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Abstrak 

Penilaian tingkat kematangan buah kelapa sawit penting untuk mengoptimalkan waktu panen 

dan meningkatkan nilai jual. Di banyak wilayah berkembang, panen masih dilakukan setiap 10–

15 hari melalui inspeksi visual manual yang rentan kesalahan dan sering menyebabkan panen 

prematur. Hal ini menurunkan kualitas buah dan nilai jual hingga 50%, menimbulkan kerugian 

ekonomi bagi petani. Penelitian ini mengkaji penerapan deteksi objek berbasis pembelajaran 

mendalam untuk klasifikasi otomatis tandan buah segar (TBS) kelapa sawit. Dataset berisi 4.578 

citra beresolusi tinggi yang telah dianotasi ke dalam enam kelas kematangan: Kosong, Mentah, 

Setengah Matang, Abnormal, Matang, dan Lewat Matang. Dua model deteksi terkini, YOLOv8s 

dan Faster R-CNN dengan backbone ResNet-50, dievaluasi menggunakan precision, recall, dan 

mean Average Precision (mAP). Hasil menunjukkan YOLOv8s mencapai precision dan recall di 

atas 99% dengan mAP 0.5:0.95 sebesar 0.9254, efisien untuk penggunaan real-time. Faster R-

CNN mencapai mAP 0.5 sebesar 0.9964 dengan akurasi lebih tinggi namun waktu komputasi 

lebih lama. YOLOv8s menawarkan keseimbangan optimal antara akurasi dan kecepatan. 

Penelitian ini berkontribusi pada pertanian presisi melalui penerapan kecerdasan buatan untuk 

meningkatkan produktivitas dan keberlanjutan. 

 

Kata kunci: Object Detection, YOLOv8s, Computer Vision, Faster R-CNN,Precision Agriculture 

Abstract 

Assessing oil palm fruit ripeness is essential for optimizing harvest timing and 

maximizing market value. In many developing regions, harvesting is still performed every 10–15 

days through manual visual inspection, a process prone to human error that often causes 

premature harvesting and reduces selling value by up to 50%. This study explores deep learning-

based object detection for automatic classification of oil palm fruit bunches. A dataset of 4,578 

annotated high-resolution images was prepared and categorized into six ripeness classes: Empty, 

Immature, Underripe, Abnormal, Ripe, and Overripe. Two advanced detection models, YOLOv8s 

and Faster R-CNN with a ResNet-50 backbone, were evaluated under identical conditions using 

precision, recall, and mean Average Precision (mAP) metrics. YOLOv8s achieved precision and 

recall above 99%, with a mAP 0.5:0.95 of 0.9254, demonstrating strong reliability and efficiency 

for real-time use. Faster R-CNN achieved a higher mAP 0.5 of 0.9964, indicating superior 

localization accuracy but slower computation. Overall, YOLOv8s provides a better trade-off 

between accuracy and speed, making it more practical for automated harvesting. This research 

supports precision agriculture by emphasizing AI driven solutions that improve productivity, 

minimize losses, and promote sustainable palm oil management. 
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1. INTRODUCTION 

 
Indonesia has historically been among the globe's top producers and exporters of crude 

palm oil (CPO), a product that is vital for the national economy and the well-being of millions of 

Indonesians.[1], [2]. However, the area encounters various operational obstacles that impede 

maximum productivity. A primary challenge is the precise determination of the ripeness stage of 

fresh fruit bunches (FFBs), which directly influences oil yield, processing quality, and total 

commercial worth. Traditionally, plantation workers manually assess FFB ripeness through visual 

inspection, relying on color and texture indicators. Although this technique has been utilized for 

many years, it remains very subjective, susceptible to variations, and frequently results in errors, 

particularly when performed under tight deadlines or in suboptimal conditions. Manual inspection 

becomes increasingly inefficient on large plantations, where thousands of trees must be evaluated 

daily. Additionally, environmental elements like differing lighting situations, intricate 

backgrounds, and obstructions from nearby vegetation can complicate the ripeness assessment 

process, hindering even skilled workers from achieving consistent accuracy (Lai et al., 2023). 

In many rural and semi-urban regions, including the authors’ village, growers are 

increasingly interested in oil palm farming because of its significant economic opportunities. 

However, gathering operations in these regions continue to be conducted by hand and without 

technological support. Usually, fruit clusters are examined regularly every 10 to 15 days. Farmers 

assess ripeness by observing color variations: unripe fruits look dark black, semi-ripe fruits 

exhibit a blackish-reddish tint, and fully ripe fruits become vibrant reddish-orange[4]. These 

visual signals are the main determinants for choosing the right time to harvest. This manual 

method is subjective and often inaccurate. Based on field experience, about 15% of fruits are 

harvested prematurely, despite appearing ripe externally. This error in judgment may result in 

substantial monetary loss. During the study, fully ripe fruit bunches that exceeded 6 kilograms 

were priced at approximately IDR 2,940 for each kilogram. Nonetheless, clusters weighing 

merely 3 to 5 kilograms or any fruit deemed unripe regardless of weight were sold at a much 

lower price of only IDR 1,450 per kilogram. This indicates a possible decrease of 50% in market 

value, directly affecting farmer profit margins. The insufficient training and the non-existence of 

effective, budget-friendly detection tools exacerbate the issue, emphasizing the urgent need for 

an intelligent, objective, and accessible solution. 

In recent times, Deep learning and artificial intelligence (AI) developments have surfaced 

as potential remedies for these farming problems. Convolutional neural networks' (CNNs') 

advancements have transformed object detection into an efficient and versatile technology that 

supports multiple applications, including autonomous driving, surveillance systems, medical 

diagnostics, and intelligent agriculture. In agriculture, object detection algorithms have shown 

considerable success in areas like pest detection, disease identification, yield forecasting, and fruit 

localization, providing both accuracy and swiftness[5]. Prominent object detection methods 

consist of YOLO (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural 

Network), both demonstrating unique architectural approaches. YOLOv8s, a recent version 

launched by Ultralytics, is an efficient, single-stage detector that evaluates the entire image in one 

pass and forecasts object bounding boxes alongside class probabilities simultaneously. Its 

efficient design allows for real-time processing and low-latency inference, making it especially 

ideal for use in field settings where swift decisions are necessary. The YOLOv8s model features 

advancements like an anchor-free detection system, separate heads for classification and 

regression [6], and design enhancements that boost training efficiency and detection precision. 

Conversely, Faster R-CNN employs a two-phase detection approach. It initially employs a Region 

Proposal Network (RPN) to locate potential object areas and subsequently utilizes a second stage 

to classify and enhance these proposals through a convolutional network. This method, while 

more computationally intensive and typically slower than YOLO based models, usually attains 

greater accuracy in situations with cluttered scenes, small or overlapping objects, and intricate 
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backgrounds. Utilizing ResNet-50 as its backbone enables Faster R-CNN to obtain rich 

hierarchical features from images, thereby enhancing its performance in intricate visual tasks[7].  

Earlier studies have investigated CNN-driven classification for palm fruit ripeness, 

typically without utilizing comprehensive object detection techniques. For instance, [8]. and [9]. 

employed simple CNN classifiers to forecast maturity phases, missing object localization.. 

introduced EfficientDet-Lite aimed at lightweight classification, but did not assess inference 

efficiency among detectors. Furthermore, [10]. emphasized the increasing importance of object 

detection in agriculture while mentioning the absence of comparative studies specific to palm oil 

plantations. This research tackles these gaps by experimentally comparing YOLOv8s and Faster 

R-CNN for identifying six maturity classifications of oil palm FFBs: Empty, Immature, 

Underripe, Abnormal, Ripe, and Overripe. Using a diverse and annotated dataset of 4,578 images, 

the models are evaluated on accuracy, recall, and mean Average Precision (mAP) over various 

Intersection over Union (IoU) thresholds. The goal is to determine the most effective object 

detection model for automated harvesting systems and to provide practical suggestions for its 

application in smart agriculture[11]. 

 

2. METHODS 
 

 
Figure 1 Research process 

2.1 Dataset Preparation 

This study employs an extensive dataset consisting of 4,578 high-resolution images of oil 

palm fruit bunches, obtained from both open-access sources and manual field gathering. A sum 

of 4,078 images was obtained from Kaggle and Roboflow two popular platforms in computer 

vision while 500 more images were taken manually with a standard digital camera in actual 

plantation settings[12]. These images gathered manually promote class balance and better depict 

real-world variability. Every image was marked with bounding boxes and classified into one of 

six maturity categories: Empty Bunch, Underripe, Abnormal FFB, Ripe FFB[13], Immature FFB, 

and Overripe. Labeling relied on visual characteristics like fruit hue, surface texture, and the 

existence of loose fruits criteria typically employed in palm oil harvesting to assess ripeness. To 

improve model robustness, the dataset encompasses diverse environmental circumstances like 

varying lighting (sunlight, shadow, overcast), backgrounds (soil, foliage, sky), and camera 

perspectives. These changes replicate real-life difficulties and assist in enhancing 

generalization[14]. The dataset was divided into training (70%, 3,204 images), validation (20%, 

916 images), and testing (10%, 458 images) through stratified sampling to maintain balanced 

class representation. This separation guarantees fair assessment, as the test set remains 

independent from training and validation activities. Merging curated online information with 

field-collected images creates a more varied and authentic dataset, facilitating the creation of 

models that can detect accurately in real-world plantation situations, aiding applications like 

automated harvesting, fruit classification, and yield assessment[15]. 
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2.2 Preprocessing and Labeling 

 All images in the dataset were scaled to 640×640 pixels to standardize input dimensions 

and maintain compatibility across both detection models. This resizing was implemented 

uniformly to uphold aspect ratios and ensure consistency throughout training and evaluation. The 

selected resolution achieves a compromise between processing efficiency and the preservation of 

important visual elements, like fruitlet texture and color variations, which are vital for 

differentiating between various maturity stages of oil palm fruit.  To maintain the original 

distribution and features of the dataset, no data augmentation methods like flipping, rotation, 

brightness modification, or noise addition were utilized. This decision was made to avoid 

introducing artificial distortions that could bias the model or obscure subtle but significant visual 

cues associated with specific maturity classes. The models were trained exclusively using 

naturally captured images across diverse real-world conditions to adapt to authentic changes in 

lighting, background clutter, and fruit orientation.  

The dataset was annotated using Roboflow’s annotation tool, a cloud-based labeling 

platform that enables collaborative and efficient bounding box creation. Every image was 

carefully annotated by creating bounding boxes around the desired fruit clusters and designating 

the correct class labels according to established maturity categories. To uphold labeling 

consistency, annotation guidelines were created to guarantee that the bounding boxes precisely 

encompassed the pertinent fruit regions while reducing the capture of adjacent background. After 

the annotation process, the dataset was converted into two common annotation formats to meet 

the needs of each detection architecture. For YOLOv8s, the dataset was saved in YOLO format, 

featuring normalized bounding box coordinates and class indices in text files, tailored for YOLO 

based models. The dataset for Faster R-CNN was exported in COCO (Common Objects in 

Context) format, utilizing a structured JSON format that accommodates multiple objects per 

image, class hierarchy, and segmentation suiting the requirements of two-stage detection 

pipelines effectively.  

This dual-format export approach allows for direct integration with both model 

architectures, eliminating the necessity for extra preprocessing or format conversion, thus 

simplifying the training process. Additionally, upholding uniform image sizes, annotation quality, 

and labeling criteria across both formats guarantees an equitable and regulated evaluation of the 

models' performance under the same data conditions.  

 

2.3 Preprocessing and Labeling 

To guarantee a fair and consistent evaluation under the identical experimental settings, 

the training procedures for the two object identification models YOLOv8s and Faster R-CNN 

with a ResNet-50 backbone were meticulously planned. Using the same dataset and training 

parameters whenever possible, the primary objective was to assess and compare how well the two 

architectures identified the oil palm fruit's developmental phases. 

2. 3.1 YOLOv8s Training Setup 

 The official Ultralytics implementation was utilized to train the YOLOv8s model, 

providing a simplified and accessible interface for setting up and deploying YOLO-based models. 

The training utilized the standard hyperparameter settings supplied by Ultralytics, as these 

configurations are fine-tuned for general object detection purposes. Essential training parameters 

for YOLOv8s encompassed: 

Table  1. YOLOv8s Training Setup 

Number of epochs 150 

Batch size 8 

Initial learning rate 0.01 

Optimizer Stochastic Gradient Descent (SGD)  
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How many times the entire training dataset is input into the model throughout the training 

phase is indicated by the number of epochs. To guarantee sufficient learning iterations and 

improve generalization in this situation, the model was trained for 150 epochs[16]. Batch size 

determines the number of images handled concurrently during one iteration. A batch size of 8 was 

selected to optimize memory efficiency and model convergence, enabling the training to 

effectively use available GPU resources without exceeding limits[17]. Initial learning rate, 

established at 0.01, dictates the size of the update steps made while modifying the model's internal 

weights. An appropriate learning rate is crucial to guarantee that the model converges effectively 

without overshooting or becoming stagnant[18]. Optimizer, Stochastic Gradient Descent (SGD), 

is a method employed to adjust the model’s parameters according to the gradients obtained during 

backpropagation. SGD is recognized for its reliability and is ideal for models such as YOLOv8s 

that emphasize quickness and straightforwardness. Training took place on a workstation featuring 

an NVIDIA RTX 3060 GPU (12GB VRAM), 32GB RAM, and an Intel Core i9 CPU. In this 

arrangement, training was finished in around 2.5 hours, demonstrating the computational 

efficiency and rapid convergence of the YOLOv8s model. 

 

2. 3.2 Faster R-CNN Training Setup 

Conversely, the Faster R-CNN model was created utilizing the torchvision framework 

based on PyTorch, which provides strong tools for creating two-stage object detection 

models[19]. A ResNet-50 backbone, pre-trained on the ImageNet dataset, was utilized to harness 

transfer learning, allowing the model to effectively extract high-level semantic features. For 

experimental consistency, the Faster R-CNN model was trained for 150 epochs, enabling the 

model to progressively adjust its weights via several complete cycles over the dataset.Owing to 

the complexity of the architecture, particularly during its region proposal phase and deep feature 

extraction, the batch size was decreased to 4 to avoid memory overflow on the identical hardware 

setup. This batch size enables the model to work with smaller data subsets while maintaining 

training stability[20]. Initial learning rate was set at 0.01 to remain consistent with the YOLOv8s 

configuration, guaranteeing that the training step sizes were similar. Adam optimizer was utilized 

for optimization. Adam is a flexible learning algorithm that modifies the learning rate for each 

parameter separately, utilizing both first- and second-order gradients. This renders it especially 

useful for intricate and advanced models such as Faster R-CNN, which gain from the adjustment 

of the learning rate dynamically. Even though the identical hardware was utilized an NVIDIA 

RTX 3060 GPU (12GB VRAM), 32GB RAM, and an Intel Core i9 CPU the training duration for 

Faster R-CNN was much longer, around 20 hours, because of the model's computational 

requirements and its multi-stage processing architecture. 

 

Table  2. Faster R-CNN Training Setup 

Number of epochs 150 

Batch size 4 (due to higher memory usage) 

Initial learning rate 0.01 

Optimizer Adam 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Training Performance 

The YOLOv8s model was developed utilizing 4,578 annotated training images and 916 

validation images across 150 epochs, using the official Ultralytics implementation. The training 

procedure was carried out locally on a machine with an NVIDIA RTX 3060 GPU (12GB VRAM), 

allowing for effective computation while ensuring memory consistency. The training utilized the 

standard hyperparameters of the YOLOv8 framework, incorporating the Stochastic Gradient 
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Descent (SGD) optimizer A batch size of 8 was chosen to optimize computational efficiency 

while considering hardware constraints. During training, no data augmentation methods were 

utilized, maintaining the dataset's original structure and feature distribution. The whole training 

procedure finished in roughly 2.5 hours, while GPU memory usage stayed steadily near 8GB. The 

model demonstrated consistent convergence traits with negligible variations in loss values, 

signifying efficient learning and generalization abilities throughout the epochs.  

Table  3. YOLOv8s Training Results 

Epoch Box Loss Class Loss 

50 0.54162 0.35071 

100 0.45247 0.26629 

150 0.27669 0.13542 

 

As shown in Table 3, the Box Loss and Class Loss metrics both exhibited a steady decline 

as training advanced. This demonstrates a consistent improvement in the model's capacity to 

identify object edges and correctly allocate the relevant labels. The downward trend suggests that 

YOLOv8s was efficiently reducing prediction errors and improving its internal representations 

progressively. At the last epoch, the Box Loss decreased by almost 50% from its average value, 

and the Class Loss saw a comparable decline, validating the model’s capacity to learn 

distinguishing object features effectively even without augmentation techniques. Simultaneously, 

the Faster R-CNN model was trained on the identical training and validation dataset, hardware 

setup, and total epochs (150). The model was developed with the PyTorch torchvision library and 

employed a ResNet-50 backbone that was pre-trained on ImageNet to enhance feature extraction 

speed. In contrast to YOLOv8s, Faster R-CNN uses a two-phase detection technique where a 

classification and regression step comes after the Region Proposal Network (RPN) first finds 

possible object areas. The Adam optimizer and a learning rate scheduler that dynamically reduced 

the learning rate as the model got closer to convergence were used to train the model. The total 

training time grew to about 20 hours due to its complex architecture and the sequential processing 

of regional proposals. 

 

Table  4. Faster R-CNN Training Result 

Epoch Box Loss Class Loss 

50 0.0531 0.0338 

100 0.0338 0.0168 

150 0.0440 0.0328 

 

Table 4 shows that the Faster R-CNN model realized significant decreases in both Box 

Loss and Class Loss in the early phases of training. At epoch 100, the model achieved its 

minimum recorded Box Loss and sustained Class Loss values at a consistently low range. Even 

though a minor rise in Class Loss was noted toward the last epoch, the figures stayed within a 

satisfactory range and did not suggest any overfitting or instability. These outcomes demonstrate 

the model's ability to achieve detailed localization and classification, a significant benefit of its 

two-stage detection approach. The performance trends indicate that the Faster R-CNN model 

successfully captured deeper semantic features early in the training phase, enabling it to 

generalize effectively on the validation set, even with the extended training duration. 

 

3.2 Model Testing Results 

 The testing phase utilized 458 images that were absent from both the training and 

validation subsets. These images were intentionally reserved to evaluate the generalization ability 

of both YOLOv8s and Faster R-CNN when faced with new data. This stage is essential to confirm 

that the models do not overfit the training distribution and can consistently operate in practical 
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applications that include real-world variability. Four common metrics for object detection were 

used in a thorough assessment: precision, recall, mAP 0.5, and mAP 0.5:0.95. Precision measures 

the model's capacity to reduce false positives by calculating the percentage of accurately predicted 

items compared to all detections. Recall highlights the model's effectiveness in reducing false 

negatives by assessing its ability to identify all pertinent objects. When there is adequate overlap 

between the predicted and real bounding boxes, the average detection precision is shown by the 

metric mAP 0.5 (mean average precision at an intersection over union threshold of 0.5). However, 

mAP 0.5:0.95 provides a more comprehensive evaluation by calculating average performance 

across several IoU thresholds (0.5 to 0.95).and acts as a reliable measure of detection quality 

under tougher standards. The two models were assessed under the same conditions to guarantee 

fairness. No external calibration or post-processing was performed, and evaluations were made 

directly based on the model outputs. The assessment outcomes showed unique attributes of every 

model. YOLOv8s, featuring a lightweight and real-time-focused design, demonstrated notably 

better performance in terms of inference speed and consistent accuracy. Conversely, Faster R-

CNN exhibited superior recall and mAP values, particularly in situations with intricate object 

overlapping or nuanced class distinctions due to its region-based proposal method and enhanced 

feature extraction through the ResNet-50 backbone. 

 
Figure 2 Comparison of YOLOv8s and Faster R-CNN based on mAP 0.5:0.95 

 
Figure 3 Comparison of YOLOv8s and Faster R-CNN based on mAP 0.5 
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Figure 4 Comparison of YOLOv8s and Faster R-CNN based on Recall 

 
Figure 5 Comparison of YOLOv8s and Faster R-CNN based on Precision 

As shown in Fig. 3, the YOLOv8s model exhibits remarkable performance with a mAP 

0.5:0.95 score that surpasses 90%. This shows that the model is very precise in detecting and 

categorizing objects across various IoU (Intersection over Union) thresholds. Conversely, Faster 

R-CNN also shows strong performance, exceeding 80% and coming close to 85% in the identical 

metric. Although both models show impressive performance, YOLOv8s distinctly excels in 

consistency across evaluation thresholds, while Faster R-CNN reaches its peak score at a 

particular threshold. 

In Fig. 4, YOLOv8s once more shows outstanding performance, achieving a recall score 

that is close to 100%. This indicates a strong ability to recognize all pertinent objects in the test 

images. On the other hand, Faster R-CNN also produces favorable results, with a recall rate 

surpassing 80%, but it doesn't quite match YOLOv8's level of comprehensiveness. 

In the meantime, Fig. 5 illustrates that YOLOv8s reaches a precision score exceeding 

95%, demonstrating a robust capability to reduce false positives in detection. Even though it is 

slightly reduced, Faster R-CNN maintains an impressive precision score exceeding 85%, 

showcasing its competitive accuracy in object detection. In general, although Faster R-CNN 

achieves the top score in mAP 0.5 (refer to Fig. 3), YOLOv8s reliably outperforms it in various 

metrics. Its durability and ability to generalize render it better suited for practical applications that 

require high precision and consistency under diverse circumstances. Throughout the training 

process, testing was conducted after each epoch to monitor model performance. Based on these 

evaluations, the best-performing model for each algorithm was selected and is presented in Table 

5. This table summarizes the most optimal results achieved by YOLOv8s and Faster R-CNN on 

the test dataset. 
Table  5. Overall Performance of the Best Model 

Best Model Precision Recall mAP 0.5 mAP 0.5:0.95 

YOLOv8s 0.9954 0.9951 0.9948 0.9254 

Faster R-CNN 0.8740 0.8355 0.9964 0.8355 



IJCCS  ISSN (print): 1978-1520, ISSN (online): 2460-7258 ◼ 

 

Title of manuscript is short and clear, implies research results (First Author) 

9 

 

 According to the test outcomes, the YOLOv8s model exhibited exceptional performance, 

achieving precision and recall over 99%, along with a mAP 0.5:0.95 score of 0.9254. These 

outcomes suggest that the model can effectively identify and categorize objects at various 

Intersection over Union (IoU) thresholds, demonstrating notable generalization and resilience. 

While the high recall verifies the model's ability to consistently identify all important elements in 

the input photographs, the extraordinarily high precision indicates that the model generates few 

false positives. Both the broader mAP 0.5:0.95 metric and its high performance on mAP 0.5 are 

enhanced by this balance between recall and precision. The Faster R-CNN model, on the other 

hand, achieved an even better mAP 0.5 score of 0.9964 reflecting almost flawless localization and 

classification precision at the 0.5 IoU threshold. This exceptional performance at one threshold 

shows the power of its two-stage design, where region proposals are improved prior to the final 

classification. Nevertheless, the performance of Faster R-CNN in terms of precision (87.40%), 

recall (83.55%), and mAP 0.5:0.95 (0.8355) was somewhat inferior to that of YOLOv8s, 

particularly when assessed with more stringent IoU evaluation standards. This indicates that 

although Faster R-CNN can efficiently enhance detections at a particular threshold, its 

performance across different IoU levels is less consistent compared to YOLOv8s. 

 

3.3 Discussion 

 The experimental results highlight the distinct trade-offs between YOLOv8s and Faster 

R-CNN when applied to oil palm fruit maturity detection. Both models achieved strong 

performance, yet their suitability for practical applications diverges depending on the operational 

context. YOLOv8s demonstrated an exceptional balance of accuracy and computational 

efficiency, with precision and recall surpassing 99% and an mAP 0.5:0.95 score above 0.92. These 

results indicate the robustness of its single-stage anchor-free detection mechanism, which enables 

rapid inference without significantly sacrificing accuracy. This finding aligns with the work of 

Jocher who emphasized the real-time adaptability of YOLO architectures for edge devices and 

field-based deployments. 

In contrast, Faster R-CNN achieved an outstanding mAP 0.5 of 0.9964, underscoring its 

strength in precise localization under moderate IoU thresholds. However, the decrease in 

performance under stricter evaluation (mAP 0.5:0.95 = 0.8355) suggests that its two-stage region 

proposal mechanism, while effective for fine-grained detection, is less consistent across diverse 

IoU ranges. Similar observations have been reported by Ren , where Faster R-CNN excels in 

benchmark conditions but exhibits latency and scalability challenges in resource-limited 

environments. 

From a practical standpoint, the training and inference efficiency of YOLOv8s completed 

in approximately 2.5 hours presents significant advantages for real-world agricultural use. In 

comparison, Faster R-CNN required nearly 20 hours of training, posing limitations for iterative 

retraining or adaptation to dynamic field conditions. The shorter computation time and lighter 

architecture of YOLOv8s enable its deployment on portable devices such as drones or edge-based 

processors, directly supporting smart farming initiatives that demand immediacy and scalability. 

The generalization ability of YOLOv8s was shown through its stable performance under 

varying conditions such as lighting, background clutter, and partial occlusion. This robustness is 

vital in agriculture, where environmental unpredictability is common. Conversely, Faster R-CNN 

proved more sensitive to such variations, making its superior detection accuracy more suitable for 

controlled or semi-automated facilities than direct field use. Overall, the choice between 

YOLOv8s and Faster R-CNN depends on operational priorities. For large-scale plantations 

requiring real-time decision support and rapid harvesting, YOLOv8s offers a practical solution. 

Meanwhile, for applications where detection precision at standard IoU thresholds is critical, 

Faster R-CNN remains competitive. This study highlights the complementary strengths of both 

models and provides empirical evidence to support the integration of deep learning into precision 

agriculture, advancing AI-driven palm oil management. 
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However, this study has several limitations that should be acknowledged. The dataset 

used, although diverse, was limited to 4,578 images, which may not fully represent the wide 

variability of real-world plantation conditions. The experiments only compared two object 

detection models (YOLOv8s and Faster R-CNN), without considering other recent architectures 

that could offer different trade-offs. In addition, the evaluation was conducted on static images 

under controlled conditions, without direct field deployment. These limitations suggest that the 

results, while promising, may not yet fully reflect performance in operational harvesting 

environments. 
 

4. CONCLUSIONS 

 

This study provides a unique comparative assessment of YOLOv8s and Faster R-CNN 

models for identifying six ripeness stages of oil palm fruit, establishing a strong benchmark for 

applications in precision agriculture. The main advancement is the utilization of a varied, high-

resolution, and practical dataset specifically designed for classifying oil palm maturity, which has 

been significantly overlooked in earlier research.Experimental findings reveal that YOLOv8s 

exceeds projections by attaining an unusual blend of very high accuracy and nearly immediate 

inference speed, achieving precision and recall rates above 99%, alongside a mAP 0.5:0.95 of 

0.9254. These results represent a noteworthy progress in instantaneous detection for resource-

limited settings like smallholder farms. 

In the meantime, Faster R-CNN attained an impressive mAP 0.5 of 0.9964, underscoring 

its capability for precise detection at a standard IoU threshold, essential for high-fidelity tasks. 

Nonetheless, its comparatively poorer performance at tougher thresholds and longer training 

duration highlight its limitations for field use without advanced computing resources. The 

outstanding performance indicators for both models demonstrate a distinct compromise between 

real-time efficiency and detection detail. YOLOv8s emerges as the ideal choice for scalable, 

automated fruit maturity assessment in practical agricultural environments, where speedy, 

precise, and efficient processing is crucial. This research establishes a foundation for the future 

advancement of AI-powered harvesting tools and provides a verified dataset along with a baseline 

comparison for additional studies in precision agriculture for palm oil. 
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