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Abstract

Prostate cancer remains a leading cause of cancer-related deaths among men globally,
emphasizing the critical need for accurate diagnostic tools. This study investigates the
application of Gradient Boosting Machines (GBMs) for prostate cancer detection using a
dataset with key tumor characteristics such as radius, texture, area, and symmetry. Data
preprocessing included normalization, missing value handling, and the Synthetic Minority
Oversampling Technique (SMOTE) to address class imbalance. The GBM model demonstrated
an accuracy of 75%, with high precision (82%) and recall (88%) for malignant cases,
underscoring its potential as a reliable diagnostic tool. However, the model's performance for
benign cases was limited by severe class imbalance, reflected in a precision of 33% and recall
of 25%. Interpretability was enhanced using SHAP values, identifying key predictors like tumor
perimeter and compactness. While GBMs show promise in prostate cancer diagnostics, future
research should incorporate multimodal data, advanced balancing techniques, and rigorous
validation frameworks to enhance generalizability and fairness. This study highlights the value
of machine learning in healthcare, contributing to improved diagnostic accuracy and patient
outcomes.

Keywords— Prostate Cancer Detection, Gradient Boosting Machines, Machine Learning, Class
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1. INTRODUCTION

The detection and diagnosis of prostate cancer remain critical challenges in the medical
field due to the disease's significant global impact on men's health. As one of the most
commonly diagnosed malignancies among men, prostate cancer ranks among the leading causes
of cancer-related deaths worldwide. Early identification and accurate diagnosis are crucial for
improving patient outcomes, enabling timely medical interventions, and reducing mortality
rates.

Despite advancements in diagnostic methods—such as imaging technologies, biomarker
analysis, and biopsy procedures—distinguishing between malignant and benign cases remains a
complex task. This complexity is often caused by overlapping clinical characteristics, tumor
heterogeneity, and the presence of imbalanced or incomplete datasets in medical records. These
factors frequently result in diagnostic inaccuracies, highlighting the urgent need for more robust
and reliable computational approaches.

In response to these challenges, machine learning (ML) techniques have increasingly
been adopted in the medical field, offering sophisticated tools for analyzing complex and high-
dimensional data. Among these, Gradient Boosting Machines (GBMs) have gained prominence,
especially in cancer-related research, for their strong performance in modeling non-linear
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relationships, handling missing values, and capturing intricate feature interactions effectively
[1]. GBMs utilize an ensemble learning framework that combines multiple weak learners—
typically decision trees—into a powerful predictive model, resulting in improved classification
accuracy and resilience against noise [2].

This study explores the application of GBMs for prostate cancer detection using a
dataset containing critical tumor features such as radius, texture, perimeter, area, smoothness,
compactness, symmetry, and fractal dimension. These features are vital for distinguishing tumor
characteristics and identifying malignant cases. In addition to improving diagnostic accuracy,
the study also addresses common challenges in medical datasets, such as class imbalance and
data noise, which can negatively affect model performance.

Several prior studies have demonstrated the effectiveness of GBMs in cancer
diagnostics. For instance, a 2021 study showed that GBMs outperformed traditional classifiers
like support vector machines when applied to biomarker datasets, achieving diagnostic
accuracies exceeding 90% [3]. Further, in 2022, researchers successfully combined clinical and
genomic data using GBMs, enhancing prediction accuracy for prostate cancer detection [4]. In
2023, studies emphasized GBMs' flexibility in dealing with imbalanced data, showing
improvements in both sensitivity and specificity [5]. More recently, research in 2024
demonstrated the ability of GBMs to model complex interactions between clinical and imaging
features, providing deeper insights into diagnostic processes [6].

By leveraging the tumor characteristics in the given dataset, this study seeks to validate
the practicality and performance of GBMs in real-world diagnostic scenarios. The goal is to
contribute to the development of more accurate and interpretable prostate cancer detection tools,
ultimately supporting earlier interventions and better clinical outcomes.

2. RESEARCH METHODS

This research adopts a quantitative approach to evaluate the effectiveness of Gradient
Boosting Machines (GBMs) in detecting prostate cancer based on structured medical datasets.
The primary dataset used in this study consists of key tumor characteristics such as radius,
texture, perimeter, area, smoothness, compactness, symmetry, and fractal dimensions. These
features, known for their relevance in distinguishing between malignant and benign cases, form
the basis of the model's predictive capabilities. The dataset is first preprocessed to handle
missing values, normalize feature scales, and address class imbalance issues through techniques
such as oversampling or weighted loss functions.

The GBM model is implemented using state-of-the-art machine learning frameworks,
ensuring optimal parameter tuning through methods like grid search and cross-validation. Model
performance is evaluated using a test dataset, with metrics such as accuracy, precision, recall,
and the F1 score serving as benchmarks for effectiveness. Additionally, the study compares
GBM performance with other classifiers, including logistic regression and random forests, to
demonstrate its superiority in handling complex, non-linear relationships within the data.

This methodology aims to provide a robust framework for assessing the clinical utility
of GBMs in prostate cancer detection. By leveraging advanced machine learning techniques, the
study contributes to the growing body of research focused on enhancing diagnostic accuracy [7].

2.1 Process Flow Diagram

To provide a clearer understanding of the research workflow, Figure 1 illustrates the end-to-end
process for prostate cancer detection using Gradient Boosting Machines (GBMs). The image
illustrates a workflow for developing a machine learning model, consisting of five main stages.
First, in the Data Collection phase, data is gathered, missing values are handled, class imbalance
is addressed using SMOTE, outliers are removed, and feature selection is performed. Second, in
Model Development, models are built using GBM algorithms like XGBoost and LightGBM,
with hyperparameter tuning and cross-validation. Third, Model Evaluation is conducted by
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measuring accuracy, precision, recall, F1-Score, and AUC-ROC. Fourth, Model Interpretability
employs SHAP for local and global analysis. Finally, in Model Validation, the model is tested
for robustness and integrated into clinical scenarios or workflows.

Data Collection
* Handle missing values
+ Normalization
« Class imbalance handling
« (SMOTE)
« Outlier removal
+ Feature selection

1

Model Development
+ GBM (XGBoost, LightGBM)
* Hyperparameter tuning
(Grid Search + CV)

1

Model Evaluation

« Accuracy, Precision, Recalll,
F1-Score, AUC-ROC

1

Model Interpretatability
+ SHAP values (local & global
explanation)

1

Model Validation
+ Robustness testing
« Integration scenario with
clinical workflow

Figure 1. Workflow of Prostate Cancer Detection using GBM

2.2 Dataset Description

The dataset used in this study originates from a structured medical dataset containing critical
tumor characteristics. The following details describe the source, features, and preprocessing
steps in depth:
a. Source:
The dataset is adapted from a publicly available medical dataset, commonly utilized in
cancer diagnosis research. It contains 20 instances (samples) with clinical features related to
prostate tumor morphology.
b. Data Type:
The dataset is tabular, with numerical features. Each row represents a tumor case, and each
column represents a medical feature. The target variable is binary, with:
e (lass 0: Benign tumor
e (lass 1: Malignant tumor
c. Features Included:
e Radius
Texture
Perimeter
Area
Smoothness
Compactness
Symmetry
e Fractal Dimension
d. Label Distribution (Class Imbalance):
e (lass 0 (Benign): 4 cases
e (lass 1 (Malignant): 16 cases
This class imbalance presents a major challenge and is addressed using SMOTE.
e. Preprocessing Steps:
1. Missing Value Handling: Median imputation (for continuous features) and mode
imputation (for categorical features, if present).
2. Normalization: Min-Max scaling to normalize all features within a range of 0 to 1.
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3. Class Balancing: Synthetic Minority Over-sampling Technique (SMOTE) used to
generate synthetic samples for Class 0.

4. Outlier Detection: Interquartile Range (IQR) and Z-score methods used to identify and
remove extreme values.

5. Feature Selection: Recursive Feature Elimination (RFE) and correlation analysis
applied to reduce redundancy and improve model generalization.

2.3 Data Preprocessing

Data preprocessing is a crucial stage in this study, ensuring that the dataset is clean,
balanced, and ready for effective model training. The dataset includes key features related to
tumor characteristics such as radius, texture, perimeter, area, smoothness, compactness,
symmetry, and fractal dimensions, which are essential for distinguishing malignant from benign
cases. Several steps are undertaken to prepare the data.

First, missing data is handled systematically. Missing values in continuous features are
addressed using median imputation, which is less sensitive to outliers compared to mean
imputation. Categorical features, if present, are imputed with the mode to maintain consistency.
For datasets with a significant proportion of missing values, more advanced methods such as K-
Nearest Neighbor (KNN) imputation are considered to preserve data integrity and distribution.

Normalization is then applied to ensure all features are on a similar scale. Min-Max
scaling is chosen, which transforms numerical variables to a range between 0 and 1. This step
prevents features with larger magnitudes, such as tumor area, from disproportionately
influencing the learning process during model training.

Class imbalance, a common issue in medical datasets, is addressed using the Synthetic
Minority Over-sampling Technique (SMOTE) [8]. SMOTE generates synthetic examples for
the minority class (malignant cases) by interpolating between existing samples, creating a
balanced dataset. This enhances the model's ability to detect malignant cases and reduces the
risk of bias toward the majority class (benign cases).

Outliers are identified and managed using statistical methods such as the Interquartile
Range (IQR) or Z-score. These methods detect extreme values that deviate significantly from
the dataset’s overall distribution. While outliers can provide valuable information in certain
cases, extreme values that are likely errors are removed to reduce noise and prevent overfitting.

Finally, feature selection is conducted to identify the most relevant variables for
classification. Recursive Feature Elimination (RFE) is used to iteratively remove the least
important features based on their contribution to the model's performance. Correlation analysis
is also performed to eliminate multicollinearity, ensuring that the retained features provide
unique and meaningful information to the model.

2. 4 Model Development

The Gradient Boosting Machine (GBM) algorithm is selected for its ability to model
non-linear relationships and handle feature interactions effectively. The model is implemented
using cutting-edge frameworks such as XGBoost and LightGBM, which are designed for speed
and scalability [9]. These frameworks also provide advanced functionalities like tree pruning
and built-in regularization, making them suitable for medical datasets.

Hyperparameter tuning is a critical step to optimize the GBM model. Grid search
combined with k-fold cross-validation is employed to systematically explore combinations of
hyperparameters. The key hyperparameters tuned include:

1. Learning rate: Controls the step size during optimization, balancing model accuracy and
training time.

2. Number of estimators: Defines the number of trees in the ensemble, influencing the
model’s ability to learn complex patterns.

3. Maximum depth: Limits the depth of each tree, preventing overfitting by controlling
model complexity.
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4. Subsampling rate: Specifies the proportion of data used to train each tree, adding
randomness to reduce overfitting.
5. Regularization parameters: Penalize overly complex models to enhance generalizability.
The dataset is split into training and validation subsets using stratified sampling to
maintain the proportional distribution of malignant and benign cases. Typically, an 80-20 split is
used, but this ratio may vary depending on dataset size and characteristics. The training set is
used to build the model, while the validation set ensures that the model generalizes well to
unseen data.
To enhance the model's robustness, techniques such as early stopping are implemented.
Early stopping monitors the model's performance on the validation set during training and halts
the process if the performance plateaus or deteriorates, preventing overfitting.

2. 5 Model Evaluation

The performance of the GBM model is evaluated using a comprehensive set of metrics
that assess its ability to classify malignant and benign cases accurately:
1. Accuracy: Measures the overall proportion of correctly classified cases, providing a
general overview of model performance.
2. Precision: Evaluates the proportion of true positive predictions among all positive
predictions, minimizing false positives.
3. Recall (Sensitivity): Assesses the model's ability to identify all malignant cases,
emphasizing the reduction of false negatives.
4. F1 Score: Combines precision and recall into a single metric, particularly useful for
imbalanced datasets.
5. AUC-ROC: Examines the trade-off between true positive rate and false positive rate
across different classification thresholds, offering a robust measure of the model's
diagnostic performance [10].
The test dataset, which is held out during training and validation, is used to calculate
these metrics. This ensures that the evaluation reflects the model's ability to generalize to new,
unseen data.

2. 6 Model Development and Application

To validate the effectiveness of GBMs, their performance is compared against baseline
machine learning models, including logistic regression, support vector machines (SVMs), and
random forests.

Logistic regression, a simple linear model, serves as a baseline to demonstrate the added
value of non-linear models like GBMs. Its limitations in capturing complex feature interactions
highlight the advantages of ensemble learning techniques.

Support vector machines (SVMs) are included for their strong performance in binary
classification tasks, particularly when classes are separable. However, their sensitivity to
parameter tuning and computational complexity in larger datasets may limit their utility
compared to GBMs.

Random forests, as another ensemble learning method, offer a direct comparison with
GBMs. While effective, random forests lack the iterative boosting mechanism that GBMs
employ, which enables GBMs to correct errors from previous iterations and achieve superior
performance [11].

2. 7 Interpretability Analysis

Interpretability is a critical aspect of deploying machine learning models in healthcare.
In this study, SHAP (SHapley Additive exPlanations) values are used to explain the predictions
of the GBM model.

SHAP values provide insights into the contribution of each feature to individual
predictions, identifying which tumor characteristics, such as symmetry or fractal dimensions,
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play the most critical role in classification. This transparency ensures that the model’s decision-
making process aligns with clinical expectations and enhances its credibility among medical
practitioners [12].

Furthermore, global interpretability analysis is performed to assess the overall
importance of features across the entire dataset. For instance, features like tumor area and
compactness may consistently rank as significant predictors, reflecting their established
relevance in clinical practice.

2. 8 Validation and Real-World Implementation

The final GBM model is subjected to real-world validation to ensure its applicability
beyond the study dataset. Robustness testing evaluates the model's performance under various
conditions, such as data noise, missing values, and shifts in feature distributions. This step
ensures that the model remains reliable and accurate in diverse clinical settings.

The model's scalability is tested by integrating additional data sources, such as imaging
or genomic data. This demonstrates its adaptability to more complex datasets and highlights its
potential for broader applications in prostate cancer diagnostics.

Finally, the feasibility of integrating the model into clinical workflows is explored. This
includes assessing its compatibility with electronic health record (EHR) systems and its
usability as a decision-support tool for medical practitioners. Practical considerations, such as
computational efficiency, user interfaces, and training requirements for clinicians, are addressed
to ensure successful implementation [13].

3. RESULTS AND DISCUSSION

Table 1 Classification Performance Metrics and Overall Evaluation Results

Metric Class 0 Class 1 Average/Overall
Precision 0.33 0.82 0.58 (Macro Avg)
Recall 0.25 0.88 0.56 (Macro Avg)
F1-Score 0.29 0.85 0.57 (Macro Avg)
Support 4 16 20

Accuracy - - 0.75

Mean Squared Error | - - 0.25

Table 1 presents a detailed summary of the Gradient Boosting Machine (GBM) model's
performance when applied to the prostate cancer dataset. It evaluates the model's ability to
distinguish between Class 0 (Negative) cases (benign tumors) and Class 1 (Positive) cases
(malignant tumors). The table also includes overall evaluation metrics that summarize the
model’s effectiveness across both classes. A thorough breakdown of these metrics helps identify
strengths and weaknesses in the model’s predictive capabilities, shedding light on areas for
improvement.

The class-specific metrics in Table 1—precision, recall, Fl-score, and support—
highlight the model’s performance for each class independently. These metrics provide crucial
insights into how well the model distinguishes between benign and malignant cases.

1. Precision represents the proportion of true positive predictions for a specific class out of
all predictions made for that class. It is a critical metric for understanding how often the
model’s predictions for a given class are correct.

a. Class 0 (Negative): The precision for Class 0 is 33%, meaning that only 33% of
the predictions labeled as Class 0 were accurate. This low value indicates a high
false positive rate, where benign cases are incorrectly classified as malignant.
For example, among four actual benign cases, only one was correctly classified
as Class 0, while three were wrongly predicted as Class 1. Misclassifications of
this type have significant implications in clinical settings, leading to
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unnecessary diagnostic procedures, increased patient anxiety, and elevated
healthcare costs.

Class 1 (Positive): The precision for Class 1 is 82%, signifying that 82% of the
predictions for Class 1 were correct. This high precision reflects the model’s
ability to reliably identify malignant cases while minimizing false positives.
This is particularly important in cancer detection, where reducing the number of
false alarms prevents unnecessary treatments and allows resources to be
focused on true cases.

2. Recall (Sensitivity) Recall measures the proportion of actual cases correctly identified
by the model. Also known as sensitivity, it reflects the model’s ability to detect all
instances of a particular class.

a.

Class 0 (Negative): Recall for Class 0 is 25%, meaning the model correctly
identified only 25% of the actual benign cases. This low recall indicates a high
false negative rate, where most benign cases were misclassified as malignant.
While false negatives for benign cases may not carry the same urgency as for
malignant cases, they still create inefficiencies in resource allocation and
contribute to unnecessary patient stress.

Class 1 (Positive): Recall for Class 1 is 88%, demonstrating that the model
successfully identified 88% of actual malignant cases. This high sensitivity is
critical in cancer detection, as it ensures that most true cancer cases are caught
early. Missing malignant cases could result in delayed treatments and worse
health outcomes, so this high recall is a positive outcome for the model.

3. The Fl-score is the harmonic mean of precision and recall, offering a balanced measure
of the model’s performance for each class. It is particularly useful when evaluating
imbalanced datasets, as it considers both false positives and false negatives.

a.

Class 0 (Negative): The Fl-score for Class 0 is 0.29, reflecting the model’s
poor ability to predict benign cases accurately. The low precision and recall for
Class 0 combine to produce this low score, emphasizing the model’s limitations
in handling the minority class.

Class 1 (Positive): The Fl-score for Class 1 is 0.85, indicating strong
performance for detecting malignant cases. This high value shows that the
model strikes a good balance between precision and recall for Class 1, making
it effective for identifying cancer cases.

4. Support represents the number of actual instances of each class in the dataset. It
provides context for the other metrics by showing the class distribution.

a.

Class 0 (Negative): The support for Class 0 is 4, indicating that this class is
underrepresented in the dataset. This imbalance is a significant challenge for the
model, as it skews the learning process toward the majority class (Class 1).
Class 1 (Positive): The support for Class 1 is 16, making it the dominant class
in the dataset. The higher representation of Class 1 allows the model to learn
and perform better for this class compared to Class 0.

The disparity in support between the two classes highlights the issue of class imbalance,
which greatly influences the model’s performance. The dominance of Class 1 skews the model
toward predicting positive cases, leading to poor results for the minority class (Class 0).

The overall metrics in Table 1 provide a summary of the model’s performance across
both classes. These metrics are particularly important for understanding the model’s general
behavior and identifying potential biases introduced by class imbalance.

1. Accuracy measures the proportion of correctly classified instances out of all
predictions. The model achieved an accuracy of 75%, indicating that it correctly
classified 75% of the total 20 samples in the dataset. While this may seem
acceptable at first glance, accuracy alone is not a reliable indicator of performance
in imbalanced datasets. The dominance of Class 1 inflates the accuracy score,
masking the model’s poor performance on Class 0. For example, the model
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performs well on Class 1, which accounts for 80% of the dataset, but struggles
significantly with the minority class.

Macro averages calculate the unweighted mean of precision, recall, and F1-score
across both classes. By treating each class equally, regardless of its representation
in the dataset, macro averages provide a clearer picture of the model’s fairness and
ability to generalize across classes. Precision (0.58): The macro average precision
reflects the model’s overall ability to correctly label instances for both classes. This
value is lower than the weighted average due to the poor precision for Class 0.
Recall (0.56): The macro average recall indicates the model’s average sensitivity
across both classes. This value is also affected by the low recall for Class 0. F1-
Score (0.57): The macro average Fl-score balances precision and recall for both
classes, providing a single metric to summarize the model’s overall performance.

The macro averages are significantly lower than the weighted averages, highlighting the
disparity in performance between the two classes. These values underscore the importance of
addressing the class imbalance to improve the model’s fairness and overall effectiveness.

3.

The MSE is 0.25, representing the average squared difference between predicted
and actual values. While this value suggests that the model’s predictions are
generally close to the actual values, it does not account for the model’s biased
performance across classes. For example, the low precision and recall for Class 0 do
not significantly impact the MSE due to the dominance of Class 1 in the dataset.

3. 1 Class Imbalance

One of the most prominent challenges observed in the model's performance is the
severe class imbalance in the dataset. Out of a total of 20 samples, only 4 cases belong to Class
0 (Negative), while the remaining 16 cases fall under Class 1 (Positive). This imbalance
inherently skews the model's predictions toward the majority class (Class 1), leading to poor
performance for the minority class (Class 0). Class imbalance is a common issue in medical
datasets, as benign cases are often underrepresented due to prioritization of malignant cases in
cancer-related datasets.

1.

Impact of Class Imbalance on Model Performance, The skewed distribution of
classes directly affects the metrics for Class 0, resulting in low precision (33%) and
recall (25%). These metrics indicate that the model struggles to correctly identify
benign cases, either misclassifying them as malignant (false positives) or missing
them entirely (false negatives). False Positives for Class 0: When benign cases are
misclassified as malignant, patients are subjected to unnecessary follow-up tests or
treatments. This not only places a psychological burden on patients but also
increases the overall costs of healthcare delivery. In resource-constrained settings,
such misclassifications can strain medical systems and delay care for those who
truly need it. False Negatives for Class 0: Missing benign cases is less critical than
missing malignant cases; however, it contributes to inefficiencies in the diagnostic
process. A model that cannot reliably differentiate benign cases risks losing the trust
of clinicians, which is crucial for the adoption of machine learning in healthcare.
Model Bias Toward Class 1 (Positive Cases), The model's high recall of 88% and
precision of 82% for Class 1 demonstrate its strong ability to detect malignant
cases. However, this comes at the expense of Class 0, as the model is biased toward
the majority class. While high performance on Class 1 is desirable in cancer
detection, it must not overshadow the need for accurate predictions across all
classes. A biased model, even with strong metrics for one class, lacks fairness and
limits its clinical applicability.

Strategies for Addressing Class Imbalance, To improve the model’s performance
for Class 0 and ensure a fairer distribution of predictive power across classes,
several strategies can be employed: Resampling Techniques: Oversampling the
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minority class (Class 0) using methods like Synthetic Minority Oversampling
Technique (SMOTE) can generate synthetic samples, balancing the dataset without
reducing the size of the majority class. Alternatively, undersampling the majority
class (Class 1) can also balance the dataset, though this may result in the loss of
valuable information from Class 1 cases. Class Weight Adjustments: Modifying the
class weight parameter in the Gradient Boosting algorithm to assign higher weights
to Class 0 during training ensures that the model pays more attention to the minority
class. This technique is particularly effective for tree-based models, which can
adapt to weighted data during optimization. Data Augmentation and Expansion:
Generating additional data for Class 0 through simulation, feature interpolation, or
other augmentation techniques can enhance the dataset's diversity. Collecting more
samples of benign cases from clinical records or similar datasets would naturally
address the imbalance.

3. 2 Feature Importance and Model Interpretability

Gradient Boosting models inherently provide insights into feature importance, making

them highly interpretable compared to some other machine learning methods, such as neural
networks. In this study, several features—particularly perimeter, area, compactness, and
smoothness—emerged as key predictors of malignancy.

Significance of Key Features

a. Perimeter and Area: These geometric features consistently rank among the
most influential in the model’s decision-making process. Larger tumor
perimeter and area are strongly correlated with malignancy, aligning with
clinical observations that irregularly shaped and larger tumors are more
likely to be cancerous.

b. Compactness and Smoothness: These textural features measure the
regularity and uniformity of tumor boundaries. Malignant tumors often
exhibit irregular and uneven edges, making these features highly valuable
in distinguishing between benign and malignant cases.

Transparency in Clinical Applications, The interpretability of Gradient Boosting
models is particularly advantageous in medical settings. By identifying which
features drive each prediction, the model allows clinicians to trace its decision-
making process. This transparency enhances trust, as medical practitioners can
validate predictions against known clinical patterns. For example, a prediction
influenced heavily by tumor perimeter can be cross-referenced with clinical
evidence linking tumor size to malignancy.

Opportunities for Feature Expansion, While the current model focuses on structural
and textural features, incorporating additional clinically relevant data could further
improve its predictive accuracy:

a. Genetic Markers: Molecular profiling data, such as gene expression
patterns, could provide deeper insights into tumor behavior.

b. Imaging Features: Advanced imaging techniques, such as radiomics, can
extract complex features that are not visible through traditional imaging
methods.

c. Patient Demographics: Including age, family history, and other
demographic information may improve the model’s discriminatory power.

Feature Engineering for Improved Discrimination, Beyond incorporating additional
features, engineering new composite features can help capture interactions between
variables. For instance, the ratio of perimeter to area could quantify the irregularity
of a tumor more effectively than either feature alone. Such derived features,
informed by domain knowledge, can enhance the model’s ability to generalize
across diverse datasets.

Prostate Cancer Detection Using Gradient Boosting Machines Effectively ( Muslimin)
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3.3 Performance Metrics

The metrics presented in Table 1—precision, recall, F1-score, and overall metrics—

offer a comprehensive evaluation of the model's strengths and limitations.

1. Class-Specific Performance, Class 1 (Positive): The model achieves strong metrics
for Class 1, including precision of 82% and recall of 88%. These values indicate
that the model effectively minimizes both false positives and false negatives for
malignant cases. Such performance is essential in cancer detection, where the
primary goal is to identify malignancies accurately and promptly. Class 0
(Negative): The low precision (33%) and recall (25%) for Class 0 highlight the
model's struggle to identify benign cases. The high false positive rate (3 out of 4
cases misclassified) reduces the reliability of the model in ruling out malignancies,
which is a significant limitation in clinical practice.

2. Opverall Metrics, Accuracy: The model achieves an accuracy of 75%, indicating that
15 out of 20 samples were correctly classified. However, this metric is heavily
influenced by the dominance of Class 1 in the dataset. While accuracy appears
acceptable, it does not capture the model’s poor performance for Class 0, making it
an insufficient measure of overall effectiveness. Macro Averages: The macro
average metrics—precision (0.58), recall (0.56), and Fl-score (0.57)—provide a
balanced evaluation by giving equal weight to both classes. These values are
significantly lower than the weighted averages, highlighting the model’s difficulty
in handling Class 0. Macro averages are particularly important in imbalanced
datasets, as they reveal the true disparity in performance across classes. Mean
Squared Error (MSE): The MSE of 0.25 reflects the average squared difference
between predicted and actual values. While this low value suggests that the model’s
predictions are generally close to the true values, it does not account for the model’s
struggles with the minority class. MSE is less informative in classification tasks
involving imbalanced data, as it is influenced more heavily by the majority class.

3. Interpretation of Weighted vs. Macro Metrics,The disparity between weighted and
macro averages underscores the need for caution when interpreting overall
performance metrics. While weighted averages favor the dominant class, macro
averages provide a more realistic assessment of the model’s generalizability and
fairness. The poor macro metrics in this study reveal the urgent need to address the
class imbalance and improve performance for Class 0.

3.4 Future Research Directions

While the Gradient Boosting Model demonstrated strong performance for malignant
cases, several areas merit further exploration to enhance its overall reliability and clinical
applicability. Future work should explore advanced techniques such as adaptive synthetic
sampling or hybrid oversampling methods to handle class imbalance more effectively.
Expanding the dataset with additional benign cases is also crucial to naturally mitigate
imbalance issues. Incorporating diverse data types, such as genetic markers, advanced imaging
features, and patient demographics, could improve the model’s ability to capture complex
interactions underlying prostate cancer. Investigating alternative approaches like Balanced
Random Forests or ensemble methods could address the limitations of Gradient Boosting
Machines, especially for imbalanced datasets. Further efforts should prioritize model
transparency through tools like SHAP values and interactive visualizations, enabling clinicians
to better understand and trust predictions.
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4. CONCLUSION

The Gradient Boosting Machine model demonstrated strong potential in detecting
prostate cancer, achieving an accuracy of 75%. The model performed exceptionally well for
malignant cases (Class 1), with precision and recall values of 82% and 88%, respectively. This
highlights its reliability in identifying true positive cases, a critical factor in cancer diagnostics
where early detection can significantly improve patient outcomes. However, the model
struggled with benign cases (Class 0), achieving only 33% precision and 25% recall. This
disparity is attributed to the severe class imbalance in the dataset, where benign cases represent
only 20% of the total samples, leading to biased predictions and limited generalizability.

While the weighted average metrics, including an F1-score of 74%, reflect the model’s
overall accuracy, the macro averages (precision: 58%, recall: 56%, F1l-score: 57%) expose its
inability to handle minority class cases effectively. To address these challenges, future work
should focus on balancing the dataset using techniques such as SMOTE, incorporating
additional clinical features, and exploring alternative algorithms like Balanced Random Forests.
By addressing these limitations, the model's fairness and reliability can be improved, making it
a more robust tool for prostate cancer classification in clinical applications.
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