Prediction of Rashba Effect on Two-dimensional MX Monochalcogenides (M = Ge, Sn and X = S, Se, Te) with Buckled Square Lattice

Ibnu Jihad*, Juhri Hendrawan, Adam Sukma Putra, Kuwat Triyana, and Moh. Adhib Ulil Absor

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia

*Corresponding author:
tel: +62-895364829488
email: ibnu.jihad@ugm.ac.id

Received: September 5, 2019
Accepted: January 7, 2020
DOI: 10.22146/ijc.49331

Abstract: The Rashba splitting are found in the buckled square lattice. Here, by applying fully relativistic density-functional theory (DFT) calculation, we confirm the existence of the Rashba splitting in the conduction band minimum of various two-dimensional MX monochalcogenides (M = Ge, Sn and X = S, Se, Te) exhibiting a pair inplane Rashba rotation of the spin textures. A strong correlation has also been found between the size of the Rashba parameter and the atomic number of chalcogen atom for Γ and M point in the first Brillouin zone. Our investigation clarifies that the buckled square lattice are promising for inducing the substantial Rashba splitting suggesting that the present system is promising for spintronics device.

Keywords: Ge monochalcogenides; Sn monochalcogenides; DFT method; spintronics; square lattice; Rashba effect; spin textures

INTRODUCTION

Spintronics is a combinational word from spin transport electronics or spin electronics, which is the next generation of electronics. Spintronics explores the spin properties of electrons rather than the charge properties in electronics device, in which give us more degree of freedom [1]. This fact makes spintronics device have higher information density and also energetically efficient because the smaller movement is needed for changing (reading and writing) the spin structure. One branch of the spintronics research field is spin-orbitronics, which is focused on the exploitation of non-equilibrium material properties using spin-orbit coupling (SOC). In the spin-orbitronics, the investigation is aiming for searching materials that have large enough SOC energy splitting, especially the Rashba effect type to build spin field-effect transistor (SFET) [2].

The Rashba splitting in the electronics band structures is caused by the lack of inversion symmetry of the materials [3], which occurred in a two-dimensional (2D) structures of materials. Graphene as the first example of the 2D materials having hexagonal structure have been considered for this purpose. However, due to the weak SOC, this material is not suitable for spin-orbitronics [4-6]. Another example of 2D materials having hexagonal structure is coming from the transition metal dichalcogenides (TMDs) family [7]. Here, the breaking of inversion symmetry in the hexagonal crystal, together with the strong SOC of transition metal atom leads to the strong SOC splitting. Recently, the 2D Group-IV monochalcogenides in square lattice with black phosphorus structure have been recently studied and proved as a suitable semiconductor with sizeable Rashba splitting [9].

Although the SOC has been widely studied on the 2D materials with the hexagonal structure and black phosphorus structure, this effect should apparently appear on the other non-centrosymmetric 2D materials. One of the candidates is 2D material which posses a square lattice structure. The square lattice structure with buckling has also been experimentally observed on Bismuth (Bi) [10], making the realization of this structure is plausible. Computational research on buckled square lattice of lead chalcogenides showing significant first-order Rashba effect in this structure [8]. Previously, a preliminary study on the electronic structure of the MX monochalcogenides (M = Ge, Sn
and $X = S, Se$) has been conducted with buckled squared lattice and also the calculation of Rashba splitting size up to the third order correction that was showing a sizeable Rashba splitting in these materials [9].

This work showed that the Rashba splitting is also observed in the MTe monochalcogenides ($M = Ge, Sn$) with buckled squared lattice as additional materials to MX monochalcogenides ($M = Ge, Sn$ and $X = S, Se$) buckled square lattice. It is found that the substantial Rashba splitting is achieved in the conduction band minimum of various 2D MX monochalcogenides showing clockwise-anticlockwise rotation of the spin in the momentum space. From these various TMDs materials, the size of the Rashba parameter is strongly affected by the atomic number of chalcogen atoms for different high symmetry points in the first Brillouin zone.

### COMPUTATIONAL METHOD

This work was started by modeling the two-dimensional monolayer buckled square lattice crystal (Fig. 1). The distance between slabs is set to 30 Å to prevent interaction between slabs. The coordinate axis is $x = a, y = b,$ and $c = z$. The geometry is relaxed until the force of each atom less than 1 meV/Å.

The calculation was performed using a density functional theory (DFT) approach implemented on OPENMX code [10] within the generalized gradient approximation (GGA) for the exchange-correlation energy [11]. The norm-conserving pseudopotentials [12] was set to energy cut off 300 rydberg for charge density. The optimum k-point sampling for the calculation is $8 \times 8 \times 1$. The wave function was expanded by a confinement scheme of a linear combination of multiple pseudoatomic orbitals [13-14]. The numerical pseudoatomic orbitals used for M atom was two-s, two-p, three-d, and one-f, and for X atom was three-s, three-p, two-d, and one-f. The $j$-dependent pseudopotentials were applied for SOC [15]. After gaining the stable structure of the materials, the process continue to calculate the electronics band structures with the corresponding density of states (DOS) projected to the atomic orbitals.

### RESULTS AND DISCUSSION

The optimized structure and the related parameters, are summarized in Table 1 and have good agreement with previous report [9]. The PbS and PbSe calculations have been presented to confirm the computational results with previously reported data [8].

The result of the electronic band structures is displayed in Fig. 2. It is observed that in the calculation without including SOC (blue lines in band structure), the valence band maximum (VBM) located in $Y$ (and $X'$) point for all MX. While in conduction band, the extremum valley or the conduction band minimum occurred along the $Y$-$M$ line, for all MX. This result has a similarity with the previous result of MX with black phosphorene lattice structure. However, in black phosphorene, the different band structure was observed [16]. Our calculated DOS projected to the atomic orbitals confirmed that the VBM is dominated by a mixture of X-$p_z$ and M-$p_z$. The CBM is contributed by the coupling of M-$p_x$ and M-$p_y$. The band gap energy of all MX buckled square lattice monolayer has an indirect type. These calculated values are different from black phosphorene structure [9]. However, both structures have typical pattern in the band gap properties. The band gap are decreased along with the increasing chalcogen atomic mass in the buckles square lattice, thus

![Fig 1. 2D buckled square lattice (drawing using Vesta) (a) from top and (b) side and (c) the first Brillouin zone](image)
Table 1. Calculation result of lattice constant, buckling distance, and buckling angle

<table>
<thead>
<tr>
<th>Source</th>
<th>a(Å)</th>
<th>d(Å)</th>
<th>θ (°)</th>
<th>a(Å)</th>
<th>d(Å)</th>
<th>θ (°)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbS</td>
<td>3.76</td>
<td>1.04</td>
<td>21.4</td>
<td>3.76</td>
<td>1.0841</td>
<td>22.17</td>
<td>[8]</td>
</tr>
<tr>
<td>PbSe</td>
<td>3.79</td>
<td>1.27</td>
<td>25.4</td>
<td>3.85</td>
<td>1.2087</td>
<td>23.92</td>
<td>[8]</td>
</tr>
<tr>
<td>GeO</td>
<td>2.86</td>
<td>0.76</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeS</td>
<td>3.25</td>
<td>1.14</td>
<td>26.4</td>
<td>3.31</td>
<td>1.1086</td>
<td>25.35</td>
<td>[9]</td>
</tr>
<tr>
<td>GeSe</td>
<td>3.42</td>
<td>1.22</td>
<td>26.8</td>
<td>3.46</td>
<td>1.1833</td>
<td>25.83</td>
<td>[16]</td>
</tr>
<tr>
<td>GeTe</td>
<td>3.69</td>
<td>1.30</td>
<td>26.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>This work</td>
</tr>
<tr>
<td>SnO</td>
<td>3.16</td>
<td>0.76</td>
<td>18.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>This work</td>
</tr>
<tr>
<td>SnS</td>
<td>3.54</td>
<td>1.20</td>
<td>25.6</td>
<td>3.55</td>
<td>1.1860</td>
<td>25.32</td>
<td>[16]</td>
</tr>
<tr>
<td>SnSe</td>
<td>3.62</td>
<td>1.34</td>
<td>27.6</td>
<td>3.68</td>
<td>1.2714</td>
<td>26.07</td>
<td>[16]</td>
</tr>
<tr>
<td>SnTe</td>
<td>3.94</td>
<td>1.41</td>
<td>26.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig 2. The Brillouin zone in k-space of the square lattice structure. Blue and pink line indicating the energy band without SOC and with SOC, respectively. The dominant DOS is displayed with corresponding orbitals resulting in a lower band gap [17-19]. The band gap values are GeS = 0.660 eV, GeSe = 0.085 eV, GeTe = no band gap, SnSe = 1.097 eV, SnSe = 0.627 eV, and SnTe = no bandgap. From this band gap, all of MX is semiconductor except GeTe and SnTe, which is metallic. When the calculation includes the SOC term, all of the bands are split due to the lack of inversion symmetry, which occurs in all MX. The clarification of the
occurrence of the spin-split states is by considering the characteristic of the atomic orbitals of the band. From atomic point of view, coupling between atomic orbitals will contribute to the non-zero SOC matrix element through the relation \( \zeta_l(\mathbf{L} \cdot \mathbf{S})_{u,v} \), where \( \zeta_l \) is the angular-momentum-resolved atomic SOC strength, with \( l = (s, p, d) \), \( \mathbf{L} \) and \( \mathbf{S} \) are the orbital angular momentum and Pauli spin operator, respectively, for the \((u,v)\) atomic orbitals. It is revealed that the dominant contribution in CBM is coming from coupling between p orbitals of M atom and p orbitals of chalcogen atom for all MX. This p-p coupling is enhanced by increasing the atomic number of chalcogen atom. This finding is consistent with the enhancement of the spin splitting size around the \( \Gamma \) point. The more detailed discussion about the quantitative size of the splitting will be presented later.

Next, the spin-splitting near \( \Gamma \) and \( M \)-points of the CBM is claimed as Rashba-type splitting because the spin orientation is rotational [3], and we will show the calculation of this spin orientation (which is known as spin textures). It is well-known that there are three kinds of SOC splitting in non-centrosymmetric and non-magnetic materials, namely Rashba, Dresselhaus, and Zeeman-like splitting [20], where the spin splitting and their corresponding spin textures are displayed in Fig. 3. The figure shows that the Rashba and Dresselhaus splitting is very similar except for the spin textures.

Next, the calculation of the size of the Rashba splitting in the buckled MX square lattice materials and the spin textures is conducted to clarify the claim that this is an actual Rashba splitting. To calculate the size of Rashba splitting (Rashba parameter) for higher-order, first is to use symmetry analysis to derive the effective Hamiltonian via k.p perturbation approximation. This approximation allows us to describe the electronic properties of our 2D MX monochalcogenides and can be used to analyze the properties of the band structure, such as spin splitting and spin texture for points around VBM and CBM. This method has already successfully used in various 2D material [7,21-25]. The symmetry group of the 2D square lattice structure is isomorphic to the \( C_{2v} \) or \( 2 \text{mm} \) two-dimensional space group [26], and from

![Fig 3. Three kinds of SOC splitting with the spin orientation](image)
previous analysis using group theory [24], by deriving the general Hamiltonian using the direct product of irreducible representations. The elements of the group are denoted by \( E: \{x, y, z\} \), \( C_2: \{-x, -y, z\} \), \( T_x: \{-x, y, z\} \), and \( T_y: \{x, -y, z\} \). This group has four one-dimensional irreducible representations, \( A_1, A_2, B_1, \) and \( B_2 \) with the character table is written in Table 2.

The corresponding component of the irreducible representation is set to the polar-vector \( \mathbf{k} \) and the axial-vector \( \mathbf{e} \) for the first order combination that corresponds to the \( A_1 \) irreducible representation is \( B_1: k_x, \sigma_y, k_y, \sigma_x, \) and \( A_2: \sigma_z \). For the second-order, \( A_1: k_x^2, k_y^2, k_z^2, \) and \( A_2: k_x^2k_y, k_xk_y^2 \), which is implied the form of kinetic energy. Finally, the third-order term is the possible product of \( B_1: k_x^2, k_y^2, k_z^2, \) and \( B_2: k_x^3, k_yk_z^2 \) with \( \sigma_1 \). Then a new total Hamiltonian, that leaves the old one invariant, is constructed to get the new Hamiltonian related to SOC up to third-order as:

\[
H(k) = E_0(k) + \alpha_1^{(1)} k_x\sigma_y + \alpha_1^{(2)} k_x\sigma_y + \alpha_2^{(3)} k_x^2k_y\sigma_x + \alpha_2^{(3)} k_xk_y^2\sigma_y + \alpha_3^{(3)} k_x^2k_y\sigma_y + \alpha_3^{(3)} k_xk_y^2\sigma_x \tag{1}
\]

where \( E_0(k) = \hbar^2(k_x^2 + k_y^2) \) is the nearly free-electron energy, \( \alpha_j^{(i)} \) is the \( i \)-th coefficient of the \( j \)-order, \( \sigma_x, \sigma_y, \sigma_z \) is the Pauli spin matrices, \( (k_x, k_y, k_z) \) is the position in \( k \)-space and \( k = \sqrt{k_x^2 + k_y^2} \). The eigenvalues problems for Eq. (1) gives us the splitting energy:

\[
E_{\pm}(k, \theta) = E_0(k) \pm \sqrt{X^2 + Y^2} \tag{2}
\]

with

\[
X = \alpha_1^{(2)} k_y \sin \theta + \alpha_2^{(3)} k_x^3 \cos^2 \theta \sin \theta + \alpha_3^{(3)} k_x^2 k_y \sin^3 \theta
\]

\[
Y = \alpha_1^{(2)} k_x \cos \theta + \alpha_2^{(3)} k_x^3 \cos^2 \theta + \alpha_3^{(3)} k_x^2 \sin^2 \theta \cos \theta
\]

where \( k_x = \cos \theta, k_y = \sin \theta, \) and \( \theta \) is the angle of \( \mathbf{k} \) with \( x \)-axis in \( k \)-space. The eigenvectors related to the \( \pm \sqrt{X^2 + Y^2} \) eigenvalues is

\[
\psi_{\pm}(k) = \begin{pmatrix} 0
\end{pmatrix}
\]

The square of the difference of energy eigenvalue can be calculated using:

\[
(\Delta E(k))^2 = 4(\alpha_1^{(1)} k_x + \alpha_2^{(2)} k_x^3 + \alpha_3^{(3)} k_x k_y^2) + 4(\alpha_1^{(2)} k_y + \alpha_2^{(3)} k_x k_y + \alpha_3^{(3)} k_y^2)^2 \tag{4}
\]

This equation is used to fit the plot of \((\Delta E(k))^2\) along \( \Gamma - X \) and \( Y - M \) and get the non-vanishing first-order coefficient as the Rashba parameter. The fitting results for the Rashba parameter are displayed in Table 3 with PbS calculation is shown as a confirmation. The table shows that for \( \Gamma \)-point, the size of the Rashba parameter increases depending on the atomic number of chalcogen atom, while on the M-point, the parameter is decreased.

Next, the spin texture of the band structures is determined as follows. For a given \( k \) point, its spin polarization of each eigenstates \( |\psi_i(k)\rangle \) is define as \( S(k) = \frac{\hbar}{2} \langle \psi(k) | \sigma_i | \psi(k) \rangle \) is

| Table 2. Character table of \( C_{2v} \) group |
|---|---|---|---|---|
| & \( E \) & \( C_2 \) & \( T_x \) & \( T_y \) |
| \( A_1 \) & 1 & 1 & 1 & 1 |
| \( A_2 \) & 1 & 1 & -1 & -1 |
| \( B_1 \) & 1 & -1 & -1 & 1 |
| \( B_2 \) & 1 & -1 & 1 & -1 |

| Table 3. Calculation result of band gap and Rashba parameter in CBM |
|---|---|---|---|---|
| \( \text{MX} \) & Band Gap (eV) & \( \Gamma \)-point \( (\alpha_1^{(1)} \) & M-point \( (\alpha_1^{(2)} \) & Reference (eVÅ) |
| PbS & 0.747 & 1.20 | 3.19 | 1.03 | 5.10 | [8] |
| GeS & 0.660 & 0.20 | 0.68 | 0.201 | 0.583 | [9] |
| GeSe & 0.085 & 0.27 | 0.52 | 0.320 | 0.468 | [16] |
| GeTe & Conductor & 0.38 | 0.34 | - | - | This work |
| SnS & 1.097 & 0.42 | 2.36 | 0.429 | 2.354 | [16] |
| SnSe & 0.627 & 0.58 | 1.48 | 0.548 | 1.746 | [16] |
| SnTe & Conductor & 0.59 | 1.05 | - | - | This work |
the i-direction of spin component. This spin polarization is calculated in k-space around Γ point by using the spin density matrix of the spinor wave functions obtained from the DFT calculation [21-23]. The calculation result is shown in Fig. 4. It is revealed that constant-energy surface shows the inner and outer circles with counterclockwise and clockwise rotation of spin direction with no z-component of spin. This feature is consistent with the characteristic of the Rashba effect splitting.

The observed spin texture can be explained based on our derived SOC Hamiltonian given in Eq. (1). The expectation value of the spin polarization can be calculated from this to get $\langle S_x \rangle_{\pm} = \frac{\pm \hbar Y}{\sqrt{(X^2+Y^2)}}$, $\langle S_y \rangle_{\pm} = \frac{\pm \hbar X}{\sqrt{(X^2+Y^2)}}$, and $\langle S_z \rangle_{\pm} = 0$. This result shows that the spin textures are consistent with Fig. 4.

■ CONCLUSION

Investigation of the Rashba effect on two-dimensional MX Monochalcogenides (M = Ge, Sn and X = S, Se, Te) with buckled square lattice has shown that this structure is appropriate to create the Rashba splitting. We also confirmed the properties of the spin texture of SOC splitting with the calculation from our DFT results. We found that some of MX have semiconductor properties (except GeTe and SnTe) and have different Rashba parameter. There is a strong correlation between the size of the Rashba parameter with the chalcogen atomic number. In Γ-point, the escalation of the chalcogen atomic number increases the Rasha parameter, but in M-point the effect is inverting. These various size of the Rashba parameter make these materials, and this buckled square lattice is potential to be developed for spintronics materials.

■ ACKNOWLEDGMENTS

This research was supported by Research Grant for Young Lecturer 2019, funded by Universitas Gadjah Mada (UGM) with contract number 3943/UN1/DITLIT/DIT-LIT/LT/2019. One of the authors (Absor) would like to acknowledge the Department of Physics UGM for partially financial support through BOPTN research grant 2019.

■ REFERENCES

transport and spin precession in single graphene layers at room temperature, Nature, 448 (7153), 571–574.


