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Abstrak 

Depresi merupakan kondisi kesehatan mental yang kompleks dan sering kali tidak 

terdiagnosis, karena gejalanya muncul melalui isyarat verbal, akustik, dan perilaku yang bersifat 

halus. Sistem deteksi berbasis unimodal umumnya kurang mampu menangkap spektrum gejala 

depresi secara menyeluruh, sehingga menghasilkan penilaian yang tidak akurat atau tidak 

lengkap. Penelitian ini mengusulkan sebuah kerangka kerja deep learning multimodal yang 

mengintegrasikan data teks, audio, dan visual untuk meningkatkan keandalan dan ketepatan 

deteksi depresi secara otomatis, dengan akurasi klasifikasi keseluruhan mencapai 74%. 

Pendekatan ini mengutamakan aspek privasi dan interpretabilitas dengan menggunakan titik-

titik kunci wajah (facial keypoints) dan arah pandangan mata (gaze direction) alih-alih citra 

wajah mentah, serta menerapkan mekanisme attention untuk menyelaraskan dan menggabungkan 

fitur antar modality. Setiap modality diproses menggunakan arsitektur neural network yang 

sesuai dengan karakteristik datanya, dan hasilnya digabungkan dalam model fusion yang mampu 

mengenali pola emosional lintas-modality. Hasil eksperimen menunjukkan bahwa sistem 

multimodal yang diusulkan secara signifikan mengungguli model unimodal dalam performa 

klasifikasi. Modality visual memberikan kontribusi paling dominan terhadap akurasi deteksi, 

sebagaimana dibuktikan melalui analisis ablation. Temuan ini menegaskan pentingnya integrasi 

multimodal dalam menangkap sinyal psikologis yang kompleks dan mendukung pengembangan 

alat deteksi dini yang cerdas, non-invasif, dan aplikatif di platform kesehatan mental digital.  

 

Kata kunci—Attention Mechanism, Deteksi Depresi, Facial Keypoints, Skrining Kesehatan 

Mental, Multimodal Deep Learning 

 

 

Abstract 

 Depression is a complex and often underdiagnosed mental health condition that 

manifests through subtle verbal, acoustic, and behavioral cues. Traditional unimodal detection 

systems struggle to capture the full spectrum of depressive symptoms, often leading to inaccurate 

or incomplete assessments. This study proposes a multimodal deep learning framework that 

integrates textual, audio, and visual modalities to improve the robustness and reliability of 

automatic depression detection, achieving an overall classification accuracy of 74%. The 

approach prioritizes privacy and interpretability by using facial keypoints and gaze direction 

rather than raw video frames, and applies attention mechanisms to align and fuse features across 

modalities. Each modality is processed through dedicated neural architectures tailored to its data 

type, and their outputs are combined within a fusion model that learns to capture cross-modal 

emotional patterns. Experimental results demonstrate that the proposed multimodal system 

significantly outperforms its unimodal counterparts in terms of classification performance. The 

visual modality was found to contribute most strongly to detection accuracy, as confirmed by 

ablation analysis. These findings highlight the value of multimodal integration in capturing 

complex psychological signals and support the development of intelligent, non-invasive screening 

tools for use in digital mental health applications. 
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1. INTRODUCTION 

 

Depression is one of the most prevalent and severe mental health disorders worldwide, 

affecting over 280 million people globally, according to the World Health Organization (WHO). 

It significantly reduces quality of life and is associated with high disability, lost productivity, and 

even suicide. Traditional diagnostic methods, such as clinical interviews and self-reported 

questionnaires like PHQ-9 or HAMD, are inherently subjective and susceptible to bias and 

inaccuracies [1], [2]. These limitations make early detection difficult, delaying intervention and 

increasing the risk of long-term consequences. This underscores the need for more objective, 

reliable, and scalable diagnostic tools. 

In response to these challenges, artificial intelligence (AI) and deep learning have been 

increasingly explored to enhance depression detection. The use of multimodal data—text, audio, 

and video has proven particularly promising, as it allows for a more comprehensive view of an 

individual's mental state. Unlike unimodal approaches, which often fail to capture the complexity 

of depressive symptoms, multimodal systems have demonstrated superior performance. For 

instance, the integration of models such as BiLSTM, CNN, and IoT-based systems has enabled 

real-time monitoring[3], while the fusion of models like T5 and WaveNet has achieved accuracies 

exceeding 92%[1]. 

However, several key challenges persist in the development of these systems. Multimodal 

fusion remains difficult due to the different structures and temporal characteristics of each 

modality. Many models also struggle to fully leverage spatial-temporal relationships between 

modalities, limiting their effectiveness in capturing nuanced symptoms [4], [5]. Furthermore, 

interpretability remains a major barrier, as deep learning models are often considered "black 

boxes" and lack transparency [6]. Real-world implementation also faces difficulties such as data 

imbalance, lack of diversity, and privacy concerns in clinical contexts. 

Recent studies have begun to address these issues through architectural innovations. For 

example, models like WavFace have adopted spatial-temporal attention mechanisms to better 

simulate clinical observations [7], and FPT-Former has improved parallel processing of 

multimodal inputs [8]. Meanwhile, AVA-DepressNet has demonstrated how privacy can be 

preserved by using facial landmarks rather than full facial imagery [9]. Despite these advances, 

many models remain limited in their scalability, efficiency, and generalizability, particularly in 

real-world settings with diverse data. 

To address these gaps, this research proposes a novel multimodal deep learning 

framework that integrates audio, text, and visual data using a parallel transformer architecture and 

attention-based cross-modal fusion [10]. By leveraging facial landmarks instead of full-face 

images, the model promotes privacy while preserving discriminative features [9]. The study also 

incorporates knowledge transfer and representation learning to improve generalizability in low-

resource environments, as seen in RLKT-MDD [11]. Additional emphasis is placed on 

interpretability [12] and predictive uncertainty estimation [13], ensuring that the frameword is no 

only technically robust but also ethically sound. The ultimate goal is to deliver a scalable and 

explainable AI System that can be deployed in real-world mental healt screening and digital 

support platfoams. 

 

 

 

 

2. METHODS 

 

 This study aims to develop an optimized multimodal deep learning model for the early 

detection of depression. The proposed approach integrates audio, video, and text data using a 

parallel transformer architecture, coupled with attention-based cross-modal fusion and knowledge 



transfer techniques. The research methodology, as depicted in Figure 1, is structured into several 

key stages: data collection, preprocessing, feature extraction, model development, evaluation, and 

validation. Each stage is designed to address critical challenges, including data fusion, model 

interpretability, privacy concerns, and the enhancement of model performance in real-world 

settings. These stages will ensure that the developed model is both accurate and practical for 

clinical application. 

 
Figure 1 Reseach Method 

2.1 Data Collection 

The first stage of this research involves acquiring and curating multimodal datasets, 

primarily using the DAIC-WOZ (Distress Analysis Interview Corpus of Human and Computer 

Interviews), which includes audio, video, and text data. This publicly available dataset is 

commonly used in mental health research and provides rich, labeled data for depression detection. 

It includes audio recordings from clinical interviews, facial expression videos, and transcribed 

text from conversations, making it ideal for studying human-computer interactions and 

multimodal depression detection [14]. The DAIC-WOZ dataset has been extensively used in 

previous studies to develop and evaluate computational models for psychological distress 

analysis. 

To ensure privacy, facial data will be processed using facial landmark detection rather 

than full facial images, aligning with recent advancements in privacy-preserving AI, such as 

AVA-DepressNet [9], which focuses on user confidentiality while enabling meaningful feature 

extraction. This approach ensures participant privacy is maintained, especially when handling 

sensitive mental health data, while still allowing the model to capture essential features for 

depression detection. 

2.2 Preprocessing  and Feature Extraction 

2.2.1 Audio Preprocessing 

The goal of the audio preprocessing stage is to extract prosodic features—such as pitch, 

tone, and rhythm that are closely linked to emotional states relevant for depression detection. This 

process primarily utilizes Mel-Frequency Cepstral Coefficients (MFCC), a technique that mimics 

human auditory perception by capturing the spectral characteristics of speech. MFCCs are 

effective in highlighting subtle variations in vocal tone that may indicate depressive symptoms 

[15]. The extraction involves segmenting the audio signal into short overlapping frames, applying 



the Fast Fourier Transform (FFT) to derive frequency components, and mapping these to the Mel 

scale using a filter bank. The final step involves the Discrete Cosine Transform (DCT) to generate 

compact coefficients summarizing each frame’s frequency content. The general formula 1 for 

calculating MFCCs is shown below: 

 

MFCC𝑛 = ∑ 𝐶𝑘 𝑙𝑜𝑔(𝑋𝑘)𝐾
𝐾=1               (1) 

 

where Ck is the Mel-scale filter, Xk is the frequency spectrum of the windowed signal, 

and nnn is the coefficient index. 

In addition to MFCC, spectrograms are used to visualize audio signals in two dimensions 

time and frequency with color intensity representing amplitude. This representation is particularly 

valuable for identifying fluctuations in speech patterns associated with emotional states, as 

supported by [5]. The spectrogram is computed by applying a Fourier transform to windowed 

segments of the signal using a short-time analysis approach. The formula for calculating a 

spectrogram is expressed as: 

 
𝑆(𝑡, 𝑓) = | ℱ{𝜘(𝑡). 𝜔(𝑡)}|2}       (2) 

 

where S(t,f) is the spectrogram value at time ttt and frequency fff, x(τ) is the input audio 

signal, and w(τ−t) is the window function centered at time ttt. These extracted features are then 

transformed into a vectorized format for input into the deep learning model, enabling the detection 

of depression-related acoustic patterns during classification. 

2.2.2 Video Preprocessing 

The objective of video preprocessing is to extract facial features that reflect emotional 

states through expressions, which are critical for identifying signs of depression. Rather than using 

full-face images, the method employs facial landmark detection to isolate key regions such as the 

eyes, mouth, and nose areas essential for capturing meaningful facial movements related to 

depressive cues. Tools like Dlib or OpenCV are used to detect landmark positions frame by frame, 

enabling efficient and privacy-preserving extraction of emotional indicators by focusing solely 

on landmark data, as recommended by . To process these [8] landmarks, a Convolutional Neural 

Network (CNN) is applied to learn spatial patterns that correlate with depressive states [16]. To 

further enhance temporal sensitivity, an attention mechanism is introduced to emphasize 

emotionally salient moments in the video, following insights from Beniwal & Saraswat (2024). 

This process results in a sequence of feature vectors capturing spatial-temporal facial expression 

dynamics, which are then fed into the model for depression prediction. 

2.2.2 Text Preprocessing 

The objective of text preprocessing is to extract emotional and semantic cues from 

conversation transcripts that are relevant to detecting depression. Text data is first tokenized using 

BERT’s tokenizer, breaking down the conversation into smaller linguistic units that carry 

contextual and emotional meaning [17]. BERT (Bidirectional Encoder Representations from 

Transformers) is then used to capture the relationships between tokens, allowing the model to 

detect nuanced indicators such as negative sentiment, reduced verbal complexity, or cognitive 

distortions typical signs of depression [8]. This is achieved through BERT’s self-attention 

mechanism, which dynamically weighs each token’s contribution to the sentence representation. 

The attention mechanism is mathematically defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉      (3) 

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the 

dimension of the key vectors. This formula enables the model to focus on relevant parts of the 

text based on their contextual importance. 



Following tokenization and attention-based encoding, each token is transformed into a 

high-dimensional embedding vector. These embeddings are aggregated to form a comprehensive 

sentence-level representation that captures both syntactic and semantic features of the text. The 

resulting vector encapsulates emotional content and linguistic structures reflective of mental 

health states. This vectorized representation is then passed into downstream modeling processes, 

where it contributes as one modality in the multimodal depression detection system, offering deep 

insights into participants’ verbal expressions. 

2.3 Model Development 

The model development in this study involves three modality-specific neural 

architectures, integrated into a unified multimodal framework for depression detection. For 

textual data, a Transformer-based architecture is utilized, leveraging the self-attention mechanism 

to capture long-range dependencies and contextual relationships within patient responses. Pre-

trained language models such as BERT are employed to generate deep sentence representations, 

allowing the system to recognize subtle linguistic markers often associated with depressive states 

(Beniwal & Saraswat, 2024). The ability of BERT to process language bidirectionally ensures 

that even nuanced emotional cues embedded in text are preserved. In addition to processing 

language, the Transformer architecture plays a central role in aligning modalities during fusion, 

learning joint representations that connect semantic, acoustic, and visual patterns relevant to 

mental health assessment. 

To process audio data, a hybrid CNN-LSTM architecture is used. CNN layers extract 

spatial features from MFCCs and mel spectrograms, capturing the frequency characteristics 

essential for identifying vocal indicators of depression, such as monotone pitch or flat prosody 

[15]. These spatial features are passed into LSTM layers, which model temporal dependencies 

like slow speech rate or prolonged pauses—common traits in depressive speech patterns [5]. The 

combination of convolutional and recurrent networks allows for a detailed representation of both 

acoustic structure and speech rhythm over time, enhancing the model’s capacity to detect 

depression-related vocal changes. Similarly, for video data, a CNN-Attention model is employed 

to extract and focus on emotionally salient facial expressions. Using facial landmarks rather than 

raw video preserves privacy while still capturing key indicators such as gaze aversion or reduced 

expressivity [16] (Fang et al., 2023). The attention mechanism enhances the temporal sensitivity 

of the model by emphasizing moments of significant emotional variation. 

Once all three modalities are independently encoded, a fusion module integrates the 

outputs using an attention-based strategy that learns the most informative cross-modal features. 

This fusion process allows the system to combine linguistic, acoustic, and visual cues into a single 

decision-making framework. Each modality contributes complementary information—text 

provides semantic content, audio offers prosodic patterns, and video encodes facial expressivity. 

This multimodal integration has been shown to improve performance over unimodal systems, as 

demonstrated in related works such as WavFace and CRADDS [3], [18]. Ultimately, the model 

is designed to exploit the unique strengths of each modality while mitigating their individual 

weaknesses, leading to a more accurate, interpretable, and privacy-aware depression detection 

system. 

2. 4 Evaluation 

The multimodal deep learning model for depression detection was evaluated using key 

metrics including accuracy, precision, recall, F1-score, and confusion matrix, which are widely 

used in mental health machine learning studies [19]. Accuracy provides a general measure of 

correctness, while precision and recall assess the model’s ability to reduce false positives and 

false negatives, respectively both crucial in minimizing misdiagnosis [5]. The F1-score balances 

these two metrics, making it especially valuable for imbalanced datasets common in depression 

detection (Flores et al., 2025). Additionally, the confusion matrix offers detailed insights by 

displaying the distribution of correct and incorrect predictions, helping identify specific 



performance issues [15]. Together, these evaluation metrics ensure a comprehensive 

understanding of the model’s diagnostic capability. 

 

3. RESULTS AND DISCUSSION 

 

This study utilized a benchmark dataset for depression detection containing synchronized 

multimodal data audio, video, and text—from clinical interviews. To preserve emotional signal 

integrity, only participant responses were analyzed, excluding the interviewer’s speech. The data 

were split into training and testing sets (80:20), ensuring no participant overlap for unbiased 

evaluation. Each modality was independently preprocessed: textual data were embedded using a 

pretrained DistilBERT model, audio data were transformed into MFCC and mel-spectrograms 

and modeled using a CNN-LSTM architecture, while visual data consisting of 3D facial 

landmarks and gaze directions were normalized and processed via a CNN-Attention model. These 

unimodal outputs were later fused using an attention-based transformer architecture to create a 

final multimodal classification. The system’s performance was evaluated using standard metrics 

such as accuracy, precision, recall, F1-score, and confusion matrix, offering comprehensive 

insight into the individual and combined contributions of each modality to the overall 

classification outcome. 

3.1 Performance of Individual Modalities 

3.1.1 Text Modality 

The textual data in this study were derived solely from participant utterances extracted 

from the DAIC-WOZ dataset, with interviewer prompts removed to ensure the content reflected 

only the participants’ mental states. After preprocessing, which involved removing repetitive 

phrases and irrelevant text, the responses were encoded into 512-dimensional vectors using a 

pretrained DistilBERT model. The classification model was then evaluated using standard 

metrics, achieving 69% accuracy. For the non-depressed class, it obtained a precision of 0.85, 

recall of 0.69, and F1-score of 0.76, while for the depressed class, the precision dropped to 0.46 

with a recall of 0.69 and F1-score of 0.56. These findings indicate that the text modality performs 

better in identifying non-depressed individuals but tends to generate more false positives when 

detecting depression. 

Tabel 1 Performance Metrics for Text Modality 

Class Precision Recall F1-Score Support 

Non-Depressed 0.85 0.69 0.76 336 

Depressed 0.46 0.69 0.56 131 

Accuracy 
  

0.69 467 

Macro Avg 0.66 0.69 0.66 467 

Weighted Avg 0.74 0.69 0.70 467 

Figure 2 illustrates the confusion matrix for this modality. Out of 336 non-depressed 

instances, the model correctly classified 231 and misclassified 105 as depressed. For the depressed 

class, 91 out of 131 instances were correctly predicted, while 40 were misclassified as non-

depressed. The distribution of misclassification suggests a tendency of the model to over-identify 

depressive tendencies, possibly due to the overlapping linguistic features between emotional 

expressions in both classes. 



 
Figure 2 Confusion matrix for the text modality 

 
3.1.2 Audio Modality 

The audio modality in this study focused exclusively on participants’ speech from the 

DAIC-WOZ dataset, deliberately excluding dialogue from the virtual interviewer to isolate vocal 

characteristics relevant to the speaker. Two key acoustic features Mel-Frequency Cepstral 

Coefficients (MFCC) and mel spectrograms were extracted, both widely used in speech emotion 

recognition for their effectiveness in capturing depression-related cues. The mel spectrogram 

(Figure 3) visualizes frequency intensity over time, revealing patterns in prosody, rhythm, and 

tempo, while MFCCs (Figure 4) condense spectral information to represent timbral and phonetic 

aspects of speech, closely mimicking human auditory processing. 

 
Figure 3 Mel spectrogram, representing frequency energy over time. 

 
Figure 4 MFCC, capturing perceptually relevant speech features. 

 

The audio features were processed using a CNN-LSTM model, where convolutional 

layers captured spatial patterns from MFCC and spectrogram inputs, and LSTM layers modeled 

temporal dependencies. Trained with an 80:20 train-test split, the model achieved 71% accuracy. 

It performed well in identifying non-depressed individuals, with a precision of 0.76, recall of 0.82, 

and F1-score of 0.79. However, its performance on the depressed class was notably lower 

(precision = 0.57, recall = 0.48, F1-score = 0.52), indicating that while the model is reliable in 

detecting non-depression, it has difficulty consistently capturing depression-related vocal 

patterns. 

 

Tabel 2 Performance Metrics for Audio Modality 

Class Precision Recall F1-Score Support 



Non-Depressed 0.76 0.82 0.79 120 

Depressed 0.57 0.48 0.52 60 

Accuracy 
  

0.71 180 

Macro Avg 0.66 0.65 0.65 180 

Weighted Avg 0.70 0.71 0.70 180 

 

The confusion matrix in Figure 5 shows that while the audio-based model accurately 

classified 98 of 120 non-depressed cases, it misclassified 31 of 60 depressed samples, indicating 

a tendency to underpredict depression. This model effectively captures dynamic prosodic features 

such as tone, rhythm, and pauses which are often affected in depressive speech. However, its 

performance is limited by sensitivity to background noise, recording conditions, and speaker 

variability, as well as the inconsistent presence of vocal symptoms among depressed individuals. 

Compared to previous studies like [5], which reported low F1-scores for audio-only models, this 

study yields comparable results, aligning with findings by [17] that audio features alone are 

insufficient. These results reinforce the idea that while audio cues carry useful affective signals, 

they are best leveraged within a multimodal framework, as discussed in the subsequent sections. 

 
Figure 5 Confusion matrix for the audio modality 

 

3.1.3 Visual Modality 

The visual modality in this study focused on capturing micro-facial expressions and gaze 

behavior from the participants during their interviews. Instead of relying on full-face video 

frames, a privacy-preserving approach was adopted by extracting 68 facial keypoints and 3D gaze 

direction vectors, allowing the model to interpret emotional states without exposing raw facial 

imagery. This approach not only protects participant privacy but also reduces the risk of 

overfitting to identity-specific visual patterns. 

Each video frame was processed to obtain structured data in the form of T × 68 × 3 tensors 

for facial landmarks and T × 4 × 3 for gaze vectors, where T denotes the number of frames. These 

were normalized and filtered to retain only the most emotionally relevant facial regions such as 

the eyes, nose, and lips. A visualization of the facial keypoints and gaze direction is shown in 

Gambar 7, where the blue dots represent landmark positions, and the green and red vectors 

indicate the left and right gaze directions respectively. 



 
Figure 6 3D visualization of facial landmarks and gaze direction 

 

The visual features were processed using a CNN-Attention model, where convolutional 

layers captured spatial patterns among facial landmarks and the attention mechanism highlighted 

temporally relevant facial regions linked to emotional expression. This approach enabled the 

detection of non-verbal depression cues such as reduced facial mobility, gaze aversion, and 

flattened affect signals often overlooked in text or audio. As shown in Table 3, the visual modality 

achieved 73% accuracy, outperforming or matching the performance of other modalities. The 

model demonstrated strong performance in the non-depressed class (precision = 0.83, recall = 

0.75, F1-score = 0.79), and reasonable detection in the depressed class (precision = 0.58, recall = 

0.68, F1-score = 0.63). 

 

Tabel 3 Performance Metrics for Visual Modality 

Class Precision Recall F1-Score Support 

Non-Depressed 0.83 0.75 0.79 120 

Depressed 0.58 0.68 0.63 60 

Accuracy 
  

0.73 180 

Macro Avg 0.70 0.72 0.71 180 

Weighted Avg 0.74 0.73 0.73 180 

 

Further detail is shown in Figure 7, which presents the confusion matrix of predictions 

for this modality. The model correctly classified 90 out of 120 non-depressed participants and 41 

out of 60 depressed participants. The distribution of errors shows improved sensitivity for 

detecting depression, with a lower number of false negatives compared to the audio model. 

 
Figure 7 Confusion matrix for the visual modality 



3.2 Multimodal Fusion 

The multimodal fusion model combined features from text, audio, and visual modalities 

using an attention-based architecture to enhance depression detection. Each modality was 

processed independently DistilBERT for text, CNN-LSTM for audio, and CNN-Attention for 

visual input before being fused into a shared representation for final classification. As shown in 

Table 5 and the confusion matrix in Figure 8, the model achieved 74% accuracy and outperformed 

unimodal baselines by producing a more balanced classification between depressed and non-

depressed classes. The non-depressed class reached a precision of 0.81 and recall of 0.79 (F1-

score = 0.80), while the depressed class achieved 0.60 precision, 0.63 recall, and an F1-score of 

0.62, demonstrating improved sensitivity to depression-related features. 

 

Tabel 5 Evaluation Metrics for Multimodal Fusion Model 

Class Precision Recall F1-Score Support 

Non-Depressed 0.81 0.79 0.80 120 

Depressed 0.60 0.63 0.62 60 

Accuracy 
  

0.74 180 

Macro Avg 0.71 0.71 0.71 180 

Weighted Avg 0.74 0.74 0.74 180 

 

The confusion matrix further illustrates this performance, with the model correctly 

identifying 95 of 120 non-depressed participants and 38 of 60 depressed individuals. The number 

of false positives (25) and false negatives (22) was reduced compared to unimodal systems, 

indicating that the fusion model achieved better generalization and class balance. These results 

suggest that integrating multiple modalities enables the system to capture richer emotional and 

behavioral cues, resulting in more reliable and robust depression detection. 

 
Figure 8 Confusion matrix for the visual modality 

 

As shown in Table 6, the multimodal fusion model outperforms each unimodal model 

across all evaluation metrics, achieving the highest accuracy (74%) along with balanced precision, 

recall, and F1-score. While the text modality shows good recall, its lower precision suggests a 

tendency to overclassify depression. The audio model achieves moderate performance but 

struggles with recall, making it less sensitive to depressive cues. The visual modality offers more 

balanced results and the highest unimodal F1-score, yet still falls short of the fusion model. These 

findings highlight the benefit of integrating modalities, where the limitations of one are 

compensated by the strengths of others. Text contributes semantic context, audio encodes 

prosodic features, and visual input captures subtle non-verbal expressions such as gaze aversion 

and facial rigidity. Attention heatmaps support this synergy, revealing the model’s ability to focus 

on emotionally salient time frames, which enhances temporal understanding and classification 

robustness. 



Tabel 6 Performance Comparison of Unimodal and Multimodal Fusion Models 

Modality Accuracy Precision Recall F1-Score 

Text 0.69 0.74 0.69 0.70 

Audio 0.71 0.70 0.71 0.70 

Visual 0.73 0.74 0.73 0.73 

Fusion 0.74 0.74 0.74 0.74 

 

An ablation study further confirms the fusion model’s design effectiveness. Removing 

the visual modality led to the greatest drop in performance, followed by audio, while excluding 

text had the least impact indicating the dominant role of visual cues in depression detection. 

Despite these promising results, the model faces notable limitations. The dataset used is relatively 

small and lacks demographic diversity, raising concerns about generalizability. Deep learning 

models remain vulnerable to overfitting, especially under data imbalance, as the depressed class 

is underrepresented. Furthermore, the model has not yet been validated in real-world 

environments such as clinical practice or digital mental health platforms. Addressing these 

limitations through larger datasets, real-world deployment, and techniques like explainable AI 

would enhance the model’s utility and reliability. 

 

4. CONCLUSIONS 

 

This study presents a multimodal deep learning framework for automatic depression 

detection by combining textual, audio, and visual inputs. Through the use of facial keypoints and 

gaze direction instead of raw video data, the model upholds user privacy while maintaining high 

predictive performance. Each modality is processed through specialized neural architectures and 

fused using attention mechanisms that capture cross-modal emotional patterns. The results show 

that multimodal integration significantly improves classification outcomes over unimodal models. 

The visual modality proved especially impactful, with ablation analysis indicating that non-verbal 

cues such as facial expressions and gaze behavior offer strong indicators of depressive symptoms. 

These findings underscore the importance of combining multiple behavioral signals to build more 

comprehensive and interpretable mental health assessment tools. 

However, the study is not without limitations. The relatively small and homogeneous 

dataset may restrict the model's generalizability across diverse populations. Additionally, the 

system has not been validated in real-world applications, which poses challenges for its 

deployment in clinical or online settings. Future work should address these issues by 

incorporating larger, more diverse datasets, applying explainable AI methods like SHAP or LIME 

to improve transparency, and testing the system in operational environments. Overall, this 

research contributes meaningfully to the field by demonstrating the practical potential of non-

invasive, intelligent screening tools that could support early detection and intervention in digital 

mental health services. 

 


