
Suharyadi Suharyadi*, Muhammad Iqbal Syauqi, Prita Amelia, Yunita Yunita, and Jarnuzi Gunlazuardi

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia

* Corresponding author:
tel: +62-85719243866
e-mail: suharyadi@ui.ac.id
Received: July 18, 2022
Accepted: February 17, 2023
DOI: 10.22146/ijc.76270

Abstract: Ammonia is commonly synthesized through the Haber-Bosch process, which produces large amounts of CO$_2$ emissions as it is carried out at extreme temperatures and pressures. An alternative technology is needed to synthesize ammonia which consumes less energy and is environmentally friendly. In this research, a Dye-Sensitized Solar Cell Photoelectrochemical tandem system (DSSC-PEC) was developed for the nitrogen reduction reaction (NRR) into ammonia. PEC cells utilized BiVO$_4$/TiO$_2$ Nanotube (BiVO$_4$/TiO$_2$NT) as a photoanode for water oxidation. BiVO$_4$/TiO$_2$NT was synthesized by the successive ionic layer adsorption and reaction (SILAR) with the cycles variation of 10, 15, and 20 cycles. The optimization method for 20 cycles (20s) gave the highest photocurrent of 0.352 mA/cm2. As a cathode where the nitrogen reduction reaction to ammonia takes place, Ti$^{3+}$/TiO$_2$NT was used. DSSC based on TiO$_2$NT/N719 with an efficiency of 1.13% was used as an energy booster in the reaction. Using this system with an electrodes area of 3 cm2, under visible light irradiation on photoanode and DSSC while dark at the cathode, the rate of ammonia production, analyzed using the phenate method, was 0.022 μmol.h$^{-1}$.cm$^{-2}$ with solar to chemical conversion (SCC) efficiency of 0.003%.

Keywords: BiVO$_4$/TiO$_2$NT; DSSC-PEC; SILAR; NRR; ammonia

INTRODUCTION

Ammonia (NH$_3$) is an important chemical and is widely used in various chemical industrial applications and processes, especially in making fertilizers as a nutrient for plants [1]. Ammonia is produced through the Haber-Bosch process using H$_2$ and N$_2$ at high pressure (> 200 bar) and high temperature (> 673 K) [2]. However, the use of natural gas as a source of H$_2$ obtained by steam reforming of hydrocarbon sources consumes about 1–2% of the world’s energy annually by releasing hundreds of millions of tons of CO$_2$ annually [3]. To minimize the negative environmental impact, it is necessary to find alternative technologies for making ammonia with low energy requirements, abundant raw materials, and not producing CO$_2$ gas. One way that has attracted the attention of many parties is to carry out nitrogen reduction reactions (NRR) through photoelectrochemistry [4].

Photoelectrochemistry (PEC) is a combination of photochemical and electrochemical processes. In the PEC setting, NRR occurs at the cathode site using a catalyst having an active site capable of activating the stable triple bond of N$_2$, while at the anode, a catalyst that can oxidize water well under visible light exposure is desired. Several studies have been conducted using the PEC method, Liu et al. [5] used a photoelectrochemical method for the reduction of N$_2$ to ammonia using black phosphorus-produced ammonia with a Faraday efficiency of 23.3%. Liu et al. [6] have developed a photocatalytic method using TiO$_2$ nanoparticles with oxygen vacancy for nitrogen fixation with the highest ammonia generation rate of 116 μmol.g$^{-1}$.h$^{-1}$.

TiO$_2$ is one of the semiconductors that is widely used as a photoelectrode in PEC cells with various advantages such as high efficiency, low cost, physical and
chemical stability, wide availability, non-corrosive, and environmentally friendly [7]. TiO$_2$ in the form of 1D nanostructures such as nanotubes (TiO$_2$NT) exhibits a very large surface-to-volume ratio and significantly increased light absorption [8-9]. It is well known that the population of Ti$^{3+}$ in TiO$_2$ could serve as an active site to carry out the NRR reaction [2]. However, to be used as a photoanode, TiO$_2$ is still lacking. As it has a band gap of about 3.2 eV, the absorption only occurs in the UV region; TiO$_2$ is not an efficient photocatalyst under sunlight irradiation, which contains > 95% infrared and visible light while only ~5% UV light. Therefore, it is very important to develop photocatalysts that can be used in both UV light (290–400 nm) and visible light (400–700 nm) to increase the efficiency of photocatalysis [10].

It is necessary to modify TiO$_2$, one of which is the BiVO$_4$/TiO$_2$NT heterojunction, to increase light absorption in the visible light region. BiVO$_4$ has a band gap of 2.4 eV. Zhu et al. [11] reported that the BiVO$_4$/TiO$_2$ heterojunction has 1.4 times higher photocatalytic activity compared to pure BiVO$_4$. The incorporation of TiO$_2$ with another semiconductor not only affects the light absorption ability but can increase the specific surface area and pore diameter.

The use of the Dye-Sensitized Solar Cell Photoelectrochemical (DSSC-PEC) tandem system can increase light absorption in the visible light region compared to without DSSC. Several studies have been conducted on DSSC-PEC tandem cells, among others; Surahman [12] conducted the development of PEC cells using CdS nanoparticle sensitized TiO$_2$ nanotube arrays for hydrogen production with hydrogen gas formation rate of 13.44 L/min and energy efficiency cells through the process of breaking water by 4.78%. Samsudin et al. [13] developed a tandem DSSC-PEC system with thin films of BiVO$_4$/TiO$_2$NT for hydrogen production to produce 692 mol of hydrogen in 120 min.

Research developments related to the performance of Ti$^{3+}$/TiO$_2$NT for NRR applications, BiVO$_4$/TiO$_2$NT as a photoanode, and DSSC N719 have been widely reported. However, the combined system of PEC-based BiVO$_4$/TiO$_2$NT as photoanode, Ti$^{3+}$/TiO$_2$NT as cathode, and DSSC-based N719 as a whole tandem system to do NRR to ammonia, as far as the authors’ knowledge, has not been reported. In this study, an evaluation of the performance of the DSSC-PEC tandem system for the NRR to ammonia was carried out using Ti$^{3+}$/TiO$_2$NT as a cathode. As a photoanode, TiO$_2$NT-modified BiVO$_4$ was used using the SILAR method. As for the DSSC zone, TiO$_2$NT/N719 sandwich cells, I$^-$/I$_3^-$, and Pt/FTO electrolytes are used. This research is expected to contribute to the development of alternative methods for producing environmentally friendly ammonia with relatively low energy consumption.

EXPERIMENTAL SECTION

Materials

The materials used in this study were titanium plate (99.6% purity Baoji Jinsheng Metal Material Co. Ltd), acetone (C$_3$H$_6$O) (≥ 99.5% purity Sigma-Aldrich), bismuth nitrate pentahydrate (Bi(NO$_3$)$_3$.5H$_2$O) (98% purity Sigma-Aldrich), ethanol (C$_2$H$_5$OH) (99.9% purity Sigma-Aldrich), ethylene glycol (C$_2$H$_6$O) (99.8% purity Sigma-Aldrich), ammonium vanadate (NH$_4$VO$_3$) (≥ 99.0% purity Sigma-Aldrich), FTO, sodium sulfate (Na$_2$SO$_4$) (≥ 99% purity Sigma-Aldrich), trisodium citrate (Na$_3$C$_6$H$_5$O$_7$) (≥ 98% purity Sigma-Aldrich), sodium hypochlorite (NaOCl) from Sigma-Aldrich, nitric acid (HNO$_3$) (65% purity Sigma-Aldrich), sodium hydroxide (NaOH) (≥ 98% purity Sigma-Aldrich), ammonium chloride (NH$_4$Cl) (≥ 99.5% purity Sigma-Aldrich), sodium nitroprusside (SNP) from Sigma-Aldrich, dye N719 (95% purity Sigma-Aldrich), Nafion membrane 117, and phenol (99% purity Sigma-Aldrich), and deionized water from OneMed.

Instrumentation

TiO$_2$NT and BiVO$_4$/TiO$_2$NT were characterized using XRD (X’pert PRO merk PANalytical MPD PAW3040/60), FTIR (Shimadzu IR Prestige 21), UV-Vis DRS (Shimadzu UV-2450), SEM-EDX (Quanta 650 of Thermo Scientific), and Potentiostat (PAR-VersaStat II). While Ti$^{3+}$/TiO$_2$NT was characterized using FTIR, UV Vis DRS, and Potentiostat.
Procedure

Synthesis of TiO2 nanotubes (TiO2NT) and Ti3+/TiO2NT

The titanium plate (0.3 mm thickness, 99.6%) was sanded with 1000 and 1500 cc abrasive paper, then sonicated in a solution of acetone, ethanol, and air deionized for 16 min, then dried in air. Anodization was conducted in an electrochemical cell consisting of two electrodes, a Ti plate (4 cm × 1.5 cm × 0.02 cm) as an anode, and stainless steel as a cathode. Ethylene glycol solution containing 0.3% NH4F and 2% H2O was used as an electrolyte. The distance between the two electrodes is set to about 1.5 cm. The anodizing potential was carried out at 40 V, and the anodization time of 45 min. After the anodization process, the samples were rinsed with deionized water and dried in the air, then calcined at a temperature of 450 °C for 2 h with a temperature rise rate of 10 °C/min⁻¹ [12].

The synthesis of Ti3+/TiO2NT used an electrochemical reduction method with a three-electrode system with TiO2NT as the working electrode, Pt as the counter electrode, and Ag/AgCl as the reference electrode. Then put into 0.1 M Na2SO4 electrolyte solution and given a potential of -1.5 V for 20 min [14].

Synthesis of BiVO4/TiO2NT

A solution of 50 mL Bi(NO3)3 0.02 M was prepared in beaker 1, and 50 mL NH4VO3 0.02 M was prepared in beaker 2. The solvent for NH4VO3 is deionized water, while the solvent for Bi(NO3)3 is a mixture of nitric acid and water (V nitric acid:V water = 1:19). TiO2 nanotube plate substrate was immersed in beaker 1 for 30 s and then immersed in beaker 2 for 30 s. This process is defined as one cycle. The process was done for 10, 15, and 20 cycles in ultrasonication, denoted as 10 s, 15 s, and 20 s, respectively. Each immersion of the TiO2 nanotube plate was rinsed with deionized water and dried in the air after all cycles were completed. Then, the prepared samples were calcined at 500 °C for 2 h at a heating rate of 10 °C/min⁻¹ [15].

DSSC fabrication, TiO2NT/N719

TiO2 nanotubes were immersed in a 300 μM N719 color solution (ethanol solvent) for 24 h. After 24 h of immersion, TiO2NT/N719 was cleaned with ethanol and dried in the air [16]. TiO2NT/N719 as an anode, electrolyte I-/I3−, and Pt/FTO as a cathode. The arrangement of the DSSC cells follows a sandwich cell configuration, electrolyte I-/I3− is dripped on the surface of the anode (TiO2NT/N719), then parafilm as a separator between the anode and cathode to avoid short circuit current, and then closed with a cathode (Pt/FTO).

DSSC-PEC preparation and performance evaluation

PEC cells consist of BiVO4/TiO2NT as a photoanode and Ti3+/TiO2NT as a dark cathode. TiO2NT/N719 as an anode in the DSSC zone is connected with Pt/FTO, and BiVO4/TiO2NT as a photoanode.
to the PEC cathode (Ti^{3+}/TiO_{2}NT), while the PEC photoanode (BiVO_{4}/TiO_{2}NT) is connected to the DSSC cathode (Pt/FTO) with a copper wire. The evaluation of the system to produce NH_{3} was conducted with two irradiation conditions. The A condition (dark cathode) was when the DSSC and anode were illuminated while the cathode was dark. The condition when all the systems (DSSC and PEC) were illuminated is denoted with B condition (full irradiation). The efficiency of ammonia conversion was calculated using the Solar to Chemical Conversion (SCC) equation as shown in Eq. (1) [2]:

\[\text{SCC Efficiency} \% = \frac{\Delta G \text{ for NH}_{3} \ (J/mol) \times \text{NH}_{3} \text{ formed (mol)}}{\text{total input energy (W) \times reaction time (s)}} \times 100\% \]

\[(1) \]

RESULTS AND DISCUSSION

Characterization of Photoanode Materials

Fig. 2(a) shows the FTIR spectra of the synthesized materials. The results of FTIR characterization on TiO_{2}NT and BiVO_{4}/TiO_{2}NT contained OH groups stretching at wavenumbers 3400–3000 cm\(^{-1}\), OH bending at wavenumbers 1800–1400 cm\(^{-1}\), Ti-O-Ti at wavenumbers 900–700 cm\(^{-1}\). The wide peak at a wave number of around 400–700 cm\(^{-1}\) is the asymmetric stretching of the vanadate due to the BiVO_{4} monoclinic.

Fig. 2(b) shows the results of the XRD characterization of TiO_{2}NT and BiVO_{4}/TiO_{2}NT. In the TiO_{2}NT diffraction pattern, diffraction peaks were observed at positions 2\(\theta\): 25.31\(^{\circ}\), 35.05\(^{\circ}\), 38.26\(^{\circ}\), 40.11\(^{\circ}\), 48.09\(^{\circ}\), 53.05\(^{\circ}\), 53.88\(^{\circ}\), 55.06\(^{\circ}\), 70.60\(^{\circ}\), 76.19\(^{\circ}\), and 82.34\(^{\circ}\). Based on JCPDS data No. 00-02101272, the typical peaks of anatase crystals are at the 2\(\theta\) positions: 25.28\(^{\circ}\), 37.80\(^{\circ}\), 38.57\(^{\circ}\), 48.05\(^{\circ}\), 53.80\(^{\circ}\), 55.06\(^{\circ}\), 70.31\(^{\circ}\), 75.03\(^{\circ}\), 76.02\(^{\circ}\), and 93.22\(^{\circ}\). Meanwhile, based on data from JCPDS No. 00-044-1294, the typical peaks of titanium metal are in the 2\(\theta\) positions: 25.28\(^{\circ}\), 35.09\(^{\circ}\), 38.43\(^{\circ}\), 40.17\(^{\circ}\), 53.01\(^{\circ}\), 62.94\(^{\circ}\), 70.66\(^{\circ}\), 76.23\(^{\circ}\), 77.38\(^{\circ}\), and 82.30\(^{\circ}\). Based on the JCPDS data, it is known that the crystalline phase formed in the synthesized TiO_{2}NT is the anatase phase. In the BiVO_{4}/TiO_{2}NT diffraction pattern, additional diffraction peaks were observed, which were then compared with JCPDS data No. 14-0688 for the monoclinic scheelite phase BiVO_{4} [17].

Fig. 2(c) shows UV-DRS spectra to determine the band gap value of the synthesized materials. Bandgap values can be calculated using the Tauc plot of the Kubelka-Munk function:

\[F(R)hv^{2} = B(hv - E_{g}) \]

\[(2) \]

The equation is a direct band gap. Based on this equation, the bandgap value of TiO_{2}NT is 3.21 eV. Based on the literature, the band gap value of TiO_{2}NT is 3.20 eV [19]. This band gap value indicates that the synthesized TiO_{2}NT was in the anatase phase. Furthermore, the synthesized TiO_{2}NT was deposited with BiVO_{4} through the SILAR process with 3 cycle variations, namely 10, 15, and 20 cycles. The resulting band gap value decreases as the number of cycles increases, where the band gap value is 2.83 eV, 2.81 eV, and 2.79 eV, respectively. Based on the literature, the band gap value of BiVO_{4} is 2.4 eV [20], the bandgap value which is between the bandgap value of pure TiO_{2}NT anatase (3.20 eV) and BiVO_{4} monoclinic (2.40 eV) indicates the...
formation of a mixed phase of BiVO$_4$/TiO$_2$NT heterojunction. The decrease in band gap value indicates that BiVO$_4$/TiO$_2$NT synthesized by the SILAR method can be active against visible light [21].

The morphology of the synthesized TiO$_2$NT was then characterized using SEM-EDX. Fig. 3(a) and 3(b) show the morphology of TiO$_2$ at the surface and cross-section. Based on this figure, it can be observed that TiO$_2$ formed has nanotube morphology with an average pore diameter of about 56.44 nm and a tube height of 3.11 μm. Several factors affect the morphology of nanotubes, such as the time and anodization potential, the distance between the electrodes, and the composition of the electrolyte [22].

Fig. 3(c) and 3(d) show the SEM results of BiVO$_4$/TiO$_2$NT 20 cycles (the 20s) surface and cross-section. It can be seen that the yellow BiVO$_4$ has stuck to the surface of the TiO$_2$NT and does not close the pores so that it can increase the surface area. Fig. 4 shows the EDX spectra of TiO$_2$NT and BiVO$_4$/TiO$_2$NT 20s synthesis results. Based on these results, it is known that the synthesized TiO$_2$NT is composed of Ti and O elements with a ratio of 1:2 atom percentage to form TiO$_2$. While for the sample BiVO$_4$/TiO$_2$NT 20s, the percentage atom of Bi:V:Ti:O is 2.1:2.2:26.6:69.1, which shows the amount mass of BiVO$_4$ deposited with 20 cycles is 23.97%.

Fig. 5(a) is the resulting curve for the photoelectrochemical activity of TiO$_2$NT and BiVO$_4$/TiO$_2$NT using the Linear Sweep Voltammetry (LSV) method. The results obtained show a comparison of the current density response to the potential between TiO$_2$NT and BiVO$_4$/TiO$_2$NT using visible light with a white LED lamp 13 W. The curve shows that BiVO$_4$/TiO$_2$NT has a higher current density than TiO$_2$NT. As the number of SILAR cycles increases, the current density response also increases. This indicates
Fig 3. SEM results of (a) TiO$_2$NT surface 50,000×, (b) TiO$_2$NT cross-section 10,000×, (c) BiVO$_4$/TiO$_2$NT surface 25,000× and (d) BiVO$_4$/TiO$_2$NT cross-section 10,000× with 20 cycles SILAR.

Fig 4. EDX results of (a) TiO$_2$NT and (b) BiVO$_4$/TiO$_2$NT with 20 cycles SILAR.
that the addition of BiVO₄ on the surface of TiO₂NT can increase the photocatalytic activity of TiO₂NT in the visible light region due to charge separation across the BiVO₄/TiO₂NT interface. Fig. 5(b) is a Multiple Pulse Amperometry (MPA) curves that show the current density response of TiO₂NT and BiVO₄/TiO₂NT on irradiation using visible light. Based on the obtained curve, it shows that BiVO₄/TiO₂NT gives the highest current density response when exposed to visible light. The higher current density response was due to the distribution of BiVO₄ formed on the TiO₂NT surface. In this case, 20 cycles of SILAR showed a higher current density response than 10 and 15 cycles, so the 20 cycles of BiVO₄/TiO₂NT synthesis would be used as a photoanode for the nitrogen reduction reaction to ammonia.

Dark Cathode Characterization of Ti³⁺/TiO₂NT

In this system, Ti³⁺/TiO₂NT functions as a dark cathode where the Nitrogen Reduction Reaction (NRR) occurs. The presence of Ti³⁺ species will be the active site as an electron donor for the reduction of nitrogen to ammonia, which causes an easy dissociation of N≡N bonds. With some transformation of surface Ti from Ti³⁺ to Ti⁴⁺, electrons will naturally be injected into N₂ [23].

Fig. 6(a) shows the FTIR spectra of TiO₂NT and Ti³⁺/TiO₂NT at a wavenumber of 4000–400 cm⁻¹. It can be seen that the Ti-O-Ti absorption peak of Ti³⁺/TiO₂NT at a wave number of 900 cm⁻¹ decreases compared to TiO₂NT. This phenomenon is due to reduced Ti-O-Ti bonds at the surface due to the reduction process that can be associated with an increase in the Ti³⁺ population in TiO₂NT. At wave numbers 1700–1400 cm⁻¹, the OH bending functional group indicates that there are water molecules adsorbed on the Ti³⁺/TiO₂NT surface [24].

Fig. 6(b) shows the UV-Vis spectrum of the Ti³⁺/TiO₂NT DRS. The band gap value of Ti³⁺/TiO₂NT can be determined by the Tauc plot of the Kubelka-Munk function, which is 3.13 eV. The band gap value obtained after presenting Ti³⁺ in TiO₂NT, there was a decrease in the band gap from 3.21 to 3.13 eV. The resulting band gap indicates that Ti³⁺/TiO₂NT is active in UV light.

Fig. 6(c) shows the results of LSV characterization on Ti³⁺/TiO₂NT irradiated with UV light, visible light, and dark conditions. The LSV test was conducted in the potential range of −1 to 1 V. These results indicate that Ti³⁺/TiO₂NT irradiated with UV lamps produces a higher current density than in visible light or dark conditions. This is directly proportional to the band gap value of Ti³⁺/TiO₂NT, which is active against UV light. The high current density indicates that when Ti³⁺/TiO₂NT is irradiated with a UV lamp, there will be an excitation of electrons from the valence band to the conduction band.

Fig. 6(d) shows the results of the MPA characterization on Ti³⁺/TiO₂NT within 100 s. The results of this characterization indicate that Ti³⁺/TiO₂NT
responds to UV light. When Ti$^{3+}$/TiO$_2$NT is given a UV lamp, there will be an increase in current density, and when the UV lamp is turned off, there will be a significant decrease in current density. This increase in current density indicates that there is an excitation of electrons. At the same time, the decrease in current density indicates that there is a recombination of electrons from the conduction band to the valence band. However, when exposed to visible light, the current density is lower than given UV light. This indicates that the synthesized Ti$^{3+}$/TiO$_2$NT has a strong response in the UV region [25].

DSSC Efficiency Characterization

DSSC efficiency test is measured by plotting the current versus potential curve in the range of 0 to 1 Volt. Fig. 7 shows the curve of the change in DSSC current to the given potential when irradiated using visible light from a white LED lamp. From the curve obtained, it can be determined the value of J_{sc}, V_{oc}, P_{max}, fill factor, and efficiency of the DSSC according to the data listed in Table 1. By using a lamp power of 25.5 mW/cm2 for irradiation, the DSSC cell efficiency is obtained at 1.13%.
with a fill factor value of 0.55212. This DSSC cell will then be used in a DSSC-PEC tandem cell for the reduction of nitrogen into ammonia to increase the electrons that enter the catalysis zone so that more ammonia will be produced.

Tandem System for N₂ Applications

The reaction process for reducing nitrogen to ammonia occurs in the DSSC-PEC tandem system. The nitrogen reduction reaction occurs in the Ti³⁺/TiO₂NT catalytic zone as the PEC cathode is connected to TiO₂NT/N719 as the DSSC anode. PEC anode, namely BiVO₄/TiO₂NT oxidation reaction, occurs in water to produce electrons (e⁻) and protons (H⁺). Then H⁺ will flow from the anode to the PEC cathode through the Nafion membrane while the electrons (e⁻) flow to the Pt/FTO as the DSSC cathode through the external circuit (cable). These electrons are used to reduce I₃⁻ to I⁻ ions in DSSC. At the PEC cathode, nitrogen is reduced to ammonia.

At the PEC, dark cathode, there is a nitrogen reduction reaction to ammonia, and at the photoanode, there is an oxidation reaction of water into protons and oxygen according to the following equation:

\[\text{N}_2(g) + 6\text{H}^+(aq) + 6e^- \rightarrow 2\text{NH}_3(g) \] \hspace{1cm} (3)

\[2\text{H}_2\text{O}(l) \rightarrow 4\text{H}^+(aq) + \text{O}_2(g) + 4e^- \] \hspace{1cm} (4)

The resulting ammonia then flows into a reservoir containing a 0.01 M HCl solution to produce an ammonium chloride (NH₄Cl) solution.

\[\text{NH}_3(g) + \text{HCl}(aq) \rightarrow \text{NH}_4\text{Cl}(aq) \] \hspace{1cm} (5)

Fig. 8 shows experimental data on the amount of ammonia produced at two irradiation conditions (A: dark cathode, B: full irradiation). From the Fig. 8, it can be seen that the ammonia produced increased with increasing reaction time. The amount of ammonia produced in the DSSC+photoanode (A) irradiation region for 2, 4, and 6 h, respectively, was 0.173, 0.240, and 0.320 μmol. These results indicate that the cell system is well-operating under visible light [21]. In addition, the results under full irradiation (Condition B) are lower than the dark cathode (Condition A). It might be caused by when the PEC cathode (Ti³⁺/TiO₂NT) is irradiated, photon-generated active electrons in its conduction band, and these electrons find antagonistic behavior with electrons from the DSSC part due to the potential bias resulting in the system as a whole [26].

The percentage of energy efficiency in ammonia can be calculated using the Solar to Chemical Conversion (SCC) Eq. (1) [2]. SCC is the ratio between the amount of ammonia produced and the total energy given at a certain time. The free energy for the formation of ammonia from nitrogen gas and water is 399 kJ/mol. Total energy input (Watt) is the amount of light given from the irradiation source to the active area of the DSSC. The light intensity in this study was 3050 lux, which is equivalent to 4,466 W/m² with the irradiated DSSC area of 0.0003 m², so the total input power generated was 0.00134 W. Based on the calculation results

![Fig 8. The amount of ammonia produced under various irradiation conditions during the reaction time of 2, 4, and 6 h (A: dark cathode, B: full irradiation)](image)
results, the percentage of SCC for photoanode and dark cathode with a reaction time of 6 h is 0.003%.

■ CONCLUSION

In summary, the authors have successfully synthesized BiVO₄/TiO₂NT heterojunction, which is active in visible light by SILAR method with 3 cycles variations, namely 10, 15, and 20 cycles. Among the others, 20-cycle BiVO₄/TiO₂NT gave the best result as a photoanode, characterized by the smallest band gap energy and the highest photocurrent density for water oxidation (0.352 mA/cm²). In addition, for the NRR, the BiVO₄/TiO₂NT photoanode was used along with Ti³⁺/TiO₂NT cathode in the PEC system coupled with a DSSC based on TiO₂NT/N719 with an efficiency of 1.13% as an energy booster in the reaction. The DSSC-PEC tandem system under “A” condition (Dark cathode, irradiation on DSSC and photoanode) resulted in SCC efficiency of 0.003% and ammonia production of 0.022 mol.h⁻¹.cm⁻². Although still lacking, the result shows that the tandem DSSC-PEC system was able to reduce nitrogen (N₂) to ammonia (NH₃) with only visible light irradiation. There are many aspects that can be optimized for future development. First, the activity of the photoanode site could be enhanced more by further optimizing the amount of BiVO₄ deposited and directing the crystal growth on the active facets. Second, further optimization on DSSC efficiency and Ti³⁺ population as the active size at the cathode is predicted to be able to improve the performance of the whole system. Third, finding the best environment, such as electrolyte, temperature, also system design, especially at the cathode site, to enhance the selectivity of the system to NRR is still believed to be a major factor that should be addressed in future work. Thus, this work is expected to stimulate the development of the catalyst and system design for a better NRR visible active—photo(electro)catalytic system in the future.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from DGHE, Directorate General of Higher Education, for funding the research (PDUPT research contract No. NKB-174/UN2.RST/HKP.05.00/2021).

■ REFERENCES

[10] Yunita, Y., Syauqi, M.I., and Gunlazuardi, J., 2022, Comparative study of bismuth ferrite deposition method on TiO₂ nanotube and performance of hydrogen evolution in a photoelectrochemical dye-

