Short Communication:
Codoping of Nickel and Nitrogen in ZrO2-TiO2 Composite as Photocatalyst for Methylene Blue Degradation under Visible Light Irradiation

Akhmad Syoufian1* and Rian Kurniawan2

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
2Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, Leipzig 04103, Germany

* Corresponding author: email: akhmadsyoufian@ugm.ac.id
Received: October 26, 2023
Accepted: April 9, 2024
DOI: 10.22146/ijc.90151

Abstract: Nickel (Ni) and nitrogen (N) as codopants had been introduced into ZrO2-TiO2 composite photocatalyst. The objectives of this study are to investigate the codoping effect of Ni and N, as well as the calcination temperature towards the ability to photodegrade methylene blue (MB) under the irradiation of visible light. Different amounts of Ni dopant (wNi/wTi = 2–10%) along with a fixed amount of N dopant (wN/wTi = 10%) were applied to the ZrO2-TiO2 composite through the sol-gel method. Crystallization of the composite was done by calcination at 500, 700, and 900 °C. Characterization of the composite was done using Fourier-transform infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), specular reflectance UV-visible spectrophotometer (SR-UV) and scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDX). The photocatalytic activity of the composite was evaluated by photodegradation of 4 mg L−1 MB solution under visible light irradiation at various reaction times. The lowest band gap was achieved until 2.79 eV by the composite with 6% Ni and 10% N calcined at 900 °C. The highest MB degradation percentage up to 61% was obtained by the composite with 6% Ni and 10% N calcined at 500 °C (kobs = 7.8 × 10−3 min−1).

Keywords: methylene blue; codoping; photodegradation; ZrO2-TiO2

INTRODUCTION

Methylene blue (MB) is a basic dye broadly applied in the textile industry and can pollute the environment, particularly the aquatic environment. Because MB is toxic, mutagenic, carcinogenic, and cannot be decomposed organically, it has a threshold value in water of 0.2 mg L−1 [1]. Various methods have been developed and implemented to remediate the dye-polluted water, such as adsorption [2-3], ion exchange [4], coagulation [5], reverse osmosis [6], enzyme [7] and electrochemical approach [8]. Most of those methods are costly and energy-demanding [9]. Photodegradation is an efficient, low-cost, and simple method for dealing with environmental dye waste pollution. Photodegradation requires photons as energy and catalysts to accelerate the degradation reaction. In treating water pollution caused by MB dye, photodegradation with a photocatalyst is the best option [10]. Photocatalysts are important in photodegradation because they can generate •OH radicals from water that decompose contaminants to CO2 and H2O [11].

Zirconium oxide, also known as zirconia (ZrO2), is a material with photocatalytic potential due to several advantages. ZrO2 exhibits low thermal conductivity, high mechanical properties and photo-thermal stability [12]. ZrO2 also exhibits a band gap of ~5 eV, allowing it to produce a redox effect when exposed to ultraviolet (UV) radiation [13]. On the other hand, titanium dioxide (TiO2) has been widely used as a photocatalyst because of its superior photocatalytic activity, chemical stability, redox potential, resistance to photo-corrosion,
non-toxicity, and low cost [14]. TiO$_2$ has a photocatalytic activity with band gaps of 3.0 and 3.2 eV for rutile and anatase phases, respectively, requiring only UV light to function [15]. Although the anatase possesses a wider band gap than rutile, it demonstrates better photoactivity under UV light irradiation compared rutile phase [16]. Owing to TiO$_2$ photocatalytic properties and ZrO$_2$ mechanical properties, coupling both semiconductors will benefit from larger surface area, higher thermal stability, and heat resistance [17]. Moreover, coupling ZrO$_2$-TiO$_2$ forms heterojunction and retards the recombination rate of photogenerated charges, thus improving photocatalytic efficiency [18].

Large ZrO$_2$-TiO$_2$ band gap (~3.2 eV) limits the photocatalytic activity in the range of UV irradiation [19]. One method for lowering the band gap of ZrO$_2$-TiO$_2$ is by introducing dopants. Takahashi et al. [20] found that using nickel as a doping agent reduced the band gap energy of TiO$_2$. Non-metal dopants work to capture holes, while metal dopants work to capture electrons. Sun et al. [21] discovered that using metal and non-metal dopants can increase hydrogen production by up to tenfold. The addition of nitrogen as a dopant can increase the conductivity of metal oxide ions [22]. N-doped TiO$_2$ exhibits 30% efficiency in degrading MB for 300 min under visible light irradiation [23]. Despite the poor activity in the visible region, the nitrogen role as dopant in TiO$_2$ can be improved by introducing a metal as a codopant [24]. On the other hand, Ni-doped TiO$_2$ is able to degrade 24 and 48% of MB for 120 min under the presence of UV and visible light, respectively [25]. Our previous studies [26-27] found that using iron (Fe) and copper (Cu) as metal codopant with nitrogen dopant in ZrO$_2$-TiO$_2$ composite demonstrates higher photocatalytic activity in degrading organic dye pollutants than undoped and N-doped ZrO$_2$-TiO$_2$ composite under visible light irradiation. Alternatively, codoping N and nickel (Ni) into TiO$_2$ also increases the photoactivity and suppresses the recombination of photogenerated electron-hole pairs, thus improving photocatalytic efficiency [28]. Hence, the potential of Ni codopant alongside N dopant to enhance the photocatalytic properties of ZrO$_2$-TiO$_2$ composite must be explored.

In this study, Ni,N-codoped ZrO$_2$-TiO$_2$ composite was synthesized using the sol-gel method, which has advantages such as high homogeneity in the resulting material, high purity in the resulting compound, low temperature used, solvent resistance in the resulting composite, and good thermal stability [29]. Various amounts of Ni dopant (2–10%) and a fixed amount of N (10%) were applied to study the codoping effect of Ni and N in ZrO$_2$-TiO$_2$ composite as photocatalysts. Various calcination temperatures (500, 700, and 900 °C) were also applied to investigate the composite properties and their effect on the photocatalytic activity to degrade MB under visible light irradiation.

EXPERIMENTAL SECTION

Materials

Titanium(IV) tetraisopropoxide (TTIP) (97%) as TiO$_2$ precursor was obtained from Sigma-Aldrich and zirconia (ZrO$_2$) powder was obtained from Jiaozuo Huasu. Urea (CO(NH$_2$)$_2$) (Merck) and nickel sulfate hexahydrate (NiSO$_4$·6H$_2$O) (99%, Merck) were both selected as the sources of dopant. Ethanol (99%, Merck) and distilled water (Jaya Sentosa) were used as solvents. MB as the dye was obtained from Thermo Fisher Scientific India.

Instrumentation

Identification of functional group in the composite was performed by using Fourier transform infrared (FTIR) spectrometer Thermo Nicolet iS10. The crystal structure in the composite was studied using PANalytical X’Pert PRO MRD X-ray diffractogram (XRD, Liaoning, China Cu K$_\alpha$ radiation $\lambda = 1.54$ Å, 40 kV, 30 mA). The particle morphology and elemental composition of the composite surface were characterized by scanning electron microscopy equipped with energy dispersive X-ray detector (SEM-EDX) JEOL-JSM 6510 LA. Band gaps were determined based on absorption spectra from specular reflectance Pharmaspec UV 1700. The remaining amount of MB solution during photodegradation was determined by measuring the absorbance at a wavelength of 664 nm using a Thermo Scientific AQ8100 UV-vis spectrometer.
Procedure

Synthesis of Ni,N-codoped ZrO₂-TiO₂

The sol-gel method was used to prepare a Ni,N-codoped ZrO₂-TiO₂ composite [26]. Firstly, in 25.0 mL of ethanol, 2.5 mL of TTIP was added. Then, 1.00 g of ZrO₂, 86.61 mg of urea (wN/wTi = 10%) and various amounts of NiSO₄·6H₂O (36.17, 72.33, 108.5, 144.66, and 180.83 mg) were suspended into 25 mL of distilled water. The Ni concentration was varied by weight fraction of 2, 4, 6, 8, and 10% to titanium. The suspension was then dropped into the TTIP solution and stirred for 30 min. The mixture was centrifuged at 2,000 rpm for 1 h to separate the precipitate and then left out in the open for 24 h at room temperature before being dried in an oven at 80 °C for 24 h. Afterwards, the composite was calcined at 500, 700, and 900 °C for 4 h. The composite was denoted as αNi-N-ZT-β, in which α is the weight percentage of Ni to Ti, and β is the calcination temperature (°C). Additionally, TiO₂, N-doped ZrO₂-TiO₂, and undoped ZrO₂-TiO₂ as references were prepared by the same procedure and calcined at 500 °C.

Photodegradation of methylene blue

An amount of 15 mg of Ni,N-codoped ZrO₂-TiO₂ were dispersed into 30 mL of 4 mg L⁻¹ MB solution. Furthermore, the photodegradation reaction was performed for 15, 30, 45, 60, 75, 90, and 120 min with continuous stirring and irradiation with LIFE MAX 30W/765 PHILIPS LTD lamps. The mixture was then centrifuged at 3,000 rpm for 30 min to separate the solid. The absorbance at 664 nm was used to calculate the concentration of MB solution after photodegradation. A kinetic model of pseudo-first order was applied to calculate the quantitative photocatalytic decomposition of methylene blue (Eq. (1) and (2)) [30]:

\[-\frac{dC}{dt} = k_{obs}C \quad (1) \]

\[\ln C = k_{obs}t + \ln C_0 \quad (2) \]

where C denotes the MB concentration (mg L⁻¹), t is the irradiation time (min), and \(k_{obs} \) is the observed rate constant of photocatalytic decomposition (min⁻¹).

RESULTS AND DISCUSSION

Fig. 1 displays the XRD results of Ni,N-codoped ZrO₂-TiO₂ composites calcined at 500 °C with various Ni concentrations. As reference materials, ZrO₂, TiO₂, pristine ZrO₂-TiO₂, and N-doped ZrO₂-TiO₂ composites were presented as well. According to the diffraction data, pure TiO₂ has major peaks at the 2θ regions of 25° (d₁₀₁) and 54° (d₁₀₅), which correspond to the anatase phase (01-071-1167). On the other hand, pure ZrO₂ displays peaks at the 2θ of 30° (d₁₁₂) and 50° (d₁₁₂) regions corresponding to tetragonal phase (01-081-1545). The Debye-Scherrer equation [31] was implemented to calculate the average crystallite size of Ni,N-codoped ZrO₂-TiO₂ and the results are presented in Table 1. Diffraction peaks of anatase at 2θ = 25° (d₁₀₁) and tetragonal at 2θ = 30° (d₁₁₂) were selected to determine the average crystallite sizes.

Neither the diffraction pattern of Ni crystal nor nickel oxide was observed in the XRD pattern, indicating
Table 1. Average crystallite size of Ni-N-ZT composites

<table>
<thead>
<tr>
<th>Materials</th>
<th>Crystal phase</th>
<th>L (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO₂</td>
<td>Tetragonal</td>
<td>45</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Anatase</td>
<td>20</td>
</tr>
<tr>
<td>ZrO₂-TiO₂</td>
<td>Anatase</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>82</td>
</tr>
<tr>
<td>N-ZT-500</td>
<td>Anatase</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>45</td>
</tr>
<tr>
<td>2Ni-N-ZT-500</td>
<td>Anatase</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>38</td>
</tr>
<tr>
<td>4Ni-N-ZT-500</td>
<td>Anatase</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>49</td>
</tr>
<tr>
<td>6Ni-N-ZT-500</td>
<td>Anatase</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>38</td>
</tr>
<tr>
<td>8Ni-N-ZT-500</td>
<td>Anatase</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>41</td>
</tr>
<tr>
<td>10Ni-N-ZT-500</td>
<td>Anatase</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>38</td>
</tr>
<tr>
<td>6Ni-N-ZT-700</td>
<td>Anatase</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>41</td>
</tr>
<tr>
<td>6Ni-N-ZT-900</td>
<td>Rutile</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Tetragonal</td>
<td>55</td>
</tr>
</tbody>
</table>

The inclusion of Ni²⁺ replacing Ti⁴⁺ in the crystal lattice [32]. The average crystallite size of the anatase phase in ZrO₂-TiO₂ is higher than TiO₂, indicating the addition of ZrO₂ promotes the crystallization of anatase. On the contrary, the addition of Ni and N dopants inhibits the crystallization of anatase, as shown by the lower average crystallite of anatase in N-ZT and all Ni-N-ZT-500 composites compared to TiO₂. The average crystallite sizes of tetragonal in all Ni-N-ZT-500 are similar compared to ZrO₂, indicating the addition of dopants gives no alteration to the tetragonal phase.

The FWHM value at the diffraction angle corresponding to the anatase phase (101) increased after Ni and N dopants were added to the optimum concentration of Ni, resulting in a decrease in ZrO₂-TiO₂ crystal size. The XRD results of 6Ni-N-ZT with various calcination temperatures are shown in Fig. 2. After calcined at 900 °C, 6Ni-N-ZT exhibits a rutile phase diffraction pattern (ICDD: 00-021-1276) at 27° (d₁₀₀) and 54° (d₂₁₁). No rutile phase was observed in 6Ni-N-ZT calcined at 500 and 700 °C, as nitrogen has been reported in the literature to inhibit the transformation from anatase to rutile [33].

![Diffraction patterns of 6Ni-N-ZT composites calcined at various temperatures](image)

Fig 2. Diffraction patterns of 6Ni-N-ZT composites calcined at various temperatures

![FTIR spectra](image)

Fig 3. FTIR spectra of (a) ZrO₂, (b) TiO₂, (c) ZrO₂-TiO₂, (d) N-ZT-500, (e) 2Ni-, (f) 4Ni-, (g) 6Ni-, (h) 8Ni-, and (i) 10Ni-N-ZT-500
The FTIR spectra of Ni-N-ZT-500 with various Ni concentrations alongside ZrO₂, TiO₂, ZrO₂-TiO₂, and N-ZT-500 are shown in Fig. 3. The hydroxyl (O–H) stretching vibrations were indicated by vibrations at a wave number of around 3400 cm⁻¹ that appeared in every material [34]. The bending vibration of the H–O–H group had a wavenumber of about 1635 cm⁻¹ [35]. Wavenumbers less than 700 cm⁻¹ exhibit overlapping absorption peaks due to stretching vibrations of Zr–O and Ti–O [36]. At a wavenumber of around 540 cm⁻¹, the stretching vibration of Zr–O with a tetragonal phase is observed [37]. The Ti–O stretching vibrations are represented by the peaks at wavenumbers 480, 500, and 570 cm⁻¹ [38]. The absorption at 1095 cm⁻¹ emerges as Ni dopant is introduced. It is highly possible that the absorption is the vibrational form of Ti–O–Ni due to its absence in the reference materials. Furthermore, this wavenumber is shared by the O–Zr–N and Zr–O–Ni vibrations [39].

Fig. 4 depicts the FTIR spectra of 6Ni-N-ZT at various calcination temperatures. The absorption intensity of O–H vibrations at 3400 and 1635 cm⁻¹ decreases as the calcination temperature rises due to higher removal of trapped water molecules at temperatures above 500 °C. Likewise, the vibrational intensity of the Ni dopant at 1095 cm⁻¹ decreases as the calcination temperature increases. This trend may be caused by high temperatures allowing Ni dopant to sinter, which reduces Ti–O–Ni vibration [40].

The band gap shown in Fig. 5(a) was determined using the SRUV spectra with the absorption edge shift method [41]. The calculated band gap of Ni-N-ZT composites is presented in Fig. 5(b). The band gaps of all Ni-N-ZT materials are lower than that of TiO₂ (3.13 eV) and N-ZT-500 (3.10 eV) [27]. This indicates that the presence of Ni and N dopants narrows the band gap and shifts the absorption edge to the visible spectrum, thus broadening the absorption spectrum. The band gap decreases from 2.91 to 2.81 eV as Ni concentration increases from 2 to 6%. With the constant nitrogen dopant concentration, the band gap increases to 2.93 eV as the Ni dopant increases to 10%. Excessive amount of Ni dopant tends to agglomerate, thus reducing the
effectiveness of doping [42]. The bandgap value of 6Ni-N-ZT decreases after calcination at 900 °C (2.79 eV). Based on the XRD data, it was clear that the anatase phase underwent a transformation to rutile, in which the band gap of the rutile phase is lower than that of the anatase phase [16]. The increasing band gap of 6Ni-N-ZT after calcination at 700 °C is due to sintering and agglomeration of Ni dopant, thus, the dopant effect decreases.

Fig. 6 displays SEM images of ZrO₂ and 6Ni-N-ZT-500 composite. ZrO₂ has uniform particle morphology, while 6Ni-N-ZT-500 composite has spherical and inhomogeneous particle morphology. Agglomeration of particles occurs because of the calcination. Table 2 shows the elemental mass percentage determined by EDX measurement of the corresponding SEM images. The presence of Ni and N dopants is confirmed on the surface of the 6Ni-N-ZT-500 composite, which are 0.24 and 1.74%, respectively. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possibly comes from the carbon tape of SEM sample holder. A small number of dopants was used to prevent the formation of recombination centers and thus reduce photocatalytic activity [43]. The discrepancy between expected codopants content and measured by EDX indicates the inhomogeneous distribution of Ni and N codopants on the surface of ZrO₂-TiO₂ composite. The presence of carbon in EDX results possible...
Table 2. Elemental composition of ZrO$_2$ and 6Ni-N-ZT-500 surface measured by X-ray energy dispersive spectroscopy

<table>
<thead>
<tr>
<th>Materials</th>
<th>Zr</th>
<th>O</th>
<th>Ti</th>
<th>Ni</th>
<th>N</th>
<th>C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO$_2$</td>
<td>58.79</td>
<td>29.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.81</td>
<td>100</td>
</tr>
<tr>
<td>6Ni-10N-ZT-500</td>
<td>51.82</td>
<td>32.86</td>
<td>3.13</td>
<td>0.24</td>
<td>1.74</td>
<td>10.21</td>
<td>100</td>
</tr>
</tbody>
</table>

![Graph showing the degradation of MB over time for various Ni-N-ZT-500 catalysts.](image)

![Graph showing the relationship between Ni codopant concentration and observed rate constant k_{obs} and band gap E_g for various Ni-N-ZT-500 catalysts.](image)

Table 3. Comparisons of other metallic codopants in N-doped ZrO$_2$-TiO$_2$ and their properties

<table>
<thead>
<tr>
<th>Metal codoping</th>
<th>Reaction time (min)</th>
<th>%MB degraded</th>
<th>E_g (eV)</th>
<th>L anatase (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6% Ni</td>
<td>120</td>
<td>61</td>
<td>2.81</td>
<td>12</td>
</tr>
<tr>
<td>4% Cu [27]</td>
<td>120</td>
<td>83</td>
<td>2.71</td>
<td>34</td>
</tr>
<tr>
<td>6% Mn [46]</td>
<td>120</td>
<td>70</td>
<td>2.64</td>
<td>27</td>
</tr>
</tbody>
</table>

dopants was used [43]. Increasing the concentration of Ni dopant above 6% reduces photocatalytic activity, caused by Ni doping saturation, supported by the increasing band gap and average anatase crystallite size. The photocatalytic activity decreases with increasing calcination temperature, as evidenced by the material 6Ni-N-ZT-900, which has the lowest degradation percentage due to phase transformation into rutile at 900 °C. The performance of the photocatalyst is strongly influenced by the crystallinity and size of the Ni-N-ZT crystals that have been synthesized. The anatase phase demonstrates a better photocatalytic activity than the rutile phase.

In comparison to previous works [27,46], the influence of Ni codoping in N-doped ZrO$_2$-TiO$_2$ composite gives lesser activity in degrading MB compared to Cu or Mn as codopants. As shown in Table 3, the lower performance of Ni codoping effect is caused by a higher band gap, which absorbs a narrower light spectrum, and the smaller average crystallite size of anatase, which is considered the active crystallite phase [47].

CONCLUSION

The sol-gel method was implemented to synthesize Ni,N-codoped ZrO$_2$-TiO$_2$. Codoping of Ni and N into the ZrO$_2$-TiO$_2$ reduces the band gap and shifts the absorption edge toward visible light. FTIR analysis reveals that the vibrations of Ti–O–Ni at wavenumber 1095 cm$^{-1}$ intensify until 6% Ni dopant addition. The ZrO$_2$ coupling suppresses the anatase to rutile transformation at calcination temperatures above 500 °C. Ni,N-codoped ZrO$_2$-TiO$_2$ is photo-responsive to visible light and able to degrade 4 mg L$^{-1}$ MB solution up to 61% after
120 min of irradiation time. It has also been showed that materials have the potential to decompose dyes when exposed to visible light. Additional research on photocatalyst applications other than photodegradation and reusability test is required.

ACKNOWLEDGMENTS

The first author is grateful for 70/UN1/FMIPA.1.3/KP/PT.01/03/2023 Grant from The Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada.

CONFLICT OF INTEREST

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

AUTHOR CONTRIBUTIONS

Akhmad Syoufian served as research supervisor, checked revision results, provided suggestion for improvements, conducted final assessments of the data and the written report. Rian Kurniawan checked revision results, and provided suggestion for improvements written report.

REFERENCES

with Al(III) ion using the sol-gel technique, *J. Colloid Interface Sci.*, 280 (1), 55–61.

