Recent advances in Blue-Emitting Iridium(III) Complexes Featuring 2-(2,4-Difluorophenyl)pyridine as the Cyclometalating Ligand

https://doi.org/10.22146/ijc.106512

Nur Khaliesa Zulkarnaen(1), Noorshida Mohd Ali(2*)

(1) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
(2) Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
(*) Corresponding Author

Abstract


The significance of blue emitters in the realization of cutting-edge organic light-emitting diode (OLED) displays cannot be overstated, leading to considerable efforts aimed at synthesizing intense blue phosphorescent Ir(III) complexes that are stable for use as dopants. Nevertheless, the quest for highly effective blue phosphorescent Ir(III) complexes remains fraught with challenges. Bis(2-(4,6-difluorophenyl)pyridinato-C2,N)(picolinato)iridium(III) (FIrpic), which employs 2-(2,4-difluorophenyl)pyridine (F2ppy) as the cyclometalating ligand and picolinic acid as the ancillary ligand, serves as a benchmark for blue phosphorescent Ir(III) complexes because of its outstanding performance in OLED devices, yet it still exhibits several limitations. Consequently, the pursuit of more effective blue phosphorescent iridium complexes remains a priority. In recent years, advancements in the field have focused on blue phosphorescent Ir(III) complexes utilizing a variety of cyclometalated ligands in conjunction with bidentate ancillary ligands, leading to extensive investigation. This discussion will highlight and analyze the most recent progress in designing and preparing those complexes, particularly utilizing F2ppy alongside diverse bidentate ancillary ligands. Future studies are encouraged to focus on structural modification of the F2ppy cyclometalating ligand, particularly with the combination of suitable ancillary ligands, to improve further color purity of blue-emitting Ir(III) complexes and their photophysical performance.


Keywords


blue phosphorescent; Ir(III) complexes; ancillary ligand; 2-(2,4-difluorophenyl)pyridine; OLED

Full Text:

Full Text PDF


References

[1] Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J.M., and Bräse, S., 2021, A brief history of OLEDs—Emitter development and industry milestones, Adv. Mater., 33 (9), 2005630.

[2] Sudheendran Swayamprabha, S., Dubey, D.K., Shahnawaz, S., Yadav, S.R.A.K., Nagar, M.R., Sharma, A., Tung, F.C., and Jou, J.H., 2021, Approaches for long lifetime organic light emitting diodes, Adv. Sci., 8 (1), 2002254.

[3] Zou, S.J., Shen, Y., Xie, F.M., Chen, J.D., Li, Y.Q., and Tang, J.X., 2020, Recent advances in organic light-emitting diodes: Toward smart lighting and displays, Mater. Chem. Front., 4 (3), 788–820.

[4] Liguori, R., Nunziata, F., Aprano, S., and Maglione, M.G., 2024, Overcoming challenges in OLED technology for lighting solutions, Electronics, 13 (7), 1299.

[5] Kirlikovali, K.O., and Spokoyny, A.M., 2017, The long-lasting blues: A new record for phosphorescent organic light-emitting diodes, Chem, 3 (3), 385–387.

[6] Data, P., and Takeda, Y., 2019, Recent advancements in and the future of organic emitters: TADF- and RTP-active multifunctional organic materials, Chem. - Asian J., 14 (10), 1613–1636.

[7] Gawale, Y., Ansari, R., Naveen, K.R., and Kwon, J.H., 2023, Forthcoming hyperfluorescence display technology: Relevant factors to achieve high-performance stable organic light emitting diodes, Front. Chem., 11, 1211345.

[8] Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., Fan, X., Chen, L., Gao, P., and Ge, Z., 2018, Small-molecule emitters with high quantum efficiency: Mechanisms, structures, and applications in OLED devices, Adv. Opt. Mater., 6 (20), 1800512.

[9] Yao, B., 2022, Applications of phosphorescent organic light emitting diodes, Highlights Sci., Eng. Technol., 26, 52–58.

[10] Siddiqui, I., Kumar, S., Tsai, Y.F., Gautam, P., Shahnawaz, S., Kesavan, K., Lin, J.T., Khai, L., Chou, K.H., Choudhury, A., Grigalevicius, S., and Jou, J.H., 2023, Status and challenges of blue OLEDs: A review, Nanomaterials, 13 (18), 2521.

[11] Yang, X., Mu, G., Weng, K., and Tang, X., 2024, Advances in high-efficiency blue OLED materials, Photonics, 11 (9), 864.

[12] Yun, B.S., Kim, S.Y., Kim, J.H., Choi, S., Lee, S., Son, H.J., and Kang, S.O., 2022, Synthesis and characterization of blue phosphorescent NHC-Ir(III) complexes with annulated heterocyclic 1,2,4-triazolophenanthridine derivatives for highly efficient PhOLEDs, ACS Appl. Electron. Mater., 4 (6), 2699–2710.

[13] Yusoff, A.R.B.M., Huckaba, A.J., and Nazeeruddin, M.K., 2017, Phosphorescent neutral iridium(III) complexes for organic light-emitting diodes, Top. Curr. Chem., 375 (2), 39.

[14] Rota Martir, D., Bansal, A.K., Di Mascio, V., Cordes, D.B., Henwood, A.F., Slawin, A.M.Z., Kamer, P.C.J., Martínez-Sarti, L., Pertegás, A., Bolink, H.J., Samuel, I.D.W., and Zysman-Colman, E., 2016, Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium(III) complexes bearing bisphosphine ligands, Inorg. Chem. Front., 3 (2), 218–235.

[15] Wegeberg, C., and Wenger, O.S., 2021, Luminescent first-row transition metal complexes, JACS Au, 1 (11), 1860–1876.

[16] Chen, J., Zhang, Q., Zheng, F.K., Liu, Z.F., Wang, S.H., Wu, A.Q., and Guo, G.C., 2015, Intense photo- and tribo-luminescence of three tetrahedral manganese(II) dihalides with chelating bidentate phosphine oxide ligand, Dalton Trans., 44 (7), 3289–3294.

[17] Zulkarnaen, N.K., Ali, N.M., Kamari, A., and Bain, N.H.A., 2025, Synthesis and characterisation of cationic iridium(III) complex with phenanthroline-based ancillary ligand, Malays. J. Anal. Sci., 29 (1), 1347.

[18] Abbas, S., Din, I.D., Raheel, A., and Tameez ud Din, A., 2020, Cyclometalated iridium(III) complexes: Recent advances in phosphorescence bioimaging and sensing applications, Appl. Organomet. Chem., 34 (3), e5413.

[19] Bejoymohandas, K.S., Baschieri, A., Reginato, F., Toffanin, S., Prosa, M., Bandini, E., Mazzanti, A., and Monti, F., 2024, Stereoisomeric homo- and hetero-binuclear iridium(III) complexes with 3-oxidopicolinate bridging ligand and their application in OLEDs, Adv. Opt. Mater., 12 (33), 2401586.

[20] Cañada, L.M., Kölling, J., and Teets, T.S., 2020, Blue-phosphorescent bis-cyclometalated iridium complexes with aryl isocyanide ancillary ligands, Polyhedron, 178, 114332.

[21] Axtell, J.C., Kirlikovali, K.O., Djurovich, P.I., Jung, D., Nguyen, V.T., Munekiyo, B., Royappa, A.T., Rheingold, A.L., and Spokoyny, A.M., 2016, Blue phosphorescent zwitterionic iridium(III) complexes featuring weakly coordinating nido-carborane-based ligands, J. Am. Chem. Soc., 138 (48), 15758–15765.

[22] Ding, Y., Liu, D., Li, J., Li, H., Ma, H., Li, D., and Niu, R., 2020, Saturated red phosphorescent iridium(III) complexes containing phenylquinoline ligands for efficient organic light-emitting diodes, Dyes Pigm., 179, 108405.

[23] Xue, J., Xin, L., Hou, J., Duan, L., Wang, R., Wei, Y., and Qiao, J., 2017, Homoleptic facial Ir(III) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm, Chem. Mater., 29 (11), 4775–4782.

[24] Zubaidi, Z.N., Metherell, A.J., Baggaley, E., and Ward, M.D., 2017, Ir(III) and Ir(III)/Re(I) complexes of a new bis(pyrazolyl-pyridine) bridging ligand containing a naphthalene-2,7-diyl spacer: Structural and photophysical properties, Polyhedron, 133, 68–74.

[25] Li, T.Y., Wu, J., Wu, Z.G., Zheng, Y.X., Zuo, J.L., and Pan, Y., 2018, Rational design of phosphorescent iridium(III) complexes for emission color tunability and their applications in OLEDs, Coord. Chem. Rev., 374, 55–92.

[26] Lee, S., and Han, W.S., 2020, Cyclometalated Ir(III) complexes towards blue-emissive dopant for organic light-emitting diodes: Fundamentals of photophysics and designing strategies, Inorg. Chem. Front., 7 (12), 2396–2422.

[27] Tao, P., Zhang, Y., Wang, J., Wei, L., Li, H., Li, X., Zhao, Q., Zhang, X., Liu, S., Wang., H., and Huang, W., 2017, Highly efficient blue phosphorescent iridium(III) complexes with various ancillary ligands for partially solution-processed organic light-emitting diodes, J. Mater. Chem. C, 5 (36), 9306–9314.

[28] Yao, R., Liu, D., Mei, Y., and Dong, R., 2018, Synthesis and properties of novel blue light-emitting iridium complexes containing 2′,6′-difluoro-2,3′-bipyridine ligands, J. Photochem. Photobiol., A, 355, 136–140.

[29] Topchiy, M.A., Dzhevakov, P.B., Kirilenko, N.Y., Rzhevskiy, S.A., Ageshina, A.A., Khrustalev, V.N., Paraschuk, D.Y., Bermeshev, M.V., Nechaev, M.S., and Asachenko, A.F., 2019, Cyclometallated 1,2,3-triazol-5-ylidene iridium(III) complexes: Synthesis, structure, and photoluminescence properties, Mendeleev Commun., 29 (2), 128–131.

[30] Tao, P., and Wong, W.Y., 2023, “Luminescent transition-metal complexes and their applications in electroluminescence” in Comprehensive Inorganic Chemistry III (Third Edition), Eds. Reedijk, J., and Poeppelmeier, K.R., Elsevier, Oxford, UK, 2–79.

[31] Zhang, C., Liu, R., Zhang, D., and Duan, L., 2020, Progress on light‐emitting electrochemical cells toward blue emission, high efficiency, and long lifetime, Adv. Funct. Mater., 30 (33), 1907156.

[32] Kozhevnikov, V.N., Zheng, Y., Clough, M., Al-Attar, H.A., Griffiths, G.C., Abdullah, K., Raisys, S., Jankus, V., Bryce, M.R., and Monkman, A.P., 2013, Cyclometalated Ir(III) complexes for high-efficiency solution-processable blue PhOLEDs, Chem. Mater., 25 (11), 2352–2358.

[33] Yang, X., Zhou, G., and Wong, W.Y., 2015, Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices, Chem. Soc. Rev., 44 (23), 8484–8575.

[34] Adachi, C., Kwong, R.C., Djurovich, P., Adamovich, P., Baldo, M.A., Thompson, M.E., and Forrest, S.R., 2001, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials, Appl. Phys. Lett., 79 (13), 2082–2084.

[35] You, Y., and Park, S.Y., 2005, Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: Facile and efficient color tuning over the whole visible range by the ancillary ligand structure, J. Am. Chem. Soc., 127 (36), 12438–12439.

[36] Yeh, S.J., Wu, M.F., Chen, C.T., Song, Y.H., Chi, Y., Ho, M.H., Hsu, S.F., and Chen, C.H., 2005, New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices, Adv. Mater., 17 (3), 285–289.

[37] Guo, J., Pan, X., Wang, X., Wu, W., and Zhang, J., 2018, Theoretical study on the vibrationally resolved spectra and quantum yield of blue phosphorescent iridium(III) complexes with 2-(4-fluoro-3-(trifluoromethyl)-phenyl)pyridine as the cyclometalated ligand, Org. Electron., 61, 125–133.

[38] Wu, Z.G., Jing, Y.M., Lu, G.Z., Zhou, J., Zheng, Y.X., Zhou, L., Wang, Y., and Pan, Y., 2016, Novel design of iridium phosphors with pyridinylphosphinate ligands for high-efficiency blue organic light-emitting diodes, Sci. Rep., 6 (1), 38478.

[39] Sarma, M., Tsai, W.L., Chi, Y., Wu, C.C., Liu, S.H., Chou, P.T., and Wong, K.T., 2017, Anomalously long-lasting blue PhOLED featuring phenyl-pyrimidine cyclometalated iridium emitter, Chem, 3 (3), 461–476.

[40] Miao, Y., Tao, P., Gao, L., Li, X., Wei, L., Liu, S., Wang, H., Xu, B., and Zhao, Q., 2018, Highly efficient chlorine functionalized blue iridium(III) phosphors for blue and white phosphorescent organic light-emitting diodes with the external quantum efficiency exceeding 20%, J. Mater. Chem. C, 6 (25), 6656–6665.

[41] Li, T.Y., Liang, X., Zhou, L., Wu, C., Zhang, S., Liu, X., Lu, G.Z., Xue, L.S., Zheng, Y.X., and Zuo, J.L., 2015, N-Heterocyclic carbenes: Versatile second cyclometalated ligands for neutral iridium(III) heteroleptic complexes, Inorg. Chem., 54 (1), 161–173.

[42] Henwood, A.F., Evariste, S., Slawin, A.M.Z., and Zysman-Colman, E., 2014, Rigid biimidazole ancillary ligands as an avenue to bright deep blue cationic iridium(III) complexes, Faraday Discuss., 174, 165–182.

[43] Aghazada, S., Huckaba, A.J., Pertegas, A., Babaei, A., Grancini, G., Zimmermann, I., Bolink, H., and Nazeeruddin, M.K., 2016, Molecular engineering of iridium blue emitters using aryl N‐heterocyclic carbene ligands, Eur. J. Inorg. Chem., 2016 (32), 5089–5097.

[44] Sun, P., Wang, K., Zhao, B., Yang, T., Xu, H., Miao, Y., Wang, H., and Xu, B., 2016, Blue-emitting Ir(III) complexes using fluorinated bipyridyl as main ligand and 1,2,4-triazol as ancillary ligand: Syntheses, photophysical properties and performances in devices, Tetrahedron, 72 (50), 8335–8341.

[45] Xu, Q.L., Wang, C.C., Li, T.Y., Teng, M.Y., Zhang, S., Jing, Y.M., Yang, X., Li, W.N., Lin, C., Zheng, Y.X., Zuo, J.L., and You, X.Z., 2013, Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand, Inorg. Chem., 52 (9), 4916–4925.

[46] Ho, C.L., and Wong, W.Y., 2013, Small-molecular blue phosphorescent dyes for organic light-emitting devices, New J. Chem., 37 (6), 1665–1683.

[47] Bain, N.H.A.S., Mohd Ali, N., Juahir, Y., Hashim, N., Md Isa, I., Mohamed, A., Kamari, A., Anouar, E.H., Mohd Yamin, B., Mohd Tajuddin, A., and Baharudin, M.H., 2020, Synthesis, crystal structure, photophysical properties, DFT studies and Hirshfeld surface analysis of a phosphorescent 1,2,4-triazole-based iridium(III) complex, Polyhedron, 188, 114690.

[48] Bain, N.H.A.S., Ali, N.M., Juahir, Y., Hashim, N., Md Isa, I., Mohamed, A., Kamari, A., and Mohd Yamin, B., 2021, Synthesis, spectroscopic, and photophysical studies of phosphorescent bis(2-(2,4-difluorophenyl)pyridine)iridium(III) complex containing derivative of 1H-1,2,4-triazole anchillary ligand, Indones. J. Chem., 21 (6), 1577–1585.

[49] Costa, R.D., Ortí, E., Bolink, H.J., Monti, F., Accorsi, G., and Armaroli, N., 2012, Luminescent ionic transition‐metal complexes for light‐emitting electrochemical cells, Angew. Chem., Int. Ed., 51 (33), 8178–8211.

[50] Bain, N.H.A.S., Ali, N.M., Juahir, Y., Mustafar, S., Kassim, M., Muzakir Lokman, S.K., Mohd Yamin, B., and Daran, J.C., 2023, Synthesis, crystal structure, spectroscopic characterisation, and photophysical properties of iridium(III) complex with pyridine-formimidamide ancillary ligand, Malays. J. Anal. Sci., 27 (2), 280–291.



DOI: https://doi.org/10.22146/ijc.106512

Article Metrics

Abstract views : 1420 | views : 495


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.