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Abstrak

Penilaian tingkat kematangan buah kelapa sawit penting untuk mengoptimalkan waktu panen
dan meningkatkan nilai jual. Di banyak wilayah berkembang, panen masih dilakukan setiap 10—
15 hari melalui inspeksi visual manual yang rentan kesalahan dan sering menyebabkan panen
prematur. Hal ini menurunkan kualitas buah dan nilai jual hingga 50%, menimbulkan kerugian
ekonomi bagi petani. Penelitian ini mengkaji penerapan deteksi objek berbasis pembelajaran
mendalam untuk klasifikasi otomatis tandan buah segar (TBS) kelapa sawit. Dataset berisi 4.578
citra beresolusi tinggi yang telah dianotasi ke dalam enam kelas kematangan: Kosong, Mentah,
Setengah Matang, Abnormal, Matang, dan Lewat Matang. Dua model deteksi terkini, YOLOvSs
dan Faster R-CNN dengan backbone ResNet-50, dievaluasi menggunakan precision, recall, dan
mean Average Precision (mAP). Hasil menunjukkan YOLOvSs mencapai precision dan recall di
atas 99% dengan mAP 0.5:0.95 sebesar 0.9254, efisien untuk penggunaan real-time. Faster R-
CNN mencapai mAP 0.5 sebesar 0.9964 dengan akurasi lebih tinggi namun waktu komputasi
lebih lama. YOLOvSs menawarkan keseimbangan optimal antara akurasi dan kecepatan.
Penelitian ini berkontribusi pada pertanian presisi melalui penerapan kecerdasan buatan untuk
meningkatkan produktivitas dan keberlanjutan.

Kata kunci: Object Detection, YOLOvVSs, Computer Vision, Faster R-CNN, Precision Agriculture
Abstract

Assessing oil palm fruit ripeness is essential for optimizing harvest timing and
maximizing market value. In many developing regions, harvesting is still performed every 10—15
days through manual visual inspection, a process prone to human error that often causes
premature harvesting and reduces selling value by up to 50%. This study explores deep learning-
based object detection for automatic classification of oil palm fruit bunches. A dataset of 4,578
annotated high-resolution images was prepared and categorized into six ripeness classes: Empty,
Immature, Underripe, Abnormal, Ripe, and Overripe. Two advanced detection models, YOLOvSs
and Faster R-CNN with a ResNet-50 backbone, were evaluated under identical conditions using
precision, recall, and mean Average Precision (mAP) metrics. YOLOvVSs achieved precision and
recall above 99%, with a mAP 0.5:0.95 of 0.9254, demonstrating strong reliability and efficiency
for real-time use. Faster R-CNN achieved a higher mAP 0.5 of 0.9964, indicating superior
localization accuracy but slower computation. Overall, YOLOVSs provides a better trade-off
between accuracy and speed, making it more practical for automated harvesting. This research
supports precision agriculture by emphasizing Al driven solutions that improve productivity,
minimize losses, and promote sustainable palm oil management.
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1. INTRODUCTION

Indonesia has historically been among the globe's top producers and exporters of crude
palm oil (CPO), a product that is vital for the national economy and the well-being of millions of
Indonesians.[1], [2]. However, the area encounters various operational obstacles that impede
maximum productivity. A primary challenge is the precise determination of the ripeness stage of
fresh fruit bunches (FFBs), which directly influences oil yield, processing quality, and total
commercial worth. Traditionally, plantation workers manually assess FFB ripeness through visual
inspection, relying on color and texture indicators. Although this technique has been utilized for
many years, it remains very subjective, susceptible to variations, and frequently results in errors,
particularly when performed under tight deadlines or in suboptimal conditions. Manual inspection
becomes increasingly inefficient on large plantations, where thousands of trees must be evaluated
daily. Additionally, environmental elements like differing lighting situations, intricate
backgrounds, and obstructions from nearby vegetation can complicate the ripeness assessment
process, hindering even skilled workers from achieving consistent accuracy (Lai et al., 2023).

In many rural and semi-urban regions, including the authors’ village, growers are
increasingly interested in oil palm farming because of its significant economic opportunities.
However, gathering operations in these regions continue to be conducted by hand and without
technological support. Usually, fruit clusters are examined regularly every 10 to 15 days. Farmers
assess ripeness by observing color variations: unripe fruits look dark black, semi-ripe fruits
exhibit a blackish-reddish tint, and fully ripe fruits become vibrant reddish-orange[4]. These
visual signals are the main determinants for choosing the right time to harvest. This manual
method is subjective and often inaccurate. Based on field experience, about 15% of fruits are
harvested prematurely, despite appearing ripe externally. This error in judgment may result in
substantial monetary loss. During the study, fully ripe fruit bunches that exceeded 6 kilograms
were priced at approximately IDR 2,940 for each kilogram. Nonetheless, clusters weighing
merely 3 to 5 kilograms or any fruit deemed unripe regardless of weight were sold at a much
lower price of only IDR 1,450 per kilogram. This indicates a possible decrease of 50% in market
value, directly affecting farmer profit margins. The insufficient training and the non-existence of
effective, budget-friendly detection tools exacerbate the issue, emphasizing the urgent need for
an intelligent, objective, and accessible solution.

In recent times, Deep learning and artificial intelligence (Al) developments have surfaced
as potential remedies for these farming problems. Convolutional neural networks' (CNNs')
advancements have transformed object detection into an efficient and versatile technology that
supports multiple applications, including autonomous driving, surveillance systems, medical
diagnostics, and intelligent agriculture. In agriculture, object detection algorithms have shown
considerable success in areas like pest detection, disease identification, yield forecasting, and fruit
localization, providing both accuracy and swiftness[5]. Prominent object detection methods
consist of YOLO (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural
Network), both demonstrating unique architectural approaches. YOLOvS8s, a recent version
launched by Ultralytics, is an efficient, single-stage detector that evaluates the entire image in one
pass and forecasts object bounding boxes alongside class probabilities simultaneously. Its
efficient design allows for real-time processing and low-latency inference, making it especially
ideal for use in field settings where swift decisions are necessary. The YOLOv8s model features
advancements like an anchor-free detection system, separate heads for classification and
regression [6], and design enhancements that boost training efficiency and detection precision.
Conversely, Faster R-CNN employs a two-phase detection approach. It initially employs a Region
Proposal Network (RPN) to locate potential object areas and subsequently utilizes a second stage
to classify and enhance these proposals through a convolutional network. This method, while
more computationally intensive and typically slower than YOLO based models, usually attains
greater accuracy in situations with cluttered scenes, small or overlapping objects, and intricate
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backgrounds. Utilizing ResNet-50 as its backbone enables Faster R-CNN to obtain rich
hierarchical features from images, thereby enhancing its performance in intricate visual tasks[7].

Earlier studies have investigated CNN-driven classification for palm fruit ripeness,
typically without utilizing comprehensive object detection techniques. For instance, [8]. and [9].
employed simple CNN classifiers to forecast maturity phases, missing object localization..
introduced EfficientDet-Lite aimed at lightweight classification, but did not assess inference
efficiency among detectors. Furthermore, [10]. emphasized the increasing importance of object
detection in agriculture while mentioning the absence of comparative studies specific to palm oil
plantations. This research tackles these gaps by experimentally comparing YOLOvS8s and Faster
R-CNN for identifying six maturity classifications of oil palm FFBs: Empty, Immature,
Underripe, Abnormal, Ripe, and Overripe. Using a diverse and annotated dataset of 4,578 images,
the models are evaluated on accuracy, recall, and mean Average Precision (mAP) over various
Intersection over Union (IoU) thresholds. The goal is to determine the most effective object
detection model for automated harvesting systems and to provide practical suggestions for its
application in smart agriculture[11].

2. METHODS

|
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Figure 1 Research process

2.1 Dataset Preparation

This study employs an extensive dataset consisting of 4,578 high-resolution images of oil
palm fruit bunches, obtained from both open-access sources and manual field gathering. A sum
of 4,078 images was obtained from Kaggle and Roboflow two popular platforms in computer
vision while 500 more images were taken manually with a standard digital camera in actual
plantation settings[12]. These images gathered manually promote class balance and better depict
real-world variability. Every image was marked with bounding boxes and classified into one of
six maturity categories: Empty Bunch, Underripe, Abnormal FFB, Ripe FFB[13], Immature FFB,
and Overripe. Labeling relied on visual characteristics like fruit hue, surface texture, and the
existence of loose fruits criteria typically employed in palm oil harvesting to assess ripeness. To
improve model robustness, the dataset encompasses diverse environmental circumstances like
varying lighting (sunlight, shadow, overcast), backgrounds (soil, foliage, sky), and camera
perspectives. These changes replicate real-life difficulties and assist in enhancing
generalization[14]. The dataset was divided into training (70%, 3,204 images), validation (20%,
916 images), and testing (10%, 458 images) through stratified sampling to maintain balanced
class representation. This separation guarantees fair assessment, as the test set remains
independent from training and validation activities. Merging curated online information with
field-collected images creates a more varied and authentic dataset, facilitating the creation of
models that can detect accurately in real-world plantation situations, aiding applications like
automated harvesting, fruit classification, and yield assessment[15].
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2.2 Preprocessing and Labeling

All images in the dataset were scaled to 640x640 pixels to standardize input dimensions
and maintain compatibility across both detection models. This resizing was implemented
uniformly to uphold aspect ratios and ensure consistency throughout training and evaluation. The
selected resolution achieves a compromise between processing efficiency and the preservation of
important visual elements, like fruitlet texture and color variations, which are vital for
differentiating between various maturity stages of oil palm fruit. To maintain the original
distribution and features of the dataset, no data augmentation methods like flipping, rotation,
brightness modification, or noise addition were utilized. This decision was made to avoid
introducing artificial distortions that could bias the model or obscure subtle but significant visual
cues associated with specific maturity classes. The models were trained exclusively using
naturally captured images across diverse real-world conditions to adapt to authentic changes in
lighting, background clutter, and fruit orientation.

The dataset was annotated using Roboflow’s annotation tool, a cloud-based labeling
platform that enables collaborative and efficient bounding box creation. Every image was
carefully annotated by creating bounding boxes around the desired fruit clusters and designating
the correct class labels according to established maturity categories. To uphold labeling
consistency, annotation guidelines were created to guarantee that the bounding boxes precisely
encompassed the pertinent fruit regions while reducing the capture of adjacent background. After
the annotation process, the dataset was converted into two common annotation formats to meet
the needs of each detection architecture. For YOLOvVSs, the dataset was saved in YOLO format,
featuring normalized bounding box coordinates and class indices in text files, tailored for YOLO
based models. The dataset for Faster R-CNN was exported in COCO (Common Objects in
Context) format, utilizing a structured JSON format that accommodates multiple objects per
image, class hierarchy, and segmentation suiting the requirements of two-stage detection
pipelines effectively.

This dual-format export approach allows for direct integration with both model
architectures, eliminating the necessity for extra preprocessing or format conversion, thus
simplifying the training process. Additionally, upholding uniform image sizes, annotation quality,
and labeling criteria across both formats guarantees an equitable and regulated evaluation of the
models' performance under the same data conditions.

2.3 Preprocessing and Labeling

To guarantee a fair and consistent evaluation under the identical experimental settings,
the training procedures for the two object identification models YOLOv8s and Faster R-CNN
with a ResNet-50 backbone were meticulously planned. Using the same dataset and training
parameters whenever possible, the primary objective was to assess and compare how well the two
architectures identified the oil palm fruit's developmental phases.

2. 3.1 YOLOvSs Training Setup

The official Ultralytics implementation was utilized to train the YOLOv8s model,
providing a simplified and accessible interface for setting up and deploying YOLO-based models.
The training utilized the standard hyperparameter settings supplied by Ultralytics, as these
configurations are fine-tuned for general object detection purposes. Essential training parameters
for YOLOvV8s encompassed:

Table 1. YOLOv8s Training Setup

Number of epochs 150
Batch size 8
Initial learning rate 0.01
Optimizer Stochastic Gradient Descent (SGD)
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How many times the entire training dataset is input into the model throughout the training
phase is indicated by the number of epochs. To guarantee sufficient learning iterations and
improve generalization in this situation, the model was trained for 150 epochs[16]. Batch size
determines the number of images handled concurrently during one iteration. A batch size of 8§ was
selected to optimize memory efficiency and model convergence, enabling the training to
effectively use available GPU resources without exceeding limits[17]. Initial learning rate,
established at 0.01, dictates the size of the update steps made while modifying the model's internal
weights. An appropriate learning rate is crucial to guarantee that the model converges effectively
without overshooting or becoming stagnant[18]. Optimizer, Stochastic Gradient Descent (SGD),
is a method employed to adjust the model’s parameters according to the gradients obtained during
backpropagation. SGD is recognized for its reliability and is ideal for models such as YOLOvS8s
that emphasize quickness and straightforwardness. Training took place on a workstation featuring
an NVIDIA RTX 3060 GPU (12GB VRAM), 32GB RAM, and an Intel Core i9 CPU. In this
arrangement, training was finished in around 2.5 hours, demonstrating the computational
efficiency and rapid convergence of the YOLOvS8s model.

2. 3.2 Faster R-CNN Training Setup

Conversely, the Faster R-CNN model was created utilizing the torchvision framework
based on PyTorch, which provides strong tools for creating two-stage object detection
models[19]. A ResNet-50 backbone, pre-trained on the ImageNet dataset, was utilized to harness
transfer learning, allowing the model to effectively extract high-level semantic features. For
experimental consistency, the Faster R-CNN model was trained for 150 epochs, enabling the
model to progressively adjust its weights via several complete cycles over the dataset.Owing to
the complexity of the architecture, particularly during its region proposal phase and deep feature
extraction, the batch size was decreased to 4 to avoid memory overflow on the identical hardware
setup. This batch size enables the model to work with smaller data subsets while maintaining
training stability[20]. Initial learning rate was set at 0.01 to remain consistent with the YOLOv8s
configuration, guaranteeing that the training step sizes were similar. Adam optimizer was utilized
for optimization. Adam is a flexible learning algorithm that modifies the learning rate for each
parameter separately, utilizing both first- and second-order gradients. This renders it especially
useful for intricate and advanced models such as Faster R-CNN, which gain from the adjustment
of the learning rate dynamically. Even though the identical hardware was utilized an NVIDIA
RTX 3060 GPU (12GB VRAM), 32GB RAM, and an Intel Core i9 CPU the training duration for
Faster R-CNN was much longer, around 20 hours, because of the model's computational
requirements and its multi-stage processing architecture.

Table 2. Faster R-CNN Training Setup

Number of epochs 150

Batch size 4 (due to higher memory usage)
Initial learning rate 0.01

Optimizer Adam

3. RESULTS AND DISCUSSION

3.1 Training Performance

The YOLOv8s model was developed utilizing 4,578 annotated training images and 916
validation images across 150 epochs, using the official Ultralytics implementation. The training
procedure was carried out locally on a machine with an NVIDIA RTX 3060 GPU (12GB VRAM),
allowing for effective computation while ensuring memory consistency. The training utilized the
standard hyperparameters of the YOLOvVS framework, incorporating the Stochastic Gradient
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Descent (SGD) optimizer A batch size of 8 was chosen to optimize computational efficiency
while considering hardware constraints. During training, no data augmentation methods were
utilized, maintaining the dataset's original structure and feature distribution. The whole training
procedure finished in roughly 2.5 hours, while GPU memory usage stayed steadily near 8GB. The
model demonstrated consistent convergence traits with negligible variations in loss values,
signifying efficient learning and generalization abilities throughout the epochs.

Table 3. YOLOvS8s Training Results

Epoch Box Loss Class Loss
50 0.54162 0.35071
100 0.45247 0.26629
150 0.27669 0.13542

As shown in Table 3, the Box Loss and Class Loss metrics both exhibited a steady decline
as training advanced. This demonstrates a consistent improvement in the model's capacity to
identify object edges and correctly allocate the relevant labels. The downward trend suggests that
YOLOVS8s was efficiently reducing prediction errors and improving its internal representations
progressively. At the last epoch, the Box Loss decreased by almost 50% from its average value,
and the Class Loss saw a comparable decline, validating the model’s capacity to learn
distinguishing object features effectively even without augmentation techniques. Simultaneously,
the Faster R-CNN model was trained on the identical training and validation dataset, hardware
setup, and total epochs (150). The model was developed with the PyTorch torchvision library and
employed a ResNet-50 backbone that was pre-trained on ImageNet to enhance feature extraction
speed. In contrast to YOLOvVSs, Faster R-CNN uses a two-phase detection technique where a
classification and regression step comes after the Region Proposal Network (RPN) first finds
possible object areas. The Adam optimizer and a learning rate scheduler that dynamically reduced
the learning rate as the model got closer to convergence were used to train the model. The total
training time grew to about 20 hours due to its complex architecture and the sequential processing
of regional proposals.

Table 4. Faster R-CNN Training Result

Epoch Box Loss Class Loss
50 0.0531 0.0338
100 0.0338 0.0168
150 0.0440 0.0328

Table 4 shows that the Faster R-CNN model realized significant decreases in both Box
Loss and Class Loss in the early phases of training. At epoch 100, the model achieved its
minimum recorded Box Loss and sustained Class Loss values at a consistently low range. Even
though a minor rise in Class Loss was noted toward the last epoch, the figures stayed within a
satisfactory range and did not suggest any overfitting or instability. These outcomes demonstrate
the model's ability to achieve detailed localization and classification, a significant benefit of its
two-stage detection approach. The performance trends indicate that the Faster R-CNN model
successfully captured deeper semantic features early in the training phase, enabling it to
generalize effectively on the validation set, even with the extended training duration.

3.2 Model Testing Results

The testing phase utilized 458 images that were absent from both the training and
validation subsets. These images were intentionally reserved to evaluate the generalization ability
of both YOLOvSs and Faster R-CNN when faced with new data. This stage is essential to confirm
that the models do not overfit the training distribution and can consistently operate in practical
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applications that include real-world variability. Four common metrics for object detection were
used in a thorough assessment: precision, recall, mAP 0.5, and mAP 0.5:0.95. Precision measures
the model's capacity to reduce false positives by calculating the percentage of accurately predicted
items compared to all detections. Recall highlights the model's effectiveness in reducing false
negatives by assessing its ability to identify all pertinent objects. When there is adequate overlap
between the predicted and real bounding boxes, the average detection precision is shown by the
metric mAP 0.5 (mean average precision at an intersection over union threshold of 0.5). However,
mAP 0.5:0.95 provides a more comprehensive evaluation by calculating average performance
across several loU thresholds (0.5 to 0.95).and acts as a reliable measure of detection quality
under tougher standards. The two models were assessed under the same conditions to guarantee
fairness. No external calibration or post-processing was performed, and evaluations were made
directly based on the model outputs. The assessment outcomes showed unique attributes of every
model. YOLOVSs, featuring a lightweight and real-time-focused design, demonstrated notably
better performance in terms of inference speed and consistent accuracy. Conversely, Faster R-
CNN exhibited superior recall and mAP values, particularly in situations with intricate object
overlapping or nuanced class distinctions due to its region-based proposal method and enhanced
feature extraction through the ResNet-50 backbone.
mAP 0.5:0.95 per Epoch
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Figure 2 Comparison of YOLOvVS8s and Faster R-CNN based on mAP 0.5:0.95
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Figure 3 Comparison of YOLOvVS8s and Faster R-CNN based on mAP 0.5
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Figure 4 Comparison of YOLOvVS8s and Faster R-CNN based on Recall

Precision per Epoch

Precision

0.70 1 —— YOLOv8s
—— Faster R-CNN

T T T T T T T T
0 20 40 60 80 100 120 140
Epoch

Figure 5 Comparison of YOLOv8s and Faster R-CNN based on Precision

As shown in Fig. 3, the YOLOv8s model exhibits remarkable performance with a mAP
0.5:0.95 score that surpasses 90%. This shows that the model is very precise in detecting and
categorizing objects across various IoU (Intersection over Union) thresholds. Conversely, Faster
R-CNN also shows strong performance, exceeding 80% and coming close to 85% in the identical
metric. Although both models show impressive performance, YOLOvVSs distinctly excels in
consistency across evaluation thresholds, while Faster R-CNN reaches its peak score at a
particular threshold.

In Fig. 4, YOLOvS8s once more shows outstanding performance, achieving a recall score
that is close to 100%. This indicates a strong ability to recognize all pertinent objects in the test
images. On the other hand, Faster R-CNN also produces favorable results, with a recall rate
surpassing 80%, but it doesn't quite match YOLOVS's level of comprehensiveness.

In the meantime, Fig. 5 illustrates that YOLOvVS8s reaches a precision score exceeding
95%, demonstrating a robust capability to reduce false positives in detection. Even though it is
slightly reduced, Faster R-CNN maintains an impressive precision score exceeding 85%,
showcasing its competitive accuracy in object detection. In general, although Faster R-CNN
achieves the top score in mAP 0.5 (refer to Fig. 3), YOLOVSs reliably outperforms it in various
metrics. Its durability and ability to generalize render it better suited for practical applications that
require high precision and consistency under diverse circumstances. Throughout the training
process, testing was conducted after each epoch to monitor model performance. Based on these
evaluations, the best-performing model for each algorithm was selected and is presented in Table
5. This table summarizes the most optimal results achieved by YOLOvS8s and Faster R-CNN on
the test dataset.

Table 5. Overall Performance of the Best Model

Best Model Precision Recall mAP 0.5 mAP 0.5:0.95
YOLOVSs 0.9954 0.9951 0.9948 0.9254
Faster R-CNN 0.8740 0.8355 0.9964 0.8355
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According to the test outcomes, the YOLOvVS8s model exhibited exceptional performance,
achieving precision and recall over 99%, along with a mAP 0.5:0.95 score of 0.9254. These
outcomes suggest that the model can effectively identify and categorize objects at various
Intersection over Union (IoU) thresholds, demonstrating notable generalization and resilience.
While the high recall verifies the model's ability to consistently identify all important elements in
the input photographs, the extraordinarily high precision indicates that the model generates few
false positives. Both the broader mAP 0.5:0.95 metric and its high performance on mAP 0.5 are
enhanced by this balance between recall and precision. The Faster R-CNN model, on the other
hand, achieved an even better mAP 0.5 score of 0.9964 reflecting almost flawless localization and
classification precision at the 0.5 IoU threshold. This exceptional performance at one threshold
shows the power of its two-stage design, where region proposals are improved prior to the final
classification. Nevertheless, the performance of Faster R-CNN in terms of precision (87.40%),
recall (83.55%), and mAP 0.5:0.95 (0.8355) was somewhat inferior to that of YOLOVSs,
particularly when assessed with more stringent loU evaluation standards. This indicates that
although Faster R-CNN can efficiently enhance detections at a particular threshold, its
performance across different IoU levels is less consistent compared to YOLOVSs.

3.3 Discussion

The experimental results highlight the distinct trade-offs between YOLOvS8s and Faster
R-CNN when applied to oil palm fruit maturity detection. Both models achieved strong
performance, yet their suitability for practical applications diverges depending on the operational
context. YOLOv8s demonstrated an exceptional balance of accuracy and computational
efficiency, with precision and recall surpassing 99% and an mAP 0.5:0.95 score above 0.92. These
results indicate the robustness of its single-stage anchor-free detection mechanism, which enables
rapid inference without significantly sacrificing accuracy. This finding aligns with the work of
Jocher who emphasized the real-time adaptability of YOLO architectures for edge devices and
field-based deployments.

In contrast, Faster R-CNN achieved an outstanding mAP 0.5 of 0.9964, underscoring its
strength in precise localization under moderate IoU thresholds. However, the decrease in
performance under stricter evaluation (mAP 0.5:0.95 = 0.8355) suggests that its two-stage region
proposal mechanism, while effective for fine-grained detection, is less consistent across diverse
IoU ranges. Similar observations have been reported by Ren , where Faster R-CNN excels in
benchmark conditions but exhibits latency and scalability challenges in resource-limited
environments.

From a practical standpoint, the training and inference efficiency of YOLOv8s completed
in approximately 2.5 hours presents significant advantages for real-world agricultural use. In
comparison, Faster R-CNN required nearly 20 hours of training, posing limitations for iterative
retraining or adaptation to dynamic field conditions. The shorter computation time and lighter
architecture of YOLOv8s enable its deployment on portable devices such as drones or edge-based
processors, directly supporting smart farming initiatives that demand immediacy and scalability.

The generalization ability of YOLOv8s was shown through its stable performance under
varying conditions such as lighting, background clutter, and partial occlusion. This robustness is
vital in agriculture, where environmental unpredictability is common. Conversely, Faster R-CNN
proved more sensitive to such variations, making its superior detection accuracy more suitable for
controlled or semi-automated facilities than direct field use. Overall, the choice between
YOLOV8s and Faster R-CNN depends on operational priorities. For large-scale plantations
requiring real-time decision support and rapid harvesting, YOLOvSs offers a practical solution.
Meanwhile, for applications where detection precision at standard IoU thresholds is critical,
Faster R-CNN remains competitive. This study highlights the complementary strengths of both
models and provides empirical evidence to support the integration of deep learning into precision
agriculture, advancing Al-driven palm oil management.
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However, this study has several limitations that should be acknowledged. The dataset
used, although diverse, was limited to 4,578 images, which may not fully represent the wide
variability of real-world plantation conditions. The experiments only compared two object
detection models (YOLOv8s and Faster R-CNN), without considering other recent architectures
that could offer different trade-offs. In addition, the evaluation was conducted on static images
under controlled conditions, without direct field deployment. These limitations suggest that the
results, while promising, may not yet fully reflect performance in operational harvesting
environments.

4. CONCLUSIONS

This study provides a unique comparative assessment of YOLOvVS8s and Faster R-CNN
models for identifying six ripeness stages of oil palm fruit, establishing a strong benchmark for
applications in precision agriculture. The main advancement is the utilization of a varied, high-
resolution, and practical dataset specifically designed for classifying oil palm maturity, which has
been significantly overlooked in earlier research.Experimental findings reveal that YOLOvVS8s
exceeds projections by attaining an unusual blend of very high accuracy and nearly immediate
inference speed, achieving precision and recall rates above 99%, alongside a mAP 0.5:0.95 of
0.9254. These results represent a noteworthy progress in instantaneous detection for resource-
limited settings like smallholder farms.

In the meantime, Faster R-CNN attained an impressive mAP 0.5 of 0.9964, underscoring
its capability for precise detection at a standard IoU threshold, essential for high-fidelity tasks.
Nonetheless, its comparatively poorer performance at tougher thresholds and longer training
duration highlight its limitations for field use without advanced computing resources. The
outstanding performance indicators for both models demonstrate a distinct compromise between
real-time efficiency and detection detail. YOLOvV8s emerges as the ideal choice for scalable,
automated fruit maturity assessment in practical agricultural environments, where speedy,
precise, and efficient processing is crucial. This research establishes a foundation for the future
advancement of Al-powered harvesting tools and provides a verified dataset along with a baseline
comparison for additional studies in precision agriculture for palm oil.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Universitas Bina Darma for the
support and facilities provided throughout the completion of this research. Special thanks are also
extended to the academic supervisors and colleagues whose guidance and insights greatly
contributed to the success of this study.

REFERENCES

[1]  N. Yuslaini, R. Widya Setiabudi Sumadinata, M. Fedryansyah, A. Abdillah, A. L.
Prianto, and D. Febriyanti, “Sustainable investment strategies in the palm oil industry in
Indonesia,” Journal of Infrastructure, Policy and Development, vol. 7, no. 3, 2023, doi:
10.24294/jipd.v7i3.2288.

[2]  N.Ngadi and J. Nagata, “Oil Palm Land Use Change and Rice Sustainability in South
Sumatra, Indonesia,” Land (Basel), vol. 11, no. 5, May 2022, doi:
10.3390/1and11050669.

[3] J. W. Lai, H. R. Ramli, L. I. Ismail, and W. Z. Wan Hasan, “Oil Palm Fresh Fruit Bunch
Ripeness Detection Methods: A Systematic Review,” Jan. 01, 2023, MDPI. doi:
10.3390/agriculture13010156.

[4] Y. A. A. Soetrisno, E. Handoyo, Sumardi, and E. W. Sinuraya, “OIL PALM LEVEL OF
RIPENESS CLASSIFICATION USING EFFICIENTDET-LITE CNN

IJCCS Vol. x, No. x, July 201x : first page —end page



1JCCS

ISSN (print): 1978-1520, ISSN (online): 2460-7258 mil

(3]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

ARCHITECTURE,” J Oil Palm Res, vol. 36, no. 4, pp. 618-629, Dec. 2024, doi:
10.21894/jopr.2023.0059.

M. Dalal and P. Mittal, “A Systematic Review of Deep Learning-Based Object Detection
in Agriculture: Methods, Challenges, and Future Directions,” 2025, Tech Science Press.
doi: 10.32604/cmc.2025.066056.

M. Ma and H. Pang, “SP-YOLOVS8s: An Improved YOLOvS8s Model for Remote
Sensing Image Tiny Object Detection,” Applied Sciences (Switzerland), vol. 13, no. 14,
Jul. 2023, doi: 10.3390/app13148161.

I. Bonet, M. Gongora, F. Acevedo, and I. Ochoa, “Deep Learning Model to Predict the
Ripeness of Oil Palm Fruit,” in International Conference on Agents and Artificial
Intelligence, Science and Technology Publications, Lda, 2024, pp. 1068—1075. doi:
10.5220/0012434600003636.

S. Ashari, G. J. Yanris, and 1. Purnama, “Oil Palm Fruit Ripeness Detection using Deep
Learning,” Sinkron, vol. 7, no. 2, pp. 649—656, May 2022, doi:
10.33395/sinkron.v7i2.11420.

J. Zulkarnain, Kusrini, and T. Hidayat, “Klasifikasi Tingkat Kematangan Tandan Buah
Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning,” JST (Jurnal Sains dan
Teknologi), vol. 12, no. 3, Jan. 2024, doi: 10.23887/jstundiksha.v12i3.59140.

Z. Khan, Y. Shen, and H. Liu, “ObjectDetection in Agriculture: A Comprehensive
Review of Methods, Applications, Challenges, and Future Directions,” Agriculture, vol.
15, no. 13, p. 1351, Jun. 2025, doi: 10.3390/agriculture15131351.

S. Lipinski, S. Sadkowski, and P. Chwietczuk, “Application of Al in Date Fruit
Detection—Performance Analysis of YOLO and Faster R-CNN Models,” Computation,
vol. 13, no. 6, Jun. 2025, doi: 10.3390/computation13060149.

P. Alirezazadeh, F. Rahimi-Ajdadi, Y. Abbaspour-Gilandeh, N. Landwehr, and H.
Tavakoli, “Improved digital image-based assessment of soil aggregate size by applying
convolutional neural networks,” Comput Electron Agric, vol. 191, p. 106499, Dec. 2021,
doi: 10.1016/J.COMPAG.2021.106499.

Suharjito ef al., “Annotated Datasets of Oil Palm Fruit Bunch Piles for Ripeness Grading
Using Deep Learning,” Sci Data, vol. 10, no. 1, Dec. 2023, doi: 10.1038/s41597-023-
01958-x.

M. Mohinur Rahaman and M. Azharuddin, “Wireless sensor networks in agriculture
through machine learning: A survey,” Comput Electron Agric, vol. 197, p. 106928, Jun.
2022, doi: 10.1016/J.COMPAG.2022.106928.

Q. Su, J. Tang, M. Zhai, and D. He, “An intelligent method for dairy goat tracking based
on Siamese network,” Comput Electron Agric, vol. 193, p. 106636, Feb. 2022, doi:
10.1016/J.COMPAG.2021.106636.

F. Rehman, M. Rehman, M. Anjum, and A. Hussain, “Optimized YOLOVS: An efficient
underwater litter detection using deep learning,” Ain Shams Engineering Journal, vol.
16, no. 1, p. 103227, Jan. 2025, doi: 10.1016/J.ASEJ.2024.103227.

T. Yang et al., “YOLO-SGD: Precision-Oriented Intelligent Detection of Seed
Germination Completion,” Agronomy, vol. 15, no. 9, p. 2146, Sep. 2025, doi:
10.3390/agronomy15092146.

O. G. Ajayi, P. O. Ibrahim, and O. S. Adegboyega, “Effect of Hyperparameter Tuning on
the Performance of YOLOVS for Multi Crop Classification on UAV Images,” Applied
Sciences (Switzerland), vol. 14, no. 13, Jul. 2024, doi: 10.3390/app14135708.

S. Luet al., “CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation,” Mar. 2021, doi:
https://doi.org/10.48550/arXiv.2102.04664.

H. Bai and S. C. Hui, “A crowdsourcing-based incremental learning framework for
automated essays scoring,” Expert Syst Appl, vol. 238, p. 121755, Mar. 2024, doi:
10.1016/J. ESWA.2023.121755.

Title of manuscript is short and clear, implies research results (First Author)



