2 regularization 0.00001 

Activation function softmax 

 

Based on Table 4, it shows that the best accuracy result in the overall test of the LSTM method 

was 75.60% with the best test parameters of CBOW architecture, 200 neurons each layer, 200 

epoch, L2 regularization of 0.00001 and softmax activation function. 

 

3.5 BiLSTM Classification Test 

In the BiLSTM classification test using same parameters with LSTM classification, and 

can be seen in Table 5. 

Table 5 BiLSTM test result 
Parameter Value Accuracy 

Word2vec architecture CBOW  

76.87% 
Neuron 200 

Epoch 20 

L2 regularization 0.00001 

Activation function softmax 

 

Based on Table 3, it shows that the best accuracy result in the overall test of the BiLSTM 

method was 76.87% with the best test parameters of CBOW architecture, 200 neurons each 

layer, 200 epoch, L2 regularization of 0.00001 and softmax activation function.  
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3.6 FSW and FWL algorithm Test 

The FSW and FWL uses the same data as the data in the attention based 

BiLSTM/LSTM method. The data had also gone through the same preprocessing process while 

the feature extraction used was TF (Term-Frequency). Furthermore. The results of the FSW and 

FWL Algoritm can be seen in Table 6. 

 

Table 6 FSW and FWL algorithm result 
 Accuracy Precision Recall F1 score 

FSW 67.32% 67.59% 67.58% 66.83% 

FWL 68.79% 69.22% 68.88% 68.37% 

 

3.7 Comparation of Accuracy Results 

Comparation of the accuracy result from the calculation of sentiment classification  

using attention based LSTM, attention based BiLSTM and FSW and FWL algorithm is showed 

in Table 7. The classification of sentiment classification using the attention based BiLSTM 

method had a better value of accuracy than the attention based LSTM, BiLSTM or LSTM and 

FSW and FWL algorithm. Because in the attention just focus on capturing important word will 

then be reweighted can get maximum result. This study focuses on the use of attention to handle 

negation, but after doing this research it can be concluded that the addition of the attention layer 

is not to significant for dealing with negation words, because it is important to choose words 

randomly. 

 

Table 7 Comparation of result 

  
 Accuracy Precision Recall F1 score 

Attention based LSTM 78.15 76.56 77.45 77.25 
Attention based BiLSTM 79.68 78.37 79.26 78.00 

LSTM 75.60 76.82 76.50 75.30 
BiLSTM 76.87 76.90 77,30 77.12 
FSW 67.32 67.59 67.58 66.83 

FWL 68.79 69.22 68.88 68.37 

 

3.5 Result of Prediction 

In this part we can seen the result of true or false prediction. For details we can be seen 

Figure 5 and Figure 6. 

 

3.5.1 Result of Prediction True 
 

 

Figure 5 Review Prediction True 

 

Figure 5 shows the prediction results of a positive tweet review, for example in the 

following tweet riview “jokowi-jk janji sejahterakan tni-polri” has a positive (1) actual value 

and the predictive value is [2.710, 1.002, 1.0005], then the prediction result is from the higest. 



IJCCS   ISSN (print): 1978-1520, ISSN (online): 2460-7258     

Attention-Based BiLSTM for Negation Handling in Sentimen ... (Riszki Wijayatun Pratiwi) 

405 

weight 2.710. the weet is in accordance with its actual value. This also applies to reviews of 

neutral tweet and negative tweets. 

 

3.5.2 Result of Prediction Not True 

 

 

Figure 6 Review Prediction Not True 

 

In Figure 6 is a review of the negation sentence “semoga lulus sandiwara ini prabowo- 

hatta di rspad untuk tes kesehatan” actual values negative (-1) but predictive value positif (1), 

because the words passing “lulus sandiwara” means “lulus kebohongan”. And the predictive 

value is [1.819, 1.00035, 100046] which is positive. 

 

 

4. CONCLUSIONS  

 

Based on study, it can be concluded that: 

1. The addition of layer attention to the Long Short Term Memory method is not 

significant for the handling of negation words, because the addition of layer attention 

cannot determine the words that you want to pay attention to. So that the words you 

want to pay attention to are obtained in the training process. 

2. Attention based BiLSTM method produces more accuracy, namely 79.68% compared  

to attention based LSTM 78.15%, BiLSTM 76.87%, LSTM 75.60% and FSW 67.32%, 

FWL 68.79%. 

 

 

5. SUGGESTION 

 

1. There are still some weakness in this study that can be improved. Some suggestions for 

tuther research are as follows: 

2. Try another method for handling negation words, because if you only add a layer of 

attention to the neural netowork, the negation word cannot be handled. 

3. Using other feature extraction methods, you can uses other methods such as FastText 

and Glove. 

4. If the research is in the form of handling negation, it is better if the dataset used is data 

tat contains a lot of negation sentences in order to see wethert the method can handle 

negation sentences. 
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