Synthesis and Photoactivity of Fe₃O₄/TiO₂-Co as a Magnetically Separable Visible Light Responsive Photocatalyst

Eko Sri Kunarti^{*}, Indriana Kartini, Akhmad Syoufian, and Karolina Martha Widyandari

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

Received July 22, 2017; Accepted January 18, 2018

ABSTRACT

Synthesis of magnetic photocatalyst, Fe_3O_4/TiO_2 -Co, with characterization and photoactivity examination have been conducted. The synthesis was initiated by preparation of Fe_3O_4 particles using coprecipitation method. The Fe_3O_4 particles were then coated with TiO_2 -Co at a various ratio of Fe_3O_4 :TiO_2 and concentration of Co(II) dopant. The Fe_3O_4/TiO_2 -Co was characterized by FTIR, XRD, TEM, SEM-EDX, VSM, and SR UV-visible methods. Photoactivity of the Fe_3O_4/TiO_2 -Co was carried out using methylene blue as a target molecule in degradation reaction within a batch system. By using optimum conditions, the degradation of methylene blue solution was performed under exposure to UV, visible light and dark condition. Results showed that the Fe_3O_4/TiO_2 -Co formation was confirmed by the presence of Fe_3O_4 and anatase diffraction peaks in the X-ray diffractogram. SR UV-Vis spectra indicated that the Fe_3O_4/TiO_2 -Co was responsive to visible light. Band gap energy of the Fe_3O_4/TiO_2 -Co with dopant concentration of 1; 5; 10 and 15% were 3.22; 3.12; 3.09 and 2.81 eV, respectively. The methylene blue solution can be well photodegraded at a pH of 10 for 210 min. The Fe_3O_4/TiO_2 -Co has the highest ability to methylene blue photodegradation with dopant concentration of 10% gave degradation yield of 80.51 and 95.38% under UV and visible irradiation, respectively.

Keywords: Fe₃O₄/TiO₂-Co; photocatalyst; methylene blue; magnetic; visible light

ABSTRAK

Sintesis fotokatalis magnetic, Fe₃O₄/TiO₂–Co, disertai karakterisasi dan pengujian fotoaktivitasnya telah dilakukan. Penelitian diawali dengan sintesis partikel Fe₃O₄ secara kopresipitasi. Partikel Fe₃O₄ hasil sintesis kemudian dilapisi dengan TiO₂–Co pada rasio mol Fe₃O₄:TiO₂ serta konsentrasi ion Co(II) yang bervariasi. Fe₃O₄/TiO₂–Co kemudian dikarakterisasi menggunakan metode FTIR, XRD, TEM, SEM EDX, VSM dan SR UV-Visibel. Pengujian fotoaktivitas Fe₃O₄/TiO₂–Co dilakukan pada reaksi degradasi metilen biru yang dilakukan dalam sistem batch. Pengaruh konsentrasi ion Co(II) dikaji terhadap efektivitas reaksi fotokatalisis. Selanjutnya dengan menggunakan kondisi optimum, degradasi metilen biru terkatalisis Fe₃O₄/TiO₂–Co dilakukan pada paparan sinar UV, sinar tampak dan kondisi gelap. Hasil penelitian menunjukkan bahwa Fe₃O₄/TiO₂–Co dikonfirmasi keberadaannya melalui munculnya puncak Fe₃O₄ dan anatase pada difraktogram sinar-X. Spektra SR UV-Vis menunjukkan bahwa Fe₃O₄/TiO₂–Co dengan konsentrasi dopan 1,0; 5; 10 dan 15% secara berurutan sebesar 3,22; 3,12; 3,09 dan 2,81 eV. Hasil pengujian aktivitas Fe₃O₄/TiO₂–Co memunjukkan bahwa metilen biru dapat terfotodegradasi dengan baik pada pH 10 dengan waktu reaksi selama 210 menit. Fotokatalis Fe₃O₄/TiO₂–Co memiliki kemampuan fotodegradasi paling tinggi pada konsentrasi dopan 10 % dengan nilai fotodegradasi di bawah radiasi sinar UV dan visibel masing-masing sebesar 80,51 dan 95,38%.

Kata Kunci: Fe₃O₄/TiO₂-Co; fotokatalis; metilen biru; magnetik; sinar tampak

INTRODUCTION

Titanium dioxide semiconductor (TiO_2) is a material often used as a photocatalyst, gas sensor, cosmetic material, corrosion protection coating and solar cell to produce hydrogen and electric energy [1-3]. TiO₂ as a photocatalyst can also be utilized in water purification, air purifiers, cancer therapies, hospital sterilization and self-cleaning equipment [4]. In recent years, TiO₂

* Corresponding author.

Email address : eko_kunarti@ugm.ac.id

photocatalysts are widely used in water purification as they are ideal for the degradation of organic and inorganic pollutants [3-6].

In its application as a photocatalyst, TiO₂ is active under UV light irradiation at λ <400 nm, where the maximum absorption wavelength corresponds to the band gap energy rate of 3.0–3.2 eV [7]. However, since sunlight has only about 5% of spectra in UV rays and 43% of spectra in visible light [8], the use of TiO₂ as a photocatalyst confined to UV rays is less effective when applied in the environment. The performance of TiO_2 photocatalysts could be improved by increasing optical activity by shifting the absorption of the UV to visible light. This can be conducted by providing other atoms as a dopant, increasing the sensitivity of TiO_2 with the organic or inorganic compounds that are colored (sensitizer) and electron coupling [9]. Doping technique is often done for modifying TiO_2 , by providing other atoms in the form of metal and or non-metal. The doping technique results in decreasing the TiO_2 band gap energy, hence giving better performance when applied to the environment.

The transition metal, such as Cr, V, Fe, Co, W, Ce, Zr, and Cu, and non-metal like B, C, N, F, S, Cl, and Br usually was used as a dopant. The type of dopant affects the responsiveness of TiO_2 in visible light [9-10]. Doping using metal dopants is more commonly applied because of its superiority as an electron trapper that can reduce electron-hole recombination reactions.

Cobalt is one of the metals often used as a dopant to modify TiO₂ photocatalyst. Hamal and Klabunde [11] reported that the valence of the cobalt salt precursor may affect the rate of photodegradation of organic pollutants. The Co²⁺ doped TiO₂ has a faster degradation reaction time than Co³⁺ doped TiO₂ in acetaldehyde degradation under visible light irradiation with the same precursor concentration. The presence of Co dopant on TiO₂ causes the TiO₂ to have p-type conductivity. In this phenomenon, the cobalt ion acts as a scavenger or an electron capture. The doping effect of Co can decrease band gap energy (E_g) of TiO₂ shown from a shift of absorption toward longer wavelength (red shift) from diffuse reflectance UV-Visible (DR UV-Vis) spectra.

Although doping of Co²⁺ ions on TiO₂ can improve the performance of the photocatalyst, on the other hand, the photocatalyst still has problems in its use. One of the problems found in the use of TiO2 as a photocatalyst is a difficulty of separating the TiO₂ from the liquid medium after the photocatalysis process. The TiO2 particles in the solution tend to agglomerate when was used for a long time; resulting in decreased in the photocatalytic surface area leads to decrease in the effectiveness of photocatalysis [12]. The other problem is a trouble in recycling process due to the small size of the particles, thus requiring additional efforts to recover the TiO₂ particles from the wastewater [13]. Therefore, the addition of Fe₃O₄ material is necessary to provide the magnetic property of the photocatalyst and make the photocatalyst separable and recoverable. Photocatalysts with the magnetic properties can be synthesized by coating the surface of the magnetite core with TiO₂ nanoparticles.

Based on previous studies on the development and application of photocatalyst materials, it is interesting to combine the advantages of TiO_2 materials that can effectively be used for dyestuff degradation, dopant Co capable of shifting absorption into visible light and Fe₃O₄ which has magnetic properties, to obtain a photocatalyst that effective for dye degradation, can be performed in visible light and recoverable using an external magnetic field. In this study, we report the synthesis and photoactivity test of Fe₃O₄/TiO₂-Co as magnetically visible light and a sustainable photocatalyst.

EXPERIMENTAL SECTION

Materials

The materials used throughout these experiments were pro-analysis qualities and purchased from Merck including FeCl₃.6H₂O, FeSO₄.7H₂O, NaOH, ethanol (96%), TiO₂ Degussa, Co (NO₃)₂.6H₂O, and some materials with technical grade including oleic acid, methylene blue, and deionized water. All chemicals were used as received without further purification.

Instrumentation

The equipment used in this research were Fourier Transform Infrared Spectrophotometer (FTIR. Shimadzu Prestige-21), Transmission Electron Microscope (JEOL-1400 120 kV), X-Ray Diffractometer (Shimadzu XRD 6000). Scanning Electron Microscope with Energy Dispersive X-Ray (JEOL JSM-6510LA), Specular Reflectance UV-Visible Spectrometer (UV UV-Vis Spectrophotometer 1700 Pharmaspec Specular), and vibrating sample magnetometer (Oxford VSM 1.2H).

Procedure

Synthesis of Fe₃O₄ particles

An amount of 3.89 g of FeCl_{3.6}H₂O and 2.015 g FeSO_{4.7}H₂O were dissolved in 30 mL of deionized water, then the solution was added to 60 mL of 3 M NaOH solution dropwise while it was ultrasonicated. The precipitation of Fe₃O₄ formed was added with 1 g of oleic acid while ultrasonicated for 1 h. The precipitate formed was separated by an external magnetic bar and washed with distilled water until neutral, then it was dried in the oven at 90 °C for 2 h.

Synthesis of Fe₃O₄/TiO₂

The Fe₃O₄ particles from the previous stage were added with TiO_2 Degussa, suspended in 30 mL of ethanol 96% and sonicated for 30 min for forming a

suspension. Fe₃O₄/TiO₂ particles were prepared with a variation of Fe₃O₄ to TiO₂ mole ratio of 1:3; 1:10 and 1:15. The particles were then deposited and separated from the solution by an external magnetic bar. Subsequently, the sample was dried in an oven at 90 °C for 3 h and was calcined at 500 °C for 4 h.

Synthesis of Fe₃O₄/TiO₂-Co

Two grams of TiO₂ Degussa was suspended in 25 mL of ethanol 96% while ultrasonicated. The suspension was then added dropwise with a solution of $Co(NO_3)_2.6H_2O$ that was dissolved in 10 mL of distilled water with a variable concentration of 1, 5, 10, and 15% (w/w) while sonicating for 30 min. The mixture was added with Fe₃O₄ particles and suspended in 96% ethanol from the previous stage with the best Fe₃O₄:TiO₂ ratio of 1:10 while being sonicated for 30 minutes. The particles were then deposited and separated from the solution by an external magnetic bar. The sample was subsequently dried in an oven at 90 °C for 3 h, then calcined at 500 °C for 4 h.

Photoactivity of Fe₃O₄/TiO₂-Co

About 10 mg photocatalysts of TiO₂, Fe₃O₄/TiO₂ with a ratio of (1:10) and Fe₃O₄/TiO₂-Co in all variations dopant concentration (1, 5, 10, and 15%) were each added to 10 mL of methylene blue solution 5 mg/L at a pH of 10 [14]. Photodegradation was performed under stirring for 210 min with a variety conditions: dark, under UV illumination, visible irradiation. and After photodegradation process, the photocatalyst was then separated by centrifugation for TiO₂ and using an external magnetic field for Fe₃O₄/TiO₂ and Fe₃O₄/TiO₂-Co. The filtrate was then analyzed by UV-visible

Fig 1. Infrared spectra of Fe_3O_4 (a), Fe_3O_4/TiO_2 with molar ratio of 1:3 (b) 1:10 (c) 1:15 (d)

spectrophotometry at the optimum wavelength of methylene blue solution (660 nm).

RESULT AND DISCUSSION

Effect of Fe₃O₄ to TiO₂ Molar Ratio

Titania was coated on the Fe₃O₄ surface by dispersion method in ethanol followed by thermal treatment. Ethanol is used as a medium for TiO₂ to cover the Fe₃O₄ surface. The TiO₂ is varied with a molar ratio of 3:1, 10:1, and 15:1 to Fe₃O₄. The molar variation of TiO₂ was intended to obtain high photocatalyst activity while the presence of Fe₃O₄ to provide magnetic properties for facilitating the photocatalyst retrieval process. In this study, the best molar ratio of Fe₃O₄ to TiO₂ was then chosen as the material to be doped with Co(II).

Fig. 1 displays infrared spectra of Fe₃O₄ and Fe₃O₄/TiO₂ with a various molar ratio of Fe₃O₄ to TiO₂. It can be seen that Fe₃O₄/TiO₂ spectra have a higher absorption intensity than Fe₃O₄ at the wave numbers of 2337 and 500–700 cm⁻¹, respectively, due to the contribution of stretching and bending Ti-O of TiO₂ on Fe₃O₄ surface. Meanwhile, the intensity of Fe₃O₄/TiO₂ at wave numbers of 2337 and 500–700 cm⁻¹ increases with increasing mole of TiO₂.

X-ray diffraction pattern in Fig. 2 shows that some peaks appear at 20: 25, 38, 48, 53, 62 and 75° for the Fe₃O₄/TiO₂ diffractogram for all molar ratios, where the peaks are not owned by Fe₃O₄ before coating of TiO₂. These peaks are typical peaks of TiO₂ anatase, corresponding to the Miller index in JCPDS number 89-4203 with the (hkl) values being: (101), (112), (200),

Fig 2. The X-ray diffraction pattern of Fe_3O_4 (a) Fe_3O_4/TiO_2 with molar ratio of 1:3 (b) 1:10 (c) 1:15 (d)

(105), (213) and (215), respectively, indicating the anatase phase of titania.

It can also be seen in Fig. 2 that the intensity of the anatase peaks increases with the increasing concentration of the TiO₂. This means that the presence of anatase phase of TiO₂ in Fe₃O₄/TiO₂ is also increased. On the other hand, in the Fe₃O₄/TiO₂ diffractogram, there is a decrease in the intensity of the characteristic peaks of Fe₃O₄ as more TiO₂ was added. This implies that TiO₂ increasingly coats the Fe₃O₄ surface.

In this study, the optimum mole ratio of Fe_3O_4 to TiO_2 was determined by a quantitative test of materials that can be drawn by an external magnetic field with the results are displayed in Table 1. It is shown in the table that percentage of magnetic attraction of Fe_3O_4/TiO_2 material with a molar ratio of 1:15 declines. This is because of the higher the molar ratios, the more moles of TiO₂ coat the Fe₃O₄ surface, so the attraction to the external magnet decreases. Data in Table 1 corresponds to the X-ray diffraction pattern indicating that there is a decrease in the intensity of the Fe₃O₄ peaks along with the increasing concentration of TiO₂. So Fe₃O₄/TiO₂ material with the molar ratio of 1:10 was taken as the molar ratio of the TiO₂, which then added to the Fe₃O₄.

Effect of Dopant Concentration

Fig. 3 presents the X-ray diffraction pattern of Fe₃O₄/TiO₂ and Fe₃O₄/TiO₂-Co with a variety of dopant concentrations of Co(II). There are some characteristic peaks of magnetite and anatase of Fe₃O₄/TiO₂ and Fe₃O₄/TiO₂-Co samples. The peaks of Fe₃O₄ characteristics are shown at the 20 of 29.81; 35.12; 42.89; 56.62 and 62.30°, while anatase is revealed in 25, 38, 48, 53, 62, and 75°. There is no characteristic peak of Co(II) dopant appear at the Fe₃O₄/TiO₂-Co for all variations of the dopant concentration, which may be attributed to the relatively lower Co(II) content and uniform dispersion on TiO₂ as also reported in other studies [15]. There were possibilities that the dopant was in the crystal lattice by substituting Ti⁴⁺ position or on the surface of the crystal lattice of TiO₂.

Diffractogram in Fig. 3 shows also that at the 20 around 25°, the Fe₃O₄/TiO₂–Co for all variations of dopant concentrations have a lower intensity than that of Fe₃O₄/TiO₂. The decrease in the intensity indicates that dopants successfully substitute Ti⁴⁺. On the other hand, the Fe₃O₄/TiO₂-Co peak intensity tends to increase with increasing concentration of dopant (up to 10%), confirming that the dopant does not damage the crystal structure. This also implies that the Co(II) dopants were attached to the crystal structure of TiO₂. However, for the Fe₃O₄/TiO₂-Co with the dopant concentration of 15%, a decline in intensity was observed. This is possible because

Table 1. The percentage of attraction of material to external magnetic

Material	% magnetic attraction	
Fe ₃ O ₄ /TiO ₂ (1:3)	100	
Fe ₃ O ₄ /TiO ₂ (1:10)	100	
Fe ₃ O ₄ /TiO ₂ (1:15)	84.21	

	Table 2. The 2θ of the photocatalyst samples					
_	Photocatalyst		2θ (°)	d (Å)	d (Å)	
_	Fe ₃ O ₄ /TiO ₂		25.1333	3.540)4	
	Fe ₃ O ₄ /TiO ₂ -Co (1%)		25.4980	3.490	6	
	Fe ₃ O ₄ /TiO ₂ -Co	(5%)	25.6775	3.466	6	
	Fe ₃ O ₄ /TiO ₂ -Co	(10%)	25.4484	3.497	3	
_	Fe ₃ O ₄ /TiO ₂ -Co	(15%)	25.0177	3.556	5	
	J			u	(e)	
Intensity (a.u.)				L	(d)	
		mulu		u_l_m	(c)	
		Lunu		h	(b)	
	L.	u		L	(a)	
	40 00	20 4		60 70		
	10 20	30 40 20	(°)	60 70	80	

Fig 3. X-ray diffraction pattern of Fe_3O_4/TiO_2 (a) Fe_3O_4/TiO_2 –Co 1% (b) 5% (c) 10% (d) 15% (e)

of some Co²⁺ substitute Ti⁴⁺ within the structure of TiO₂. It is also seen in Fig. 3 that there is shifted off the 20 around 25° of the Fe₃O₄/TiO₂-Co toward the greater 20. This indicates that modification with Co(II) dopant affected the distance between planes. It suggests that the dopant was at an interstitial position within the crystal lattice of TiO₂, resulting in the smaller distance between planes in the crystal lattice of Fe₃O₄/TiO₂-Co than that of un-doped Fe₃O₄/TiO₂.

Table 2 shows that the 2 θ approximately 25° of Fe₃O₄/TiO₂-Co (15%) is shifted toward smaller 2 θ than that of Fe₃O₄/TiO₂. This denotes that there is a substitution of Co²⁺ with Ti⁴⁺ causing the distance between the planes of Fe₃O₄/TiO₂-Co (15%) greater than that of Fe₃O₄/TiO₂. It may be attributed to the radius of Co²⁺. The Co²⁺ radius is larger than that of Ti⁴⁺ in the crystal lattice of TiO₂ that leads to the extension of the lattice parameter values in it hence larger distance between the planes. Table 3 depicts average crystallite size of Fe₃O₄/TiO₂ and Fe₃O₄/TiO₂-Co. It is

406

shown in Table 3 that the synthesized materials have small crystallite size. This suggests that the Co(II) dopant inhibits the growth of Fe_3O_4/TiO_2 -Co particles. This result is in agreement with the report by Hamadanian et al. [16] in the synthesis of TiO_2-Co.

Magnetic Property of Fe₃O₄/TiO₂-Co

Magnetic property of the synthesized Fe₃O₄/TiO₂-Co material was quantitatively tested by measuring magnetism using the VSM. The VSM result shown in Fig. 4 designates that both Fe₃O₄/TiO₂ and Fe₃O₄/TiO₂-Co have good superparamagnetic properties as in the common Fe₃O₄ particles with the magnetism value of Fe₃O₄/TiO₂-Co is smaller compared to that of Fe₃O₄/TiO₂ without Co. The decline in magnetic properties of the material due to the thick layer of TiO₂-Co that coats the Fe₃O₄ nanoparticles.

Morphology of Fe₃O₄/TiO₂-Co

Morphology of Fe₃O₄/TiO₂-Co was analyzed by TEM as displayed in Fig. 5. It is clearly shown that Fe₃O₄/TiO₂-Co material is spherical particles with no agglomeration. Fig. 5 also shows that gray layer of TiO₂ particles coats the dark color of Fe₃O₄ with core-shell structure. Since Co is substituted into the TiO₂ structure, its presence becomes part of the TiO₂ quilt and does not exhibit certain characteristics color. The darker color portion is due to a combination of some crystalline materials of Fe₃O₄ with dark spherical shades and gray blankets

Fig 4. Magnetic moment curve of Fe $_3O_4/TiO_2$ (a) and Fe $_3O_4/TiO_2$ -Co (b)

referring to TiO₂. Based on Fig. 5, the Fe_3O_4 nanoparticles have an average size of 13 nm, while Fe_3O_4/TiO_2 -Co (10%) having an average size of 20 nm. The result proves that in this study, Fe_3O_4/TiO_2 -Co material has been successfully synthesized.

Based on the SEM-EDX spectrum in Fig. 6, the Fe₃O₄ /TiO₂-Co consists of O (44.05%), Na (4.34%), S (0.93%), Cl (0.58%), Ti (5.98%), Fe (41.79%) and Co (2.33%) elements on the surface of the material. The presence of Na, S, and Cl possibility come from the impurities in the Fe₃O₄ material. The Na element may be derived from NaOH solution while S and Cl possibly come from FeSO₄.7H₂O and FeCl₃.6H₂O salts used in the synthesis of Fe₃O₄. The SEM-EDX data confirms that the as-synthesized material is Fe₃O₄/TiO₂-Co.

Electronic Property of Fe₃O₄/TiO₂-Co

Characterization using SR UV-Vis method was aimed to determine the absorption edge wavelength and band gap energy (E_g) of the Fe₃O₄/TiO₂-Co. Both the

Table 3. Average crystallite size of Fe $_3O_4/TiO_2$ and Fe $_3O_4/TiO_2$ -Co

Materials	d (nm)
Fe ₃ O ₄	16.67
Fe ₃ O ₄ /TiO ₂ (1:3)	43.46
Fe ₃ O ₄ /TiO ₂ (1:10)	43.41
Fe ₃ O ₄ /TiO ₂ (1:15)	44.07
Fe ₃ O ₄ /TiO ₂ –Co (1%) (1:10)	38.62
Fe ₃ O ₄ /TiO ₂ –Co (2.5%) (1:10)	40.30
Fe ₃ O ₄ /TiO ₂ –Co (10%) (1:10)	41.64
Fe ₃ O ₄ /TiO ₂ –Co (15%) (1:10)	29.61

Fig 5. TEM image of Fe₃O₄/TiO₂-Co

absorption edge and the E_g are correlated with the responsiveness of Fe₃O₄/TiO₂-Co to light energy. Fig. 7 reveals that there is a shift of absorption wavelength toward the visible light with increasing concentration of Co(II). Fig. 7 also shows that the Fe₃O₄/TiO₂-Co for all variations concentration of dopant give new absorption with low intensity at a wavelength of 439, 424, 436, and 457 nm for the dopant concentration of 1, 5, 10 and 15%, respectively.

Table 4 demonstrates that Fe₃O₄/TiO₂–Co samples have absorption edge wavelength greater than that of TiO₂. The Fe₃O₄/TiO₂–Co wavelength increases with the increasing concentration of Co²⁺ dopants. This suggests a shift of edge from the UV to the visible light region. The absorption edge wavelength is inversely proportional to the value of E_g so the greater the absorption edge wavelength value, the smaller the E_g value.

Based on the calculation, it can be known that TiO₂ anatase has the value of E_g 3.24 eV. This is consistent with the result of Mital and Manoj [17] who reported that anatase phase of free TiO₂ has an E_g value of 3.20 eV, where the bandgap energy corresponds to the energy in the UV light wavelength region. The results showed that Fe₃O₄/TiO₂–Co in all concentrations of Co²⁺ dopant have a smaller E_g value than un-doped TiO₂. The greater the concentration of Co²⁺ dopant added, the more likely that Co²⁺ ions were trapped both interstitial and substitutional within the TiO₂ crystal lattice. The addition of Co²⁺ ion can decrease the E_g value of TiO₂ and make the Fe₃O₄/TiO₂–Co is responsive to visible light.

Several characterizations that have been done suggest that the Fe₃O₄/TiO₂-Co have been successfully synthesized. The Fe₃O₄/TiO₂-Co is responsive to visible rays as proven by the occurrence of redshifts of absorption edge wavelength to the visible light region with smaller E_g values than the un-doped anatase TiO₂. The Fe₃O₄/TiO₂-Co has a magnetic character of Fe₃O₄ nanoparticles, this allows the Fe₃O₄/TiO₂-Co to be easily separated and recovered from the liquid medium by using an external magnetic field.

Photoactivity of the Fe₃O₄/TiO₂-Co

The photocatalytic activity of Fe₃O₄/TiO₂–Co was examined to degrade the 5 mg/L methylene blue solution. The methylene blue photodegradation was performed using 10 mg photocatalyst at a pH of 10 under UV light, visible light exposure and dark condition no irradiation for 210 min. The light serves as the energy source for Fe₃O₄/TiO₂–Co to perform photocatalysis reactions. The energy in the form of photons (hv) will be absorbed by Fe₃O₄/TiO₂–Co, thereby producing •OH radical, which plays a role in the methylene blue degradation reaction. The reaction involved the capture and release of electrons caused by photon energy.

Photodegradation is carried out in reactors equipped with stirring and radiation sources. Stirring serves to accelerate the occurrence of contact between the photocatalyst materials with methylene blue. The methylene blue solution after the degradation process was analyzed using a UV-Vis spectrophotometer at its maximum absorption wavelength of 660 nm.

Fig 7. SR UV-Visible spectra of TiO₂ (a), Fe₃O₄/TiO₂– Co with the dopant concentration of 1% (b); 5% (c); 10% (d) and 15% (e)

Table 4. Absorption edge wavelength and bandgap energy of TiO_2 and Fe_3O_4/TiO_2 —Co

	Material	λ edge (nm)	Eg (eV)			
	TiO ₂	382.69	3.24			
	Fe ₃ O ₄ /TiO ₂ –Co (1%)	385.47	3.22			
	Fe ₃ O ₄ /TiO ₂ –Co (5%)	397.59	3.12			
	Fe ₃ O ₄ /TiO ₂ –Co (10%)	401.35	3.09			
	Fe ₃ O ₄ /TiO ₂ -Co (15%)	438.08	2.81			

Indones. J. Chem., 2018, 18 (3), 403 - 410

100

Fig 8. Percentage degradation of methylene blue catalyzed by Fe_3O_4/TiO_2 -Co 1% (a), 5% (b), 10% (c) and 15% (d)

The photodegradation process requires a source of light energy for the reaction to occur. According to Fig. 8, it can be recognized that Fe_3O_4/TiO_2 –Co photocatalysts can degrade methylene blue even without irradiation. This is due to the occurrence of adsorption process before degradation in photocatalytic reaction, as reported by Belessi et al. [18]; TiO₂ in dark spaces can adsorb the reactive red dyes characterized by the reduced concentration of the dye. The presence of Fe₃O₄ can also act as a good adsorbent [19]. Fig. 8 revealed that in the non-irradiated process there is a decrease in activity as the concentration of dopant increases. This probably because more Co²⁺ dopants substitute Ti⁴⁺, so the function of TiO₂ as the adsorbent is reduced.

The photocatalytic activity of Fe₃O₄/TiO₂-Co under UV light irradiation decreased with increasing concentration of Co²⁺. This is mainly caused by incompatibility of band gap energy with the wavelength of the UV light. This is in contrasts with photodegradation activity under visible light illumination, where photocatalytic activity increases with increasing concentration of Co2+ dopant. The more concentration of Co²⁺ increases the responsiveness to visible light, resulting in a greater percentage of degradation. In addition, it can also be seen that percentage degradation in visible light irradiation is greater than those of UV irradiation. This suggests that Fe₃O₄/TiO₂-Co photocatalysts are more responsive to visible light than UV light.

Fig. 9 shows that Fe_3O_4/TiO_2 -Co with the concentration of Co(II) 10% gave the highest photocatalytic activity compared to pure TiO₂ and undoped Fe_3O_4/TiO_2 at a pH of 10 for 210 min of degradation time. Fig. 9 indicates that Fe_3O_4/TiO_2 (1:10) and Fe_3O_4/TiO_2 -Co (10%) can degrade more methylene blue than TiO₂ due to the contribution of Fe_3O_4 , which acts as an adsorbent. In addition, according to Fig. 9, it

100 TIO2 TIPE3O4/TIO2 TIPE3O4/TIO2-Co (%) 80 60 20 20 0 UV Visible Dark

Fig 9. Percentage degradation of methylene bluecatalyzed by TiO_2 , Fe_3O_4/TiO_2 , and Fe_3O_4/TiO_2 –Co (10%)

can also be perceived that in the visible irradiation processes, the Fe₃O₄/TiO₂ photocatalyst gives greater % degradation than pure TiO₂ owing to the contribution of Fe₃O₄ material that can adsorb the same methylene blue as in UV irradiation. The Fe₃O₄/TiO₂-Co photocatalyst degrades more methylene blue than that of the Fe₃O₄/TiO₂ proving that the presence of Co²⁺ dopants improve the performance can of photocatalysts in the visible light region. Non-irradiated degradation reactions may also decrease the concentration of methylene blue, but the resulting % degradation is less than that of UV and visible irradiation as there was only the adsorption process occurred. Fig. 9 revealed that % degradation of Fe₃O₄/TiO₂-Co (10%) under visible illumination is larger than that of unmodified TiO2. This indicates that the Fe₃O₄/TiO₂-Co photocatalyst is more responsive to visible light than TiO₂. The Fe₃O₄/TiO₂-Co will be more effectively used as a photocatalyst than unmodified TiO₂.

CONCLUSION

Fe₃O₄/TiO₂-Co particles were synthesized through coprecipitation method and dispersion with ethanol followed by thermal treatment. The addition of Co(II) decreases the band gap energy of TiO₂ from 3.24 to 2.81 eV. The Fe₃O₄/TiO₂-Co particles are responsive to visible light. The Fe₃O₄/TiO₂-Co can be used as photocatalyst for methylene blue degradation under UV and visible light exposure and have adsorption ability in dark conditions. The Fe₃O₄/TiO₂-Co with the mass of 10 mg is capable of degrading 5 mg/L of methylene blue solution at a pH of 10 under UV and visible light irradiation for 210 min with the degradation yield of 80.51 and 95.38%, respectively. The Fe₃O₄/TiO₂-Co photocatalyst has good magnetic properties and can be easily recovered from the liquid medium by using an external magnetic field.

ACKNOWLEDGEMENT

The authors acknowledge to The Directorate General of Higher Education, Ministry of Research Technology and the Higher Education Republic of Indonesia, and Universitas Gadjah Mada for the financial support.

REFERENCES

- [1] Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., 1995, Environmental applications of semiconductor photocatalysis, *Chem. Rev.*, 95 (1), 69–96.
- [2] Yin, S., Liu, B., Zhang, P., Morikawa, T., Yamanaka, K., and Sato, T., 2008, Photocatalytic oxidation of under visible led light irradiation over nitrogendoped titania particles with iron or platinum loading, *J. Phys. Chem. C*, 112 (32), 12425–12431.
- [3] Qiu, R., Zhang, D., Diao, Z., Huang, X., He, C., Morel, J.L., and Xiong, Y., 2012, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO₂ and its synergism with phenol oxidation, *Water Res.*, 46 (7), 2299–2306.
- [4] Shen, Y., Xiong, T., Du, H., Jin, H., Shang, J., and Yang, K., 2009, Phosphorous, nitrogen, and molybdenum ternary co-doped TiO₂: Preparation and photocatalytic activities under visible light, *J. Sol-Gel Sci. Technol.*, 50 (1), 98–102.
- [5] Xu, C., Rangaiah, G.P., and Zhao, X.S., 2014, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study, *Ind. Eng. Chem. Res.*, 53 (38), 14641–14649.
- [6] Kunarti, E.S., Syoufian, A., Budi, I.S., and Pradipta, A.R., 2016, Preparation and properties of Fe₃O₄/SiO₂/TiO₂ core-shell nanocomposite as recoverable photocatalyst, *Asian J. Chem.*, 28 (6), 1343–1346.
- [7] Daghrir, R., Drogui, P., and Robert, D., 2013, Modified TiO₂ for environmental photocatalytic applications: A review, *Ind. Eng. Chem. Res.*, 52 (10), 3581–3599.
- [8] Kumar, S.G., and Devi, L.G., 2011, Review on modified TiO₂ photocatalysis under UV/visible light: Selected result and related mechanisms on interfacial charge carrier transfer dynamics, *J. Phys. Chem. A*, 115 (46), 13211–13241.

- [9] Chen, X., and Mao, S.S., 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, *Chem. Rev.*, 107 (7), 2891–2959.
- [10] Choi, J., Park, H., and Hoffmann, M.R., 2010, Effects of single metal-ion doping on the visiblelight photoreactivity of TiO₂, *J. Phys. Chem. C*, 114 (2), 783–792.
- [11] Hamal, D.B., and Klabunde, K.J., 2011, Valence state and catalytic role of cobalt ions in cobalt TiO₂ nanoparticle photocatalysts for acetaldehyde degradation under visible light, *J. Phys. Chem. C*, 115 (35), 17359–17367.
- [12] Pozzo, R.L., Baltanás, M.A., and Cassano, A.E., 2010, Supported titanium dioxide as photocatalyst in water decontamination: State of the art, *Catal. Today*, 39 (3), 219–231.
- [13] Liu, H., He, Y., and Liang, X., 2013, Magnetic photocatalysts containing TiO₂ nanocrystals: Morphology effect on photocatalytic activity, *J. Mater. Res.*, 29 (1), 98–106.
- [14] Widyandari, K.M., 2016, Sintesis Nanokomposit Fe₃O₄/TiO₂-Co dan Uji Aktivitasnya sebagai Fotokatalis, *Undergraduate Thesis*, Universitas Gadjah Mada, Yogyakarta.
- [15] Chatti, R., Rayalu, S.S., Dubey, N., Labhsetwar, N., and Devotta, S., 2007, Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials, *Sol. Energy Mater. Sol. Cells*, 91 (2-3), 180–190.
- [16] Hamadanian, M., Reisi-Vanani, A., and Majedi, A., 2010, Sol-gel preparation and characterization of Co/TiO₂ nanoparticles: applications to the degradation of methyl orange, *J. Iran. Chem. Soc.*, 7 (Suppl. 2), S52–S58.
- [17] Mital, G.S., and Manoj, T., 2011, A review of TiO₂ nanoparticles, *Chin. Sci. Bull.*, 56 (16), 1639– 1657.
- [18] Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., and Trapalis, C., 2009, Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO₂ nanoparticles, *J. Hazard. Mater.*, 170 (2-3), 836– 844.
- [19] Abkenar, S.D., 2016, Application of magneticmodified Fe₃O₄ nanoparticles for removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies, *J. Appl. Chem. Res.*, 10 (1), 65–74.