
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.12, No.1, January 2018, pp. 63~72

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: 10.22146/ijccs.28121  63

Received September 7th,2017; Revised January 5th,2018; Accepted January 22th,2018

Selenium-Based Multithreading Functional Testing

Khabib Mustofa
*1

, Sunu Pinasthika Fajar
2

1
Department of Computer Science and Electronics, FMIPA, UGM, Yogyakarta, Indonesia

2
Magister of Computer Science FMIPA UGM, Yogyakarta, Indonesia

e-mail: *
1
khabib@ugm.ac.id,

2
sunupf@gmail.com

Abstrak

Pada proyek pengembangan perangkat lunak, pengujian (testing) merupakan aktivitas

yang dapat menghabiskan waktu, usaha atau biaya hingga 35%. Untuk mengurangi hal

tersebut, pengembang dapat memilih pengujian secara otomatis. Pengujian otomatis,

khususnya pengujian fungsional, pada aplikasi web dapat dilakukan dengan memanfaatkan alat

bantu, salah satunya adalah Selenium. Secara default, pengujian mengunakan Selenium

dilakukan secara berurutan dan tanpa memanfaatkan multithreading, yang berdampak pada

waktu yang cukup panjang.

Dalam penelitian ini dikembangkan sebuah platform yang memungkinkan pengguna

Selenium melakukan pengujian dan memanfaatkan multithreading dengan bahasa Ruby untuk

mempercepat pengujian. Multithreading pada Ruby terbukti mampu mepercepat pengujian

fungsional pada aplikasi web secara bervariasi. Variasi terjadi tergantung pada fungsional

yang diuji, metode pengujian dan juga jenis perambah yang digunakan.

Kata kunci— pengujian perangkat lunak, pengujian fungsional, Selenium, multithreading

Abstract

In a software development projects, testing is an activity that can spend time, effort or

cost up to 35%. To reduce this, developers can choose automatic testing. Automated testing,

especially for functional testing, on web applications can be done by using tools, one of which is

Selenium. By default, Selenium testing is done sequentially and without exploiting

multithreading, which has an impact a sufficiently long time.

In this study, a platform that allows Selenium users to test and utilize multithreading

with Ruby language to speed up testing was developed. Thr result shows that Ruby's

multithreading has proven to be capable of speeding functional testing up on various web

applications. Variations occur depending on the functionality being tested, the testing approach

and also the type of browsers used..

Keywords—software testing, functional testing, Selenium, multithreading

1. INTRODUCTION

Finding defects in a software before its official release is compulsory, as studies revealed that

fixing bugs in early steps of software development will minimize cost significantly. Finding

such defects in the maintenance phase might incur cost up to 100% compared to that of the

design phase [1]. One of the approach to achieve that saving is by carrying out a software

testing. Unfortunately, software testing itself is an activity that might consume about 30% up to

35% of the total effort in the project [2][3]. To overcome such situation, developers choose to

apply automatic testing, which means that the test can be repeated many times on the software

mailto:1khabib@ugm.ac.id
mailto:2sunupf@gmail.com

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 63 – 72

64

under test. This automatic testing is carried out also using tools or software.

 Among existing testing types, functional testing is the most frequently carried out

testing using automatic testing approach, including for a web application. Functional testing

aims at verifying the software under test whether or not it has met predefined requirements and

focusing on comparing input given into its forms with output and status that should be accepted

[4]. Several tools are available for functional testing for a web application, one of them is

Selenium. By default, script in Selenium is executed in a single thread, leading to consequence

that all test cases will be done sequentially or serially. In carrying out functional testing for a

web application, access to I/O devices and network device will be much greater than access to

CPU, and the testing script will be waiting for more (for the data to be completely processed).

This waiting time will be minimized by increasing the access to CPU by multithreading

approach. By now, it is still difficult to find tools for web application testing which provide

support for multithreading and direct access to web driver API.

 Based on what has been described above, this research will discuss the use of Selenium

as a tool for functional testing with several test cases provided by users, and they will be

executed in multithreading way to improve efficiency and shorten the testing time duration.

 An automated testing tools based on Selenium, combined with Fitnesse, was introduced

to and enabled users to carry out a testing collaboratively [5]. It was mentioned in the paper that

even though Selenium is not a tool to solve any problems in testing, the existence of an increase

in its community, both either users or developers, indicates that Selenium was quite promising

to be used in functional system testing in future.

 Another research related to Selenium has also been conducted on the topic of automated

browsing on AJAX website [6]. In the research, Selenium can recognize only some specific

events, meanwhile in AJAX requests may happen in various types of event. The reduction of the

event was aimed at avoiding event flooding, that is the number of events captured by listener

such that it is beyond being effective and efficient.

 Beside Selenium, Sahi is also a quite popular tool for automatic testing on a web

application domain. Both Selenium and Sahi have their own advantages and disadvantages. In

[7], both are compared in terms of test-case creation time, test execution speed, installation and

configuration, record and playback, logging and reporting, cost, and platform compatibility. It

disclosed that Selenium was leading in terms of test-case creation time, single thread execution

time, logging and reporting, and ease of installation, while Sahi provides a feature of executing

test cases in parallel which enable users to shorten test execution time if such feature is

activated.

 Other research on automatic testing using Selenium disclosed that Selenium-based

functional tests for the web application are modified as the project evolve [8]. In other words,

the paper called that it co-evolved with WAUT (web application under test).

 Selenium comes in two version: IDE and Webdriver. Both versions were discussed in

[9] which compares capture-replay web testing (using Selenium IDE) with programmable web

testing (using Webdriver). Testing an application requires the development of test suites. These

facts mean more time is needed. When programmable web testing is adopted, such time is more

expensive but the test suite maintenance is less expensive. In cumulative, using programmable

web testing, cost becomes lower compared to that of capture-replay approach.

 By default, Selenium does not provide configuration file which makes ease users in

doing testing based on existing configuration. An effort to improve testing features based on

Selenium by incorporating configuration file, Junit report and parallel testing for each browser

into Selenium model is discussed in [10]. This testing was executed in Python.

 In [11], an extension of Selenium to accommodate testing web application

which accesses database claim that the proposed approach could reduce efforts of executing test

case suites up to 88% compared to semiautomated strategy, and 92% compared to manual

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Selenium-Based Multithreading Functional Testing (Khabib Mustofa)

65

strategy. The extension will read the contents of the database and compare them with the test

output. The access to a database is carried out at the same time the test case is being executed.

2. METHODS

2.1 System Architecture

In this research, a computer will be used with the following configuration:

1. The main computer is running natively on Windows 10 which will act as the

tester.

2. A virtual machine is running on top of the Windows to execute Linux Ubuntu

version14.10 with a web server inside. The application to be tested is running

on this web server.

3. On the main computer, text editor, Selenium Webdriver and Visual Studio

have been installed as the tools for the system development.

2.2 Testing the Platform

 The proposed platform uses a command line as the interface. It was developed in Ruby

and utilizing JSON for storing data and testing configuration to be executed. Basic use of the

script to start a testing platform is as follows:

$ coba test configuration_file [browser_name]

In the above command, the name of the platform is coba and its first parameter, test, is the

command to do the testing. The next parameter is the address of the configuration file. This

configuration file might include default browser, address of the Selenium script to be executed,

address of the test case file for data input, number of thread to be used (minimum 1), and

configuration of the input form to be tested. While the last parameter, browser_name, may be

used if the user wants to override browser configuration. Figure 1 shows the architecture of the

testing platform.

From Figure 1, it can be explained that:

1. Test Suite consists of scripts, configuration, and test-case input

Configuration

Figure 1 Architecture of the Testing Platform

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 63 – 72

66

2. Test Suite will be thrown to Test Runner. Here, all the data will be processed as

the preparation step before testing

3. In this Test Runner, there will be adjustment or assignment of the port (which

will be used to communicate between Selenium with driver), work queue, and

thread pool (which will arrange execution of each work queue into thread). As

it is important in multithreading to follow thread-safety, it is necessary to

implement the thread such that shared variables are not overlapping.

In Ruby, a class named Queue which has the characteristic of following thread-

safe concept is used in the implementation of the platform. Besides, as there

are some lines of code which need to be executed in interleaving way, a class

Mutex (Mutual Exclusion) is used to ensure that the execution of threads is

synchronized, thus, consequently, the data consistency can be maintained.

4. Each thread executes Selenium script through Selenium Wrapper. This wrapper

contains functions which will execute our scripts. It will also store a log of

execution in JSON format and report the execution status via command line

interface.

2.3 Test-case Generator

 Similar to the testing platform, Test-case Generator runs with command line interface.

Test-case Generator is basically a script, written in Javascript, whose main task is to generate

test-case consisting of input and output. Figure 2 shows the architecture of the test-case

generator.

To generate input, a validation is required by the application to be tested. As an

illustration, if there is a field name of input form that must be filled in with minimum 4

characters and maximum 20 characters, then this input field will have validation: required,

min:4 and max:20. These validations are then used to generate input for the input field.

There are several validations supported by the proposed platform:

1. required

2. max:x

3. min:y

4. emai

5. alpha

Figure 2 Test-case Generator Architecture

i

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Selenium-Based Multithreading Functional Testing (Khabib Mustofa)

67

Those validations need be written in a configuration file copied from the template on

the phase of test suite composition. For the example of input field name, the validation can

be represented in the form of an array as shown in Figure 3.

It was mentioned above that there is a limited number of validation offered in this

platform. If needed, user or tester may add custom validation by creating a file in the validation

folder and being saved in Javascript format. All of the input test cases generated will be saved

in a JSON file defined in the configuration file.

 In generating input test case, the platform utilizing total combination or number of

subset formula to determine the number of possible values for the input validation defined. To

illustrate the process, the following description will refer to the case as explained in Figure 3.

Based on Figure 3, it is clear that the validation consists of three elements: required,

min:4 and max:20. Using total combination formula, it can be calculated that there should be 8

subsets as depicted in Table 1.

Table 1 Total combination of input test case with 3 validation

Number of possible combination for 3 elements: 23
 = 8

[] [requried]

[min:4] [max:20]

[required, min:4] [required,max:20]

[min:4,max:20] [required,min:4,max:20]

Suppose that an input field satisfies only proper subset of the set containing all

validation elements, then it can be said that there is/are missing rule(s), and this missing rule(s)

will be used to generate a conclusion determined using a regular expression. In the proposed

platform, the regular expressions are formed using Javascript library called randexp.js. For a

case with more than one input fields, the formula will be adjusted by applying the product of all

sets involved. As an illustration, if a form has two input fields: the above-mentioned name

field and a field whose validations are email and required. From the second field, it can be

derived that the subsets generated would be 4. Thus, there will be 8 x 4 = 32 possible

combination of validation cases. In general, the number of possible combination of validation

cases could be represented as Eq. 1.

TotalInputValidationCase =
i=1

n C
i
 (Eq. 1)

where C
i
= 2k , k is number of validation elements for field i.

Output test case generation can only happen when input test case generation has already

been completed. The output test case generator will access the file (if exist) containing the

results of input test case generation, and then process it to obtain values of possible response

from the application to be tested, otherwise, it will throw an error message.

 The process of output generation is implemented using library validatorjs written in

Javascript. The library is suited for Laravel framework. As it provides API to extend or re-

define new validation and error message, in this platform a new file message.js is created to

"input":[{

 "type":"name",

 "selector": "[name='name']",

 "name":"name",

 "validation":["required","min:4","max:20"]

 }]

Figure 3 Validation for an input field in a configuration file

i

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 63 – 72

68

enable users to overwrite messages by writing the name of validation and its corresponding

message in JSON format in a generic format as follows:

{validation-name : “error message”}

2.4 Testing Design

 Testing is carried out using the proposed platform by considering the following factors:

2.4.1 Environment Condition

 In order to achieve a good and reliable quality of data, the environment of testing should

be adjusted to be in a relatively similar condition. As the testing platform runs on Windows, the

operating system is ensured to run in a clean boot; that is the OS only loads services necessary

for the OS itself and without any third party services running. This conditions can be achieved

among others by:

1. disable all non-Windows services. Users can do this step by using dialog provided by

Windows from msconfig command and then configure such options.

2. disable startup program. Users do this configuration by disabling all items in Start Up

tab available in Task Manager.

2.4.2 Testing Process

The followings are basic steps in testing the proposed platform.

1. Preparing the test. In this stage, some files must be prepared, depending on the

features to be tested. At the minimum, four files should exist: three Selenium scripts

(script before testing, testing script, and script after testing) and one configuration

file

2. Generating input and output test cases. Validations on the forms to be tested are

added into the configuration file. If the testing does not use input/output test case

generator, testers/users may create JSON file containing arrays of object

accordingly.

3. Testing script creation. A testing script using Selenium is created. The script will be

run before the real testing to ensure that the script behaves as expected.

4. Testing on the platform. The script is run on the platform developed. The platform is

tested against some functional features of the WAUT: login, register, profile update,

activity creation, and sub-activity creation. The testing is done on browsers which

have support for Selenium: Internet Explorer version 11.0.15063.0, Firefox version

54.0.1, Chrome version 60.0.3112.90, and PhantomJS version 2.1. The Selenium

used in the testing is of version 3.4.4., including its corresponding web driver. When

the script is running, elapsed time to run the script on the platform is recorded.

There are two different methods for the tests:

a. Using sendKeys method to fill in the form. The method is the method

recommended by Selenium as it resembles the input given by real users. The

method fills in the input following the generic format

element.send_keys parameterList

So, an execution of

element.send_keys ”tet”, :arrow_left, ”a”

will imitate of sending value ”test”.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Selenium-Based Multithreading Functional Testing (Khabib Mustofa)

69

b. Using Javascript to fill in the form. The method is introduced as an

alternative as sometimes browser does not respond well the execution of the

sendKeys method. The method fill in the input as illustrated below:

driver.execute_script(javaScript_Expression)

So, an execution of

element = driver.execute_script("return document.body")

will assign variable element to document body element of an HTML file.

Furthermore, the element can be used or referred in the next instruction, as

driver.execute_script("return arguments[0].tagName",

element)

c. Using multithreading. In this method, Javascript method with 4 (four)

threads is used.

For each testing, a folder will be created to hold folders representing features of

WAUT, such as folder login, register, profile update, etc. Each folder will contain

configuration and test case different one with another.

Database migration. As the condition of the database might change during the testing

process, so it is necessary to restore the database state to the initial condition. This

step is done manually each after the completion of the test for each browser.

3. RESULTS AND DISCUSSION

Based on some scenario or functional features as stated above, the following tables

(Error! Reference source not found., Table 3, Table 4, Table 5 and Table 6) show some results

of the testing:

1. The percentage in the second row of each table means that there is positive or

negative speedup of the single-thread Javascript compared to the single-thread

sendKeys. Negative value means that there is slowdown in performance of the

single-thread Javascript testing against the single-thread sendKeys ones.

2. The first percentage of the third row means that there is positive or negative speedup

of the multi-thread Javascript compared to the single-thread sendKeys.

3. The second percentage of the third row means that there is positive or negative

speedup of the multi-thread Javascript compared to the single-thread Javascript.

On the test using the sendKeys method, in general, Internet Explorer is much slower

than others. While Firefox, Chrome, and PhantomJS are taking turns recorded the best testing

time. But when the test uses Javascript method, inconsistency in performance is shown by

PhantomJS and Firefox, as sometimes those browsers experience negative speedup.

There are cases where multi-threaded testing becomes slower. It only occurs in Firefox.

The diagnosis of this case might be that high Firefox driver initiation time even becomes higher

when multi-threaded testing is performed. This happens because basically multithreading on

Ruby does not execute commands fully in parallel, but just being concurrent, and the driver

initiation process is a CPU bound. Coupled with a small number of test cases, fast test execution

time is not comparable to a decrease in the speed at the driver initiation time.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 63 – 72

70

Table 2 Result of testing for account creation (registration) function

Input Method Firefox Chrome Internet Explorer Phantomjs
Single Thread

(Send Keys)

622.63 s 574.4 s 2,922.56 s 529.96 s

Single Thread

(Javascript)

550.76 s

(+13.05%)

393.24 s

(+46.07%)

1,198.48 s

(+143.85%)

379.96 s

(+39.48%)

Multi Thread

(Javascript)

216,5 s

(+187.55% /

+154.36%)

167.18 s

(+ 243.58% /

+135.22%)

390.61 s

(+ 648.20% /

+ 206.82%)

164.92 s

(+221.34% /

+141.30%)

Table 3 Result of testing for login function

Input Method Firefox Chrome Internet Explorer Phantomjs
Single Thread
(Send Keys)

24.36 s 17.93 s 81.12 s 22.05 s

Single Thread
(Javascript)

15.09 s
(+ 49.72%)

11.72 s
(+ 52.97%)

30.17 s
(+ 168.88%)

15.96 s
(+ 38.16%)

Multi Thread
(Javascript)

17.17 s
(+ 41.88% /

- 13.78%)

10.90 s
(+ 64.50% /

+ 7.00 %)

16.28 s
(+ 398.28% /

+ 46.04%)

15.34 s
(+ 43.74% /

+ 7.00%)

Table 4 Result of testing for profile update function

Input Method Firefox Chrome Internet Explorer Phantomjs
Single Thread

(Send Keys)

6,446.92 s 8,984.86 s 90,725.02 s 4,940.34 s

Single Thread

(Javascript)

9,199.77 s

(- 42.70%)

7,925.83 s

(+ 13.36%)

8,664.17 s

(+ 947.13%)

6,645.12 s

(- 34.51%)

Multi Thread

(Javascript)

1,300.01 s

(+ 395.91% /

+ 607.67%)

1,251.31 s

(+ 618.04% /

+ 533.40 %)

1,853.60 s

(+ 4,794.53% /

+ 367.42%)

1,123.77 s

(+ 339.62% /

+ 491.32%)

Table 5 Result of testing for activity creation function

Input Method Firefox Chrome Internet Explorer Phantomjs

Single Thread

(Send Keys)

180.67 s 227.95 s 1,251.66 s 182.99 s

Single Thread

(Javascript)

103.52 s
(+ 74.53%)

103.14 s
(+ 121.01%)

239.85 s
(+ 421.85%)

100.44 s
(+ 82.19%)

Multi Thread

(Javascript)

64.64 s

(+ 179.50% /

+ 60.15%

54.11 s

(+ 321.27 /

+ 90.61 %)

79.65 s

(+ 1,472.45% /

+ 201.13%

48.6 s

(+ 276.52% /

+ 106.67%)

Table 6 Result of testing for activation email resend function

Input Method Firefox Chrome Internet Explorer Phantomjs

Single Thread

(Send Keys)
24.57 s 22.50 s 56.09 s 28.38 s

Single Thread

(Javascript)

24.71 s

(- 0,57%)

23.80 s

(- 5,78%)

44.40 s

(+ 26,33%)

29.59 s

(- 4,28%)

Multi Thread

(Javascript)

19.64 s

(+ 25.10% /

13.83 s

(+ 62.69% /

20.35 s

(+ 175.63% /

15.55 s

(+ 82.51 % /

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Selenium-Based Multithreading Functional Testing (Khabib Mustofa)

71

+ 25.81%) + 72.09%) + 118.18%) + 90.29%)

4. CONCLUSION

The experiment carried out on the proposed platform show that multithreading on Ruby

can speedup functional testing process applied on the WAUT (Web Application Under Test).

The functional test speedup varies depending on the testing methods (sendKeys or Javascript)

and functional features under the test.

Among browsers used during the testing, Internet Explorer is always much slower to

excute the test, especially when the testing type is using sendKeys.

Javascript method does not always show positive speedup, especially in Firefox and

Phantomjs.

In this research, the multithreading approach was implemented in a static way, that is

just by using 4 (four) threads. At this point, there is no clue about the relationship between the

number of thread used and the speed of testing. It will be a good chance to explore further such

relationship to formulate the optimal number of thread for a testing. Besides, the browsers

explored so far has not included some popular ones, such as Opera or Safari. Extending popular

browsers to be included in the testing using the proposed platform is a challenge.

REFERENCES

[1] P. K. Suri and A. Pooja, ―Study of Software Quality and Risk Estimation and Quality

Cost Analysis using empirical study,‖ International Journal Of Engineering And

Computer Science, vol. 4, no. 7, 2015 [Online]. Available:

https://www.ijecs.in/index.php/ijecs/article/download/3874/3610/

[2] Anonymous, ―Testing Effort Estimation.‖ [Online]. Available:

http://www.geekinterview.com/question_details/75715

[3] R. Gupta and N. Bajpai, ―A Keyword-Driven Tool for Testing Web Applications

(KeyDriver),‖ IEEE Potentials, vol. 33, no. 5, pp. 35–42, Sep. 2014 [Online]. Available:

http://ieeexplore.ieee.org/document/6894287/. [Accessed: 18-Jan-2018]

[4] Y.-F. Li, P. K. Das, and D. L. Dowe, ―Two decades of Web application testing—A

survey of recent advances,‖ Information Systems, vol. 43, pp. 20–54, 2014 [Online].

Available: https://doi.org/10.1016/j.is.2014.02.001

[5] A. Holmes and M. Kellogg, ―Automating Functional Tests Using Selenium,‖ in AGILE

2006 (AGILE’06), 2006, pp. 270–275 [Online]. Available:

http://ieeexplore.ieee.org/document/1667589/. [Accessed: 20-Jan-2018]

[6] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. López, ―Automated browsing in AJAX

websites,‖ Data & Knowledge Engineering, vol. 70, no. 3, pp. 269–283, 2011 [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0169023X10001503#

[7] T. J. Naidu, N. A. Basri, and S. Nagenthram, ―SAHI vs. Selenium: A comparative

analysis,‖ in Contemporary Computing and Informatics (IC3I), 2014 International

Conference on, 2014, pp. 967–970 [Online]. Available:

http://ieeexplore.ieee.org/document/7019594/

[8] L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, ―Prevalence and

maintenance of automated functional tests for web applications,‖ in Software

Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, 2014,

pp. 141–150 [Online]. Available: http://ieeexplore.ieee.org/document/6976080/

[9] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, ―Capture-replay vs. programmable web

testing: An empirical assessment during test case evolution,‖ in Reverse Engineering

(WCRE), 2013 20th Working Conference on, 2013, pp. 272–281 [Online]. Available:

http://ieeexplore.ieee.org/document/6671302/

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 63 – 72

72

[10] R. A. Razak and F. R. Fahrurazi, ―Agile testing with Selenium,‖ in Software Engineering

(MySEC), 2011 5th Malaysian Conference in, 2011, pp. 217–219 [Online]. Available:

http://ieeexplore.ieee.org/document/6140672/

[11] A. M. F. V de Castro, G. A. Macedo, E. F. Collins, and A. C. Dias-Neto, ―Extension of

selenium RC tool to perform automated testing with databases in web applications,‖ in

Proceedings of the 8th International Workshop on Automation of Software Test, 2013,

pp. 125–131 [Online]. Available: http://ieeexplore.ieee.org/document/6595803/

