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Abstrak 

Deteksi hambatan di lingkungan bawah laut merupakan tantangan besar bagi navigasi 

Remotely Operated Vehicles (ROV) karena kondisi yang kompleks dan keterbatasan visibilitas. 

Metode konvensional sering kali gagal mengenali hambatan bawah laut dengan akurat, 

sehingga diperlukan teknologi canggih untuk meningkatkan kemampuan deteksi. Penelitian ini 

bertujuan untuk mengembangkan sistem deteksi hambatan yang efisien dan akurat di 

lingkungan bawah laut dengan menggunakan ROV yang terintegrasi dengan Convolutional 

Neural Network (CNN). Tujuan utamanya adalah untuk meningkatkan kemampuan ROV dalam 

mendeteksi dan menghindari hambatan, sehingga mendukung misi-misi bawah laut seperti 

inspeksi kapal, eksplorasi laut, dan pemantauan lingkungan. Sistem yang diusulkan 

mengintegrasikan kamera bawah air dengan ROV, menggunakan pemrosesan gambar berbasis 

CNN untuk mendeteksi hambatan. Model CNN dilatih dengan dataset gambar bawah air yang 

beragam untuk memastikan keandalan di berbagai lingkungan. CNN mengekstrak fitur-fitur 

penting dari gambar melalui beberapa lapisan konvolusi, di mana setiap lapisan konvolusi 

menggunakan filter untuk mendeteksi pola seperti tepi, sudut, atau tekstur dari gambar 

masukan. Pada tahap akhir, fitur-fitur yang telah diproses diteruskan melalui lapisan fully-

connected yang berfungsi sebagai pengklasifikasi. Hasil pengujian menunjukkan kinerja sistem 

yang kuat, dengan akurasi validasi mencapai 99,25% dan akurasi klasifikasi real-time sebesar 

85% dalam mengidentifikasi berbagai hambatan bawah laut, seperti botol, tiang kayu, rantai, 

dan baling-baling, melampaui pendekatan tradisional dalam hal presisi dan respons waktu 

nyata. Kesimpulannya, penggunaan CNN untuk deteksi hambatan secara signifikan 

meningkatkan keandalan operasional ROV, menjadikannya solusi yang menjanjikan untuk 

aplikasi kelautan seperti inspeksi dan eksplorasi bawah laut, di mana akurasi dan efisiensi 

sangat penting. 

  

Kata kunci—CNN, halangan, deteksi, klasifikasi, ROV 

 

 

Abstract 

  

The detection of obstacles in underwater environments poses a significant challenge for 

the navigation of Remotely Operated Vehicles (ROVs) due to complex surroundings and limited 

visibility. Conventional methods often fail to recognize underwater obstacles accurately, 

necessitating advanced technologies to improve detection capabilities. This study aims to 

develop an efficient and accurate obstacle detection system for underwater environments using 

an ROV integrated with a Convolutional Neural Network (CNN). The primary objective is to 

mailto:1purwidi@ppns.
mailto:2yuning.widiarti@ppns.ac.id
mailto:2endangpudjip@ppns.ac.id
mailto:endahw@ppns.ac.id


◼          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. x, No. x,  July 201x :  first_page – end_page 

2 

enhance the ROV’s ability to detect and avoid obstacles, supporting underwater missions such 

as ship inspection, marine exploration, and environmental monitoring. The proposed system 

integrates an underwater camera with the ROV, using CNN-based image processing to detect 

obstacles. The CNN model was trained on a diverse dataset of underwater images to ensure 

reliability in different environments. CNN extracts key features from images through multiple 

convolutional layers. Each convolutional layer uses filters to detect patterns such as edges, 

corners, or textures from the input images. In the final stage, the processed features are passed 

through fully connected layers that act as classifiers. The result demonstrated strong system 

performance, achieving a validation accuracy of 99.25% and a real-time classification 

accuracy of 85% in identifying various underwater obstacles, bottles, wooden poles, chains, 

and propellers, surpassing traditional approaches in precision and real-time response 

capabilities. In conclusion, using CNN for obstacle detection significantly enhances the ROV’s 

operational reliability, making it a promising solution for marine applications such as 

underwater inspections and exploration, where accuracy and efficiency are crucial. 

 

Keywords—CNN, obstacle, detection, classification, ROV, underwater 

 

1. INTRODUCTION 

 

The advancement of research, development, and utilization of marine resources will 

continue to grow steadily. The emergence of remotely operated vehicles (ROVs) or unmanned 

underwater vehicles (UUVs) brings benefits and allows discoveries to be made undersea. The 

ROV is usually used to assist work in underwater environments where safety considerations are 

a major factor. Apart from that, the ROV can also reach difficult and remote underwater areas. 

Therefore, improving the ROV autonomy capabilities, including perceived autonomy, planning 

autonomy, and capacity for independent behavior, is an important trend for developing ROV or 

unmanned vehicles. The air, sediment, and underwater environment have different 

characteristics. In addition, the attenuation, reflection, and signal propagation parameters vary 

[1,2], demanding hardware settings must be able to adapt to the environment in which the 

obstacle detection system is expected to operate. Unmanned vehicles cannot learn new 

behaviors or acquire new knowledge simply by repeating appropriate actions programmed in 

design [3,4]. However, as artificial intelligence develops, the ability to learn independently from 

unmanned vehicles is no longer a fantasy. 

Obstacles in the water pose a significant challenge for an ROV when operating, as 

undetected obstacles can damage its body and components. To prevent collisions, the ROV 

must detect these underwater obstructions. Image processing is highly effective in underwater 

exploration, as light scattering in aquatic environments can interfere with the camera's ability to 

capture clear images. The advanced image processing techniques are crucial for identifying 

objects and ensuring the ROV's safe navigation. 

For enhancing underwater images, traditional image processing techniques involve 

color correction algorithms, contrast enhancement algorithms, and the white balance method 

[5]. The grey world hypothesis [6] and gray edge hypothesis [7] are common methods used to 

enhance image quality, while histogram equalization [8] and limited contrast histogram 

equalization [9] are frequently employed to increase contrast. However, these techniques often 

yield unsatisfactory results when applied to underwater images due to the complexity of the 

marine environment. Factors such as light scattering and absorption by water, as well as the 

presence of suspended particles, significantly interfere with image quality in underwater 

settings. 

The detection of objects underwater primarily involves the use of digital cameras. 

Image processing techniques enhance image quality and reduce noise, often using contour 

segmentation to identify objects. Various methods have been proposed for target detection. For 

example, Chen Chang and colleagues [10] introduced a new image-denoising filter based on the 
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standard median filter to detect and replace initial pixel values with a newer median. 

Additionally, Prabhakar and colleagues [11] proposed a denoising method that utilizes 

homomorphic filters for correcting uneven lighting and anisotropic filters for noise removal in 

underwater images. The techniques mentioned utilize wavelet decomposition, statistical 

approaches, laser technology, or color polarization theories. While these methods demonstrate 

reasonability and effectiveness, a shared drawback is their extensive processing time, making 

real-time detection challenging.  

Convolutional Neural Network (CNN) [12,13,14] has significantly advanced in recent 

years, emerging as a standout element in the rapidly evolving field of deep neural networks. 

Computer vision technology enables artificial intelligence to perceive and comprehend visual 

information. The enhancement of computer hardware capabilities and the development of 

extensive image annotation datasets have propelled deep learning-based computer vision 

algorithms to excel in traditional tasks such as image classification, object detection, and image 

segmentation. In 2014, Girshick and colleagues introduced R-CNN [15], marking the first 

application of convolutional neural network (CNN) to object detection. This innovation boosted 

detection accuracy by nearly 30% over traditional algorithms, generating significant interest. 

Both academic research and practical applications show that CNN-based object detection 

algorithms offer superior accuracy [16,17] and offer significant advantages in object recognition 

compared to traditional methods such as Support Vector Machines (SVM) or K-nearest 

neighbors (K-NN). It performs automatic feature extraction, eliminating the need for manual 

feature engineering, and allowing the model to learn patterns from simple to complex features 

[18] Moreover, CNNs leverage spatial hierarchies through convolutional and pooling layers, 

making them more robust to translation, and rotation, and image scaling variations.[19] The 

convolutional method also enables parameter sharing, significantly reducing the number of 

parameters compared to the fully connected neural network, resulting in more computational 

efficiency.[20] Numerous studies have demonstrated that CNN consistently outperforms 

traditional methods in object classification, especially on large datasets such as ImageNet, 

achieving far higher accuracy than non-deep learning approaches. [21] 

This research applies the CNN method to ROV for underwater object detection. For the 

decision-making process, the object detection method is enhanced with underwater object 

classification, with direct testing conducted in a pool at various distances. Additionally, this 

study designs an ROV with excellent maneuverability and equipped with a balance sensor that 

can maintain a specific position despite wave movements. Several stages of work were 

conducted during this research. The first step is determining the objects the camera detects and 

identifies on the ROV. Once the objects are defined, images are captured by the camera and 

categorized into dataset classes: plastic bottle, chain, pole, propeller, and no obstacle, 

corresponding to their respective objects. The next stage involves processing the images through 

convolution to create new inputs, followed by max-pooling to speed up computation and reduce 

noise, and then training the neural network to generate weights for classifying the output. When 

an obstacle is detected, the output data is sent through Arduino's serial communication to 

control the motor's movement and avoid the obstacle. 

 

 

2. METHODS 

 

In this research, we apply the CNN method to ROV for underwater object detection. For 

the decision-making process, the object detection method is enhanced with underwater object 

classification, with direct testing conducted in a pool at various distances. Additionally, this 

study designs an ROV with excellent maneuverability and equipped with a balance sensor that 

can maintain a specific position despite wave movements. Several stages of work were 

conducted during this research. The first step is determining the objects the camera detects and 

identifies on the ROV. Once the objects are defined, images are captured by the camera and 

categorized into dataset classes: plastic bottle, chain, pole, propeller, and no obstacle, 
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corresponding to their respective objects. The next stage is processing, where the images 

undergo convolution to create new inputs. The max-pooling process accelerates computation 

and reduces noise in the captured image inputs. The subsequent step is training the neural 

network to generate weights used for classifying the output. When an obstacle output is 

detected, the output data is parsed through Arduino's serial communication to direct the motor's 

movement to avoid the obstacle. 

 

 
Figure 1 The Stages of Research Work 

 

 

 

The next stage is the training process with a Neural Network to produce weights that 

will be used for output classification. If an obstacle is detected, the output data will be parsed 

through the Arduino serial interface to determine the motor's movement direction to avoid the 

obstacle. The work process can be shown in Figure 1. 

 

2.1 Hardware Setup  

In the initial stage of the ROV manufacturing process, a system requirements analysis is 

conducted to determine the necessary equipment and components for achieving the expected 

system performance. The elements required for designing an ROV in this research include a 

low-light HD USB camera, BLDC motor, ESC motor driver, gyro sensor (GY-955), LiPo 

battery, and PC. The flowchart in Figure 2 illustrates the ROV's steps to identify objects. 

Initially, the ROV dives underwater by activating the underwater camera. It then moves until the 

camera detects an object or obstacle in front of it. Once an object is detected, the ROV operator 

reduces the ROV speed to facilitate object or obstacle identification. Upon identification, the 

name of the object matching the dataset's similarity will be displayed, and the output data will 

be transmitted via Arduino serial to control the motor movement direction to avoid obstacles.  

In the hardware design, the laptop is directly connected to a camera, where the images captured 

by the camera correspond to predefined classes. These images are used to create a dataset for 

the training process in the CNN to detect obstacles. The CNN process is implemented using 

Anaconda software and the Python programming language. The CNN-based detection system is 

also designed to ensure that the captured images are easily identifiable by the system, 

considering the water turbidity, which affects image quality.  

Another very crucial process is the mechanical design process. Mechanical design is 

carried out based on a design process using CAD software. One component that plays an 

important role in an ROV is the propeller. During installation, these propellers are installed at 

each corner of the ROV using the omni-four wheels robot concept. Apart from the propeller, 

there are camera components whose quality must be considered. The ROV utilizes a Sony 

Exmor IMX322 sensor for capturing high-quality underwater images, which is essential for 

object classification using CNN. The sensor's excellent low-light performance and high 
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resolution ensure clear, detailed images in challenging underwater environments. This enables 

the CNN to effectively process and classify objects with greater accuracy. 

Another crucial stage in the development of an ROV is the electrical design. This involves 

several essential components, including six BLDC underwater thruster motors, six Flycolor 

ESCs, a LiPo battery, a GY-955 sensor, and an Arduino Uno microcontroller. All these 

electrical components will be wired and arranged in an organized manner within a compartment, 

ensuring they are neat and can be securely housed inside the ROV’s component tube. As a 

voltage source for the motorbike, a Lithium Polymer battery has the following specifications: 

Voltage used: 11.1 VDC – 12.6 VDC and current: 2200 mAh. Meanwhile, the voltage source 

used for the camera is USB power which has the following specifications: Voltage used: 5V/1A. 

Meanwhile, the propeller driving motor uses a Brushless Motor. BLDC motors are preferred for 

ROV thrusters due to their efficiency, precise control, and long lifespan. They offer compact 

power, smooth operation, and high torque at low speeds, making them ideal for maneuvering in 

underwater environments. Their durability and minimal maintenance needs further enhance 

their practicality for extended missions in harsh conditions. Each ROV component including the 

underwater camera and BLDC motors for the six thrusters has been tested separately before 

being integrated into the ROV, with test results showing that all components functioned well. 

 The electrical design can be illustrated in Figure 3. Table 1 and Table 2 show the 

specifications of the ROV and camera used to take pictures respectively. 
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Figure 2 The Flowchart of Detection System 

  

 
Figure 3 The ROV Electrical Design 
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Table 1 ROV Spesification 

Parameter Value 

Dimension  450 mm x 340 mm x 250 mm 

Weight in the air (with ballast and battery) 11-12 kg 

Weight in the air (without ballast and battery) 9-10 kg 

Buoyancy foam R-3318 urethane foam rated to 244 m 

Construction HDPE frame, aluminum flanges/end cap, & acrylic 

or aluminum tubes 

Thruster configuration 6 thrusters: 4 vectored and 2 vertical 

 

Table 2 Camera Spesification 
Parameter Value 

Type Sony Exmor IMX322 / IMX323 

Camera PCB Dimensions    32mm x 32mm 

Mass (total) 17g 

Mass (without cable) 13.5g 

Working Temperature -20 - 75°C 

Total pixels* 2000(H) x 1121(V) ~2.24 MP 

Recording pixels 1920(H) x 1080(V) ~2.07 MP 

Minimum Illumination 0.01 lux 

Sensitivity 5.0V/lux-sec@550nm 

Compression format H.264 / MJPEG / YUV2（YUYV） 

Channels single-channel, 44.1 kHz 

Format Linear-PCM (L16) 

Supply Voltage 5 V 

USB Version 2.0 

Distortion 1% 

 

2.2 CNN Architecture 

 

After going through the retrieval and adjustment stages with the dataset, the 

classification of the dataset taken will be processed further using the CNN method. In this 

research, the CNN architecture has output in the form of 5 categories which are classified as 

follows: 1. No obstacles; 2. Chain; 3. Plastic Bottles; 4. Wooden Poles; 5. Propeller. The 

architecture of the CNN method can be seen in Figure 4, which has a pre-processing process, 

namely dataset formation. Then the next process is processing which consists of image 

convolution, maxpooling, NN training, and softmax. The last process is classification which has 

1 process, namely determining output. This architecture is used as the basis for creating CNN 

programs, the following is an overview of the CNN architecture. In this architecture, there is an 

input image that has a resolution of 300 x 300. This input image with the same pixel size that 

has been determined will enter the first convolution process. 

The initial convolution operation utilizes a 5 x 5 x 32 kernel or filter, meaning the filter 

has a spatial size of 5 x 5 pixels and applies 32 different filters. After processing via the Python 

program, this operation produces feature maps as the new input image. These feature maps have 

a reduced resolution compared to the original image but exhibit increased depth, resulting in a 

resolution of 296 x 296 x 32. The output from this first convolution is then passed to the 

subsequent stage, the max-pooling process. Max-pooling selects the largest value within 

specific pixel regions—in this case, 2 x 2 pixels. For each 2 x 2 block of pixels in the feature 

maps, the maximum value is chosen, reducing the image resolution to 148 x 148 x 32. Upon 

completion of the max-pooling process, the resulting image proceeds to the second convolution, 

as this research employs two convolution layers to accelerate the computation process. The 

resulting image size after going through the second convolution process using a kernel or filter 

measuring 3 x 3 x 64 has a resolution of 146 x 146 x 64, then a second max-pooling process is 
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carried out after getting the image from the first convolution process, in the second max-pooling 

stage This pixel used is 2 x 2, the result is that the resolution of the previous image will change 

to 73 x 73 x 64. 

 

 

 
Figure 4 CNN Architecture 

 

 

After that, we enter the next stage, namely the flattening stage. This stage is a process 

where the input image that has been obtained will be converted into 1 dimension for training 

with a neural network (NN). The result of the flattening process is 341,056 x 1. This value will 

be the input vector for the neural network process. Before entering the training stage, an 

Optimizer analysis process is needed. This analysis functions to determine the optimizer that 

will be used which will later be tested with several optimizers. This analysis process takes quite 

a long time because it requires trial and error. An iterative training process is carried out to 

determine the appropriate optimizer to obtain the best accuracy with the architecture that has 

been created. In this study, a comparison was made of the use of optimizers, including Adadelta, 

Adam, and Adamax. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Convolution and Max-Pooling Process 
 

The test starts by determining the optimal distance for obstacle detection, with the 

results dependent on the resolution of the camera used. A 2.24-megapixel diving camera was 

used, and the obstacle image data was taken during the day in a swimming pool with sufficient 

lighting. The distance variations are set at four levels: 2 meters, 1.5 meters, 1 meter, and 0.5 

meters. The obstacle distance test is conducted by placing the obstacle at predetermined 

distances using a distance meter to ensure accurate measurements between the obstacle and the 

ROV. At a distance of 1.5 meters, the obstacle data appears optimal for training, as all object 

classes are visible. Similarly, at 1 meter, the images remain optimal for training as the obstacle 

details are clear, and the proximity is not too close. However, at a distance of 0.5 meters, the 

images are unsuitable for training as the obstacles are too close. Therefore, data collection at a 

distance of 1.5 m is considered the optimal distance in this test.  

This research's initial stage involves image processing, specifically the convolution and 

max-pooling processes. The dataset used consists of 50 to 60 images per category, making a 

total of 270 images. A 5x5 filter with 32 kernels was applied in the first convolution layer. 

Then, a 2x2 max pooling process followed, and a 3x3 filter with 64 kernels was applied in the 

second convolution layer. This was followed by another 2x2 max pooling process. The training 

was conducted using a Neural Network with one hidden layer and 256 hidden neurons. The 

image that has been processed can be seen in Table 3. 
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Table 3 Dataset Processing 
No Original Image Convolution I  Max-pooling I 

1 

 

 

 

2 

 
 

 

No Original Image Convolution II Max-pooling II 

1 

   

2 

   
 

 

3.2 Data Training Process 

The training process used the Spyder application version 3.0.0 with the Keras library. 

Keras is a Python library commonly used for building machine learning or artificial intelligence 

models, with a particular focus on neural network prototyping, ease of use, modularity, and 

extensibility in Python. During the training process, the `Dense` layer provided by Keras was 

used for variable declaration. The number of hidden layers in this process was set to 256. The 

activation function used in this training was the ReLU function, chosen to introduce non-

linearity into the model. Additionally, the flattening function was applied to convert the output 

of the convolutional process, which is a matrix, into a vector format. 

The training was conducted over 40 epochs with a total duration of 205 minutes. The 

optimizer used was Adadelta, achieving an accuracy of 99.25%. The training accuracy with the 

Adadelta optimizer showed a fluctuating increase up to the 15th epoch, followed by a sharp 

decline around the 25th epoch, where accuracy dropped to approximately 50%-60%. After the 

25th epoch, the accuracy gradually improved, reaching 99%. Adadelta is ideal for tasks with 

dynamic or fluctuating gradients, offering memory efficiency, automatic learning rate 
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adaptation, and stable training without the need for manual tuning, making it more suitable than 

Adam or Adamax in this study. 

 

 
Figure 5 Adadelta Optimizer Accuracy Training Chart 

 

 
Figure 6 Adadelta Training Loss Optimizer Chart 

 

As shown in Figure 5, the accuracy continued to increase steadily, indicating that the Adadelta 

optimizer is well-suited for the CNN architecture used in this research. As shown in Figure 6, 

the training loss with the Adadelta optimizer follows a similar trend to the accuracy graph, 

particularly at epochs 15 and 25. A noticeable difference between the validation loss and 

training loss is observed at these epochs, with a significant divergence occurring at epochs 15 

and 25. The results obtained from the training process using the Adadelta optimizer are as 

follows: training accuracy of 0.9593, training loss of 0.1283, validation accuracy of 0.9925, and 

validation loss of 0.0196. 

 

3.3 Real-time Testing 

Real-time testing is carried out to determine the true accuracy of the training results 

carried out. This test is carried out by directing the camera at predetermined obstacles. The 

weights from the training results that have been carried out are used for real-time testing as 

shown in Table 4. From the test results in a real environment, the system correctly predicted 51 

out of 60 tests, achieving an accuracy of 85%. Several detection errors occurred when testing in 

underwater conditions, where the system misclassified images due to similarities between 

certain classes, particularly in the presence of noise in underwater data. This issue was most 

noticeable between the propeller and bottle classes, as the images from these two classes were 

nearly indistinguishable. These results suggest that the CNN can make reasonably accurate 

predictions, even when the test conditions differ from those during dataset collection. However, 

it is not entirely suitable for controlling motor outputs, as the CNN can change its predictions 

dynamically, causing serial data sent from Python to Arduino to fluctuate, which in turn affects 

motor movement. This issue can be mitigated by expanding the training dataset to reduce the 

occurrence of erratic detection changes and improve CNN detection accuracy. 
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Table 4 Real-time Test Result 
No Target Output Test Result 

1 Bottle Bottle 

 

2 Bottle Propeller 

 

3 Chain Chain 

 

4 Chain Chain 

 

5 Wooden pole Wooden pole 

 

6 Wooden pole Wooden pole 

 

7 Propeller Propeller 

 

8 Propeller Propeller 

 

9 No Obstacle No Obstacle 
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10 No Obstacle No Obstacle 

 

 

 

4. CONCLUSIONS 

 

The CNN method with five class categories (bottle, propeller, chain, wooden pole, and no 

obstacle) demonstrated strong performance, achieving a validation accuracy of 99.25% and a 

real-time classification accuracy of 85%. Using 5x5 and 3x3 convolutional filters combined 

with successive max-pooling effectively produced a robust model. Adadelta was selected as the 

best optimizer based on training results, yielding an accuracy of 0.9593 and low loss values. 

However, detection errors occurred due to environmental similarities, such as water turbidity, 

and the limited dataset size for each class. Moreover, although CNN performed well under 

varying test conditions compared to the dataset collection environment, its detection instability 

could affect data transmission to the motor system. This instability can be mitigated by 

increasing the dataset size, which would enhance detection accuracy and reduce unpredictable 

changes in output. For further implementation, it is recommended to use a more diverse dataset 

with images from various types of water conditions, such as water with different levels of 

turbidity, varying lighting, and more complex dissolved particles. In addition, testing in more 

diverse environments such as the deep sea or coastal areas with many visual disturbances is 

needed to improve the generalization of the CNN model. 
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