Propylamine Silica-Titania Hybrid Material Modified with Ni(II) as the Catalyst for Benzyl Alcohol to Benzaldehyde Conversion

Dewi Agustiningsih, Nuryono Nuryono, Sri Juari Santosa, and Eko Sri Kunarti

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

*Corresponding author:
tel: +62-81578634638
email: eko_kunarti@ugm.ac.id

Received: May 8, 2023
Accepted: June 15, 2023
DOI: 10.22146/ijc.84282

Abstract: SiO$_2$-TiO$_2$@propylamine-Ni(II) as the catalyst for the benzyl alcohol oxidation has been synthesized by utilizing rice husk ash as the SiO$_2$ source. This research was started by extracting SiO$_2$ from rice husk ash and continued by synthesizing the SiO$_2$-TiO$_2$ composite using titanium(IV) tetraisopropoxide (TTIP) as TiO$_2$ precursor and PEG-40 as template. The composite functionalization and metal modification were carried out by adding (3-aminopropyl)triethoxysilane (APTES) as the source of propylamine linker and impregnating NiCl$_2$·6H$_2$O as the nickel precursor, respectively. The catalysts were synthesized by varying the ratios between each component within the material. The prepared materials were then characterized using ATR-IR, XRD, XRF, PSA, SAA, AAS, SEM-EDX, HR-TEM, and TGA. The catalyst activity was investigated by applying it to the oxidation reaction of benzyl alcohol to benzaldehyde with H$_2$O$_2$ as the oxidizing agent under sonication system. The obtained products were then analyzed by using GC-MS to quantify the success of the reaction. All characterizations performed in this research generally indicate the success in the synthesis of SiO$_2$-TiO$_2$@propylamine-Ni(II) materials. Under the same condition including at room temperature, 1 h reaction time, and sonication system, the optimal oxidation reaction of benzyl alcohol was reached when SiO$_2$-TiO$_2$@propylamine-Ni(II)5 was used as the catalyst in 98.52% yield.

Keywords: benzaldehyde; benzyl alcohol; catalyst; oxidation reaction; SiO$_2$-TiO$_2$@propylamine-Ni(II)

INTRODUCTION

Alcohol oxidation to many forms of carbonyl-based compounds is one of the vast significances to the development of chemical fabrication [1]. The most notable example is the conversion of benzyl alcohol to benzaldehyde, which provides numerous applications in diverse areas such as coloring agents, medical products, farming, fragrances, foods, drinks, and also chemicals [2]. Most of the aldehyde is produced by a selective oxidation mechanism of alcohol utilizing a homogeneous catalyst. However, this kind of method has some drawbacks, including low reusability, difficult separation, low degree of conversion, and toxic contaminants [3-4]. As a result, it is essential to find an environmentally friendly and effective method to replace the homogeneously catalyzed oxidation reaction. Noble metals such as gold, platinum, and palladium have long been developed as heterogeneous catalysts in benzyl alcohol to benzaldehyde oxidation reactions. These metals are generally dispersed onto supporting materials and have been observed to have significant catalytic activity [5-6]. Regrettably, the noble metal precludes its widespread potential for application due to its rising cost. Non-noble metals with a lower cost, such as nickel, can be used and have been reported to be advantageous for benzyl alcohol oxidation [7-9].

A catalyst based on nickel metal dispersed on SiO$_2$-TiO$_2$ composite was used in this study. Silica was chosen because it has several advantages, including the ability to form a large framework, abundance in nature and living creatures, great efficiency, selectivity, surface area, thermal stability, also good mechanical properties. Even
so, silica has a limitation as a support material since it forms inadequate compatibility with transition metals, limiting its interaction with these metals. Consequently, the transition metals are distributed poorly on the surface [10]. This major silica limitation can be overcome by combining silica with other metal oxides, one of which is titania. This is driven by the fact that titania can interact well with almost all transition metals, including Au, Cu, Ni, Mn, Pd, Co, and Ru. Titania also has high thermal and chemical stabilities [11]. The optimal interaction between titania and metal will aid the interaction of silica and metal. Hence, combining silica and titania into a composite should result in a support material with high thermal stability, a large surface area, and the ability to interact optimally with the catalyst metal.

Rice husk ash will be used as a silica source in this research. This is owed to the fact that rice husk ash contains silica with a very high purity level of 94–99% [12-13]. There are already so many reported studies about SiO2 extraction from rice husk ash, including its application as a cement component [14-18], geopolymer [19-23], functional material [24], microelectronic, sensor, nano additives [25], adsorption and filtration membrane [26], photocatalyst [27], bioimaging, as well as drug delivery agent [28]. Despite its extensive utilization and application, there has not been found previous research which addressed the simultaneous modification of silica extracted from rice husk ash with TiO2 and APTES linker agent as had been conducted in this research.

Even though the SiO2-TiO2 composite has the potential to become an excellent supporting material, there is still a drawback, such as the metal can be easily leached from the composite surface due to the weak physical interaction. This, of course, brings down the activity of the catalyst in the benzyl alcohol oxidation reaction. This problem can be fixed by incorporating organic linker agents such as imines, amines, and oleic acid onto the composite surface to become inorganic-organic hybrid material [29]. The optimal interaction of the metal and the functionalized linker agent on the surface of the supporting material will augment the catalyst stability. In this study, the compound (3-aminopropyl)triethoxysilane was utilized as the source of propylamine linker agent between the metal ion catalyst and the SiO2-TiO2 composite. Moreover, the sonication method was conducted in the oxidation reaction of benzyl alcohol to benzaldehyde as the application of this research. This method was used owing to its ability to accelerate the reaction and lower the required reaction temperature [30].

■ EXPERIMENTAL SECTION

Materials

The materials used in this research were pro-analysis quality chemicals purchased from Sigma-Aldrich and Merck including HCl 37%, NaOH, Na2SO4 99.9%, C9H23NO3Si 99%, Ti{OCH(CH3)2}4 97%, PEG-40, C6H5OH 99%, NiCl2·6H2O 99.9%, C6H5CH2OH 99%, and H2O2 30%. Other technical-grade materials were used, including distilled water and rice husk ash obtained from Semarang, Central Java. No further purification was conducted for all used reagents.

Instrumentation

The instrumentations used for the characterization in this study include attenuated total reflectance-infrared spectroscopy (QATR 10, Shimadzu), X-ray diffractometer (XRD-6000, Shimadzu), scanning electron microscope-energy dispersive X-ray (JEC-3000 FC, JEOL), high resolution-transmission electron microscope (Tecnai G2 20 S-Twin, FEI), thermogravimetric analyzer (STAR* SW, METTLER), X-ray fluorescence (NEXQC+, QUANTEZ), particle size analyzer (SZ-100, HORIBA Scientific), surface area analyzer (Gemini VII Version 5.03, Micromeritics), atomic absorption spectroscopy (iCE 3000 AA01212502, Thermo Scientific), and gas chromatography-mass spectrometer (QP2010S, Shimadzu).

Procedure

Extraction of SiO2 from rice husk ash

Rice husk ash (RHA) was leached by dissolving it in 1 M HCl at a ratio of 1:10 (w/v). The mixture was stirred at room temperature for 2 h before being washed with distilled water. The RHA was then dried for 8 h at 80 °C before being calcined for 5 h at 550 C. Next, ATR-
IR, XRD, and XRF methods were used to characterize the uncalcined and calcined RHA. To extract the silica, the calcined RHA was then dispersed in 1 M NaOH with a ratio of 1:10 (w/v) and stirred for 2 h at 90 °C. It was next followed by centrifugation at 4000 rpm for 20 min. Afterward, the sodium silicate liquid was then collected as the silica precursor to be used in the next procedure.

Synthesis of SiO$_2$-TiO$_2$ composite

To synthesize the SiO$_2$-TiO$_2$ composite, 1 mol of sodium silicate was neutralized with 1 M HCl dropwise until a neutral pH was reached. Next, 1 mol of TTIP precursor was dispersed in absolute ethanol at 1:1 (v/v) ratio. The dispersed TTIP in ethanol was then added to the silica gel that had been formed before in the sonication system. The composite was then added dropwise with PEG-40 at a mol ratio of 1:6 (PEG:composite). The mixture of silica, titania, and PEG-40 was sonicated for 1 h to produce a white suspension prior to getting dried at 80 °C for 24 h. The template removal process was completed by dispersing SiO$_2$-TiO$_2$@PEG in absolute ethanol with a ratio of 1:10 (w/v) in a sonication system for 1 h at room temperature. The solid was then filtered, washed with cold absolute ethanol, and dried for 8 h at 60 °C. The same procedure was carried out to remove the template twice.

Functionalization of SiO$_2$-TiO$_2$ composite

The functionalization procedure was conducted by dispersing SiO$_2$-TiO$_2$ composite in absolute ethanol at 1:10 (w/v) ratio. The propylamine with the mass ratio of 1:2 (w/w) to SiO$_2$-TiO$_2$ was also then dispersed in ethanol 1:10 (v/v). The propylamine solution was gradually added to the composite mixture before being sonicated for 2 h and stirred for 6 h at room temperature. Just after that, centrifugation was performed to obtain the solid. It was then filtered before being washed with absolute ethanol and distilled water three times for each, afterwards dried at 60 °C for 12 h [31].

Metal impregnation of SiO$_2$-TiO$_2$@propylamine hybrid material

As much as 1 g of SiO$_2$-TiO$_2$@propylamine hybrid material was dispersed in distilled water with a ratio of 1:100 (w/v) and then added with nickel(II)-chloride hexahydrate in various moles. The mixture was sonicated for 3 h at room temperature before being filtered and washed three times with distilled water. The obtained greenish-white solid was then dried for 4h at 80 °C, and finally characterized using ATR-IR, XRD, PSA, SAA, AAS, SEM-EDX, HR-TEM, and TGA.

Catalytic activity

In the oxidation reaction of benzyl alcohol, as much as 1 mmol of benzyl alcohol, 50 mg of catalyst material, and 1 mL of H$_2$O$_2$ were added into a vial. The reaction was carried out for 1 h at room temperature in a sonication system [2]. When the reaction finished, the solid catalyst was restored through the filtration process. Next, the organic phase was extracted from the filtrate and dried using anhydrous sodium sulfate. Lastly, the final products were then analyzed with GC-MS.

RESULTS AND DISCUSSION

Characterization of SiO$_2$ from RHA

From Table 1, it is reported that rice husk ash has a high content of silica up to 97.923%. It supports the known fact that rice husk ash is one of the most potential silica natural sources. According to the results of the ATR-IR characterization in Fig. 1, there are peaks in the spectra of the uncalcined RHA that indicate the dominant carbon component. These peaks include 1373 (Csp³–H bending), 1600 (C=C aromatics), 1743 (C=O stretching), 2939 (Csp³–H stretching), and 3424 cm$^{-1}$ (O–H stretching). Some peaks also indicate the presence of silica in uncalcined RHA, such as 432 (SiO$_4$ bending mode), 794 (Si–O–Si symmetrical stretching), and 1049 cm$^{-1}$ (Si–O–Si asymmetrical stretching). After the rice husk ash had been leached and calcined, the carbon content decreased significantly, indicating that the silica content increased.

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (%mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>97.923</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0.388</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.784</td>
</tr>
<tr>
<td>CaO</td>
<td>0.647</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.121</td>
</tr>
<tr>
<td>MnO</td>
<td>0.079</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Dewi Agustiningsih et al.
component began to disappear. It is evidenced by the decreasing intensity of the carbon material characteristic peaks and the increasing relative intensity of silica characteristic peaks. Based on these results, it can be concluded that the calcination process to remove the carbon component in rice husk ash was successfully done. The ATR-IR spectra of silica extracted from rice husk ash reveal that it contained high purity. This is clearly indicated by some characteristic peaks belonging to pure silica.

Fig. 2 depicts that calcined and uncalcined RHA exhibit a characteristic pattern of amorphous silica with a broad peak at 2θ around 22°. Moreover, it can be noticed here that the intensity of these peaks increases in leached and calcined rice husk ash spectra. It can be explicated by the fact that metal oxides other than SiO₂ were dissolved after leaching, and the amount of carbon in rice husk ash decreased after calcination. The loss of other metal oxides and carbon increased the relative intensity of the broad peaks from amorphous SiO₂. The pattern from the extracted silica displays higher intensity and more distinct peaks compared to other spectra in the same region, providing confirmation that it was purely derived from calcined RHA.

Characterization of SiO₂-TiO₂ before and after Template Removal

The method used in the synthesis of the SiO₂-TiO₂ composite was sol-gel by adding TTIP precursor to the obtained silica gel. The mixture was then treated with polyethylene glycol 40 (PEG-40) as the template. PEG is the most used surfactant as a template due to its non-toxic long polymeric chain and good water solubility [32]. It is also known to have good properties such as hydrophilic, water-soluble, biocompatible, non-toxic, and protein-resistant [33]. Subsequently, to produce the SiO₂-TiO₂ composite, this template must be removed. Instead of calcination, the template removal process in this study was carried out using the sonication method. It was done to prevent exposing the composite to high temperatures, which might result in the formation of crystalline phases for both SiO₂ and TiO₂. If a crystalline phase is formed, the number of free silanol and titanol groups on the surface tends to decrease because they are used to form crystalline structures. This is disadvantageous since these groups are required for bond formation with propylamine as the interparticle linker agent in the next step.

Fig. 3 shows the ATR-IR spectra of the SiO₂-TiO₂ composite before and after the template removal. Some characteristic peaks of the composite are detected including at 3400 (O–H stretching of the silanol and titanol groups), 2924 (Csp³–H stretching), 1735 (C=O stretching), 1643 (O–H bending from SiO–H), 1465 (Csp³–H bending for –CH₂–), 1350 (Csp³–H bending for –CH₃), 1049 (Si–O–Si asymmetrical stretching), 794 (Si–O–Si symmetrical stretching), and 949 cm⁻¹ (Si–O–Ti stretching). After the sonication for template removal
was carried out, the intensity of PEG-40 characteristic peaks comprising 2924 (Csp\(^3\)-H stretching), 1735 (C=O stretching), 1465 (Csp\(^3\)-H bending for –CH\(_2\)–), and 1350 cm\(^{-1}\) (Csp\(^3\)-H bending for –CH\(_3\)–) significantly decrease. Based on the difference in mass before and after template removal, the sonication method could remove up to 88.92% of the template at SiO\(_2\)-TiO\(_2\) composite.

According to Fig. 4, the ATR-IR characterization results for the propylamine functionalized composite do not show significant differences from the composite spectra prior to functionalization. However, if we take a closer look, we can see differences in the shape and intensity of the peak at 1550 cm\(^{-1}\). There is no vibration peak around that wavenumber prior to functionalization. Then after functionalization, a broad peak is observed, indicating the presence of the –NH\(_2\) group deformation vibration in propylamine from APTES [34-35]. After functionalization, the Ti–O–Si vibrational peak appeared to merge with the Si–O–Si peak. The probable answer for this case is when APTES was added to the composite, the silane groups preferred to bind with silanol groups to form Si–O–Si rather than with titanol groups to form Si–O–Ti. This is most likely since the same size of Si from silane and silanol would optimize the orbital overlap that occurred during the bond formation. Meanwhile, the size difference between Si and Ti shrunk the probability of orbitals overlapping.

The ATR-IR spectra of propylamine-functionalized and Ni(II)-impregnated SiO\(_2\)-TiO\(_2\) in Fig. 5 reveal the characteristic peak of the Ni–N bond at 410–420 cm\(^{-1}\) [36]. This peak suggests that nickel ion was successfully dispersed on the composite surface through the formation of the bond between nickel ion from precursor salt and nitrogen atom belonging to the amine groups from propylamine resulted by APTES.

Based on Fig. 6(b), the diffraction pattern of the composite after template removal exhibits the amorphous properties of silica and titania at 2\(\theta\) 22°. This suggests that both silica and titania were obtained as amorphous materials rather than crystalline. It is presumably because the growth of silica and titania crystals did not
occur when calcination at high temperatures was not executed during the template removal process. In addition, Fig. 6(a) depicts that the diffraction pattern of SiO$_2$-TiO$_2$@propylamine-Ni(II) seems to have an identical amorphous character, and no other additional peaks are observed. It can be explained by two probable reasons, including (i) propylamine from APTES did not contribute to the provision of diffraction patterns, and (ii) the formed nickel in this material was Ni(II). The Ni(II) metal ions did not exhibit a specific diffraction pattern since there was no crystal growth in it [37].

As it is shown in Fig. 7, the average size of SiO$_2$-TiO$_2$ particles beyond the nano dimension (more than 100 nm) is 1365 nm. The formation of sufficiently large particles was driven by the fact that both titania and silica were in the amorphous phase. The amorphous phase is known to have a greater particle coalescence or agglomeration rate than the crystalline one [38]. Moreover, it can also be noticed here that the presence of APTES and Ni(II) metal ions could decrease the probability of aggregation among the composite particles with an average size of 662 nm. This effect was likely attributed to the capping action exerted by these two modifiers on the surface of the composite.

Based on SAA data, the SiO$_2$-TiO$_2$ composite exhibited a surface area of 234.0573 m2/g and an average pore size of 7.28 nm. Subsequently, upon the addition of APTES and Ni(II), the composite experienced an augmentation in surface area, 243.9891 m2/g, alongside a reduction in average pore size, 6.81 nm. The increase in
surface area could be caused by the presence of metal ions that enhanced the composite roughness and abruptness. Meanwhile, the pore size continued to decrease due to the closure of pores resulting from the presence of APTES and Ni(II) on the surface. In addition, as shown in Fig. 8(a) and (b), the N₂ adsorption-desorption isotherm curves of these two materials illustrate type IV hysteresis as the characteristic type of mesoporous material. The formed pore sizes are generally greater than 5 nm, indicating that the materials may be used as catalyst in the organic reaction of converting benzyl alcohol to benzaldehyde.

Fig. 9(a) and (b) display the TGA analysis results, indicating two distinct instances of mass loss for the material. The initial mass reduction was attributed to the evaporation of water molecules from the material surface, while the second event arose from the elimination of organic components derived from propylamine. Additionally, it is evident that the composite containing Ni(II) exhibited a lower mass loss compared to the composite without it. In simpler terms, this suggests that the presence of Ni(II) metal ions enhanced the thermal stability of the material. This could be owing to the thermal conductivity properties of nickel as metal, enabling it to restrict the entry of heat into the catalyst material system.

Characterization of SiO₂-TiO₂@propylamine-Ni(II) with Various Amounts of Ni(II)

As can be seen in Fig. 10, each catalyst material with various nickel ion concentrations exhibits a sharp peak in the 1500–1550 cm⁻¹ region with the addition of propylamine. Further to that, the peaks between 410 and 420 cm⁻¹ are also observed, indicating the Ni–N bond. The Ni–N peak intensity belonging to the catalyst material containing 5 mmol of nickel ion is greater than the others. When the nickel ion concentration in the material reached the upper 5 mmol, the peak intensity decreased. It is because even though the amount of N...
available from propylamine remained constant, there was more competition between Ni atoms to bind to N. The quantitative analysis results by AAS displayed in Fig. 11 are analogous to the results from this ATR-IR characterization. It is that the optimal amount of successfully attached nickel ion was found in the SiO$_2$-TiO$_2$@propylamine-Ni(II) (5 mmol) catalyst. According to the XRD data depicted in Fig. 12, all materials have amorphous SiO$_2$-TiO$_2$ diffraction patterns. The difference in nickel ion concentrations had no effect on the changes in SiO$_2$-TiO$_2$ diffraction pattern, as the metal ions were only dispersed on the outside of the framework. Thus, it had no role in the main framework of the SiO$_2$-TiO$_2$ amorphous structure.

As we can see from the SEM data shown in Fig. 13, the morphology of the obtained composites is generally spherical with the grain size of more than 100 nm. In addition, from Table 2, it is known that constituent elements such as Si, Ti, C, O, Ni, and N are detected in each composite based on the EDX data. Fig. 14(a) displays the HR-TEM image of SiO$_2$-TiO$_2$@propylamine-Ni(II) particles with 5 mmol nickel ions. It has a quasi-spherical shape with propylamine covering each particle, and the area defined is represented.
Fig 13. SEM images and EDX spectra of SiO$_2$-TiO$_2$@propylamine-Ni(II) with nickel ion concentrations of (a) 3; (b) 5; (c) 7; and (d) 10 mmol

Table 2. Percentage of the detected elements in catalyst materials by EDX

<table>
<thead>
<tr>
<th>SiO$_2$-TiO$_2$@propylamine-Ni(II)</th>
<th>Si</th>
<th>Ti</th>
<th>C</th>
<th>O</th>
<th>Ni</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(II) 3 mmol</td>
<td>30.31</td>
<td>11.90</td>
<td>4.50</td>
<td>40.19</td>
<td>1.27</td>
<td>11.83</td>
</tr>
<tr>
<td>Ni(II) 5 mmol</td>
<td>11.36</td>
<td>27.16</td>
<td>9.58</td>
<td>45.13</td>
<td>2.91</td>
<td>3.86</td>
</tr>
<tr>
<td>Ni(II) 7 mmol</td>
<td>16.79</td>
<td>24.28</td>
<td>8.01</td>
<td>47.09</td>
<td>2.42</td>
<td>1.41</td>
</tr>
<tr>
<td>Ni(II) 10 mmol</td>
<td>18.45</td>
<td>20.49</td>
<td>7.74</td>
<td>45.30</td>
<td>3.67</td>
<td>4.35</td>
</tr>
</tbody>
</table>

Fig 14. HR-TEM images of SiO$_2$-TiO$_2$@propylamine-Ni(II)5

by a lighter color. When the magnification was increased in Fig. 14(b), it can be seen that the SiO$_2$-TiO$_2$ as the core is represented by a darker color, propylamine in the outer lighter color, and Ni(II) in the darker layer out of propylamine.

Catalytic Activity Evaluation

According to Fig. 15 and Table 3, it is known that under the same condition, the most active catalyst was SiO$_2$-TiO$_2$@propylamine-Ni(II)5, with the yield percentage of 98.52%. It basically confirms that this catalyst had the most nickel ion attached to its surface as the primary catalyst for the oxidation reaction. As a result, the highest activity was achieved, followed by other catalysts with less attached nickel ions. Due to the absence of nickel ion when SiO$_2$-TiO$_2$ was used as the catalyst, a product with a lower yield percentage was generated. The product was still formed despite the lack...
Fig 15. The oxidation reaction of benzyl alcohol to benzaldehyde using SiO₂-TiO₂@propylamine-Ni(II)₅, including (a) right after reaction, (b) after catalyst separation, and (c) the products obtained from (A) TiO₂, (B) SiO₂-TiO₂@propylamine, (C) SiO₂-Ni(II), (D) TiO₂-Ni(II), (E) SiO₂-TiO₂@propylamine-Ni(II)₃, (F) SiO₂-TiO₂@propylamine-Ni(II)₅, (G) SiO₂-TiO₂@propylamine-Ni(II)₇, (H) SiO₂-TiO₂@propylamine-Ni(II)₁₀, and (I) SiO₂-TiO₂

| Table 3. Oxidation of benzyl alcohol to benzaldehyde |
|-----------------|-----------------|-----------------|
| Catalyst | Conversion (%) | Yield (%) | Selectivity (%) |
| SiO₂ | 0 | 0 | 0 |
| TiO₂ | 23.44 | 22.64 | 96.59 |
| SiO₂-TiO₂@propylamine | 33.46 | 33.46 | 100 |
| SiO₂-Ni(II) | 68.97 | 67.53 | 97.91 |
| TiO₂-Ni(II) | 58.73 | 53.52 | 91.13 |
| Without catalyst| 0 | 0 | 0 |
| SiO₂-TiO₂ | 55.45 | 52.56 | 94.79 |
| SiO₂-TiO₂@propylamine-Ni(II)₃ | 87.40 | 87.40 | 100 |
| SiO₂-TiO₂@propylamine-Ni(II)₅ | 98.62 | 98.52 | 99.90 |
| SiO₂-TiO₂@propylamine-Ni(II)₇ | 87.40 | 87.40 | 100 |
| SiO₂-TiO₂@propylamine-Ni(II)₁₀ | 78.91 | 77.38 | 98.06 |

of nickel ion. This is rooted in the fact that in the presence of visible and UV light, TiO₂ was able to carry out the oxidation reaction by breaking H₂O₂ into OH radicals [39]. The OH radicals would help convert benzyl alcohol to benzaldehyde. This phenomenon was also detected in the result obtained when pure TiO₂ was used as the catalyst. The product was still formed caused by the catalytic process that kept occurring due to the photocatalytic activity of TiO₂ itself. Conversely, there was no product observed when pure SiO₂ was used since this material has no catalytic activity [40].

When the functionalized SiO₂-TiO₂ was used as the catalyst, the yield whittled down. As the presence of propylamine from APTES partially covered the SiO₂-TiO₂ surface, causing the interaction between the catalyst and H₂O₂ to be limited. Furthermore, even though the percentage yield of SiO₂-Ni(II) and TiO₂-Ni(II) catalysts is not relatively high, these materials could still convert benzyl alcohol to benzaldehyde. The oxidation reaction was noticed to occur here due to the role of nickel ion as the main metal catalyst.

According to the results, it is known that SiO₂-Ni(II)
outperformed TiO$_2$-Ni(II) in terms of yield. Due to the large surface area of silica, nickel ion on the surface was more dispersed and avoided agglomeration, which resulted in higher activity than in titania. Contrary to the previous research revealing that titania interacts well with metal catalysts, in this research, titania was observed to have low activity due to its tendency to agglomerate and lower surface area than silica. Meanwhile, when the reaction was conducted without the use of a catalyst, no product was obtained due to the absence of a catalytic process. Table 4 shows some previous studies related to the oxidation reaction of benzyl alcohol to benzaldehyde. Compared to other catalysts that had been evaluated for the same reaction, SiO$_2$-TiO$_2$@propylamine-Ni(II) produced considerably better performance, shown by its conversion, yield, and selectivity percentages.

This study tried to propose a mechanism for the oxidation reaction of benzyl alcohol to benzaldehyde using the synthesized catalyst as adapted from Javidfar et al. [2]. The role of Ni(II) in facilitating the oxidation reaction can be observed in Fig. 16, as it utilized its empty orbitals to bind both H$_2$O$_2$ as the oxidizing agent and benzyl alcohol as the main reactant. Initially, hydrogen peroxide attached to the empty orbitals of Ni(II), followed by the binding of benzyl alcohol. In succession, a water molecule was formed for one hydroxyl

Table 4. The performance of other catalysts in benzyl alcohol to benzaldehyde oxidation reaction

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Yield (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/Fe$_3$O$_4$</td>
<td>99</td>
<td>[7]</td>
</tr>
<tr>
<td>Ni(OH)$_2$-modified Cd$_2$S-MoS$_2$</td>
<td>94.2</td>
<td>[9]</td>
</tr>
<tr>
<td>[Ni(L)$_2$(H$_2$O)$_2$]</td>
<td>45.2</td>
<td>[41]</td>
</tr>
<tr>
<td>TiO$_2$/Ti$_3$C$_2$</td>
<td>97</td>
<td>[42]</td>
</tr>
<tr>
<td>Mesoporous g-C_3N_4</td>
<td>97</td>
<td>[3]</td>
</tr>
<tr>
<td>La(OH)$_3$/Fe$_3$O$_4@$chitosan</td>
<td>100</td>
<td>[2]</td>
</tr>
<tr>
<td>TiO$_2$ nanorods</td>
<td>58.1</td>
<td>[43]</td>
</tr>
<tr>
<td>Ru/g-C_3N_4</td>
<td>72</td>
<td>[5]</td>
</tr>
<tr>
<td>SiO$_2$-TiO$_2$@propylamine-Ni(II)</td>
<td>98.52</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig 16. The proposed mechanism of benzyl alcohol to benzaldehyde oxidation reaction using the synthesized catalyst.
species from H₂O₂, accepting one hydrogen atom from benzyl alcohol. The remaining hydrogen atom from benzyl alcohol was then bonded with another hydroxyl group from H₂O₂, resulting in the production of water molecules and benzaldehyde as the final products. Throughout this series of oxidation reactions, Ni(II) ultimately returned to its original state, like the one when the reaction had not occurred yet. This route can also be adapted to explain why pure TiO₂ was able to accommodate the oxidation reaction. It is because TiO₂ can produce OH radicals as oxidizing agents due to its photoconductivity [44].

■ CONCLUSION

In this study, we successfully synthesized a new heterogeneous catalyst, namely SiO₂-TiO₂@propylamine-Ni(II). The results of all characterizations synergically report the success of the synthesis. This material was used as the catalyst for benzyl alcohol oxidation reaction as one of the important organic reactions in a wide range of applications. The catalyst has been proven to have excellent performance in oxidation reactions by the presence of H₂O₂ as the oxidizing agent in a sonicated system. Every component in the synthesized catalyst played a significant role in enhancing the catalyst activity. The catalyst was also easy to separate from the product after the reaction was complete. This research results in the development of a potentially new heterogeneous catalyst for organic reactions.

■ ACKNOWLEDGMENTS

The authors would like to acknowledge the Ministry of Research, Technology, and Higher Education Indonesia for funding this research under contract number 089/E5/PG.02.00/PT/2022; 1998/UN1/DITLIT/Dit-Lit/PT.01.03/2022. With respect, we also would like to thank the institution for providing Dewi Agustiningsih the Pendidikan Magister Menuju Doktor untuk Sarjana Unggul (PMDSU) scholarship.

■ REFERENCES

Dewi Agustiningsih et al.

