Free Radical Scavenging Activity of Chlorochalcones: An Integrated Computational and Experimental Study
Anita Dwi Puspitasari(1*), Maria Ulfah(2), Indah Hartati(3), Rissa Laila Vifta(4), Faris Hermawan(5), Munifilia Ekasari(6), Lala Adetia Marlina(7)
(1) Faculty of Pharmacy, Universitas Wahid Hasyim, Semarang 50236, Indonesia
(2) Faculty of Pharmacy, Universitas Wahid Hasyim, Semarang 50236, Indonesia
(3) Chemical Engineering Study Program, Faculty of Engineering, Universitas Wahid Hasyim, Semarang 50236, Indonesia
(4) Faculty of Pharmacy, Universitas Islam Sultan Agung, Semarang 50112, Indonesia
(5) Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15354, Indonesia
(6) Chemistry Study Program, Universitas Jambi, Jambi, 36361 Indonesia
(7) Research Center for Computing, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
(*) Corresponding Author
Abstract
Chlorochalcone derivatives (chalcones 1–3) were synthesized using ultrasound-assisted Claisen-Schmidt condensation, yielding > 80%. Antioxidant activity was evaluated through DPPH and ABTS assays, demonstrating strong activity with IC50 values ranging from 61.52 ± 0.97 to 98.27 ± 1.42 ppm. Chalcones 1 and 2 show SPF potential at 40 ppm and chalcone 3 at 20 ppm (SPF 19.47 ± 0.46). ADMET analysis using the pkCSM tool confirmed favorable pharmacokinetic profiles and low toxicity, supporting their safety for potential applications. Additionally, density functional theory calculations provided more profound insights into molecular stability and reactivity, including electronic properties such as HOMO-LUMO gaps, further corroborating their pharmacological efficacy. These results collectively indicate that chalcones 1–3 exhibit potent antioxidant activity, adequate UV protection, and promising pharmacokinetic properties. Integrating in vitro, in silico, and DFT analyses underscores their potential as multifunctional compounds for antioxidant and sunscreen applications.
Keywords
Full Text:
Full Text PDFReferences
[1] Papaccio, F., D′Arino, A., Caputo, S., and Bellei, B., 2022, Focus on the contribution of oxidative stress in skin aging, Antioxidants, 11 (6), 1121.
[2] Bernerd, F., Passeron, T., Castiel, I., and Marionnet, C., 2022, The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity, Int. J. Mol. Sci., 23 (15), 8243.
[3] Bowers, J.M., Hamilton, J.G., Lobel, M., Kanetsky, P.A., and Hay, J.L., 2021, Sun exposure, tanning behaviors, and sunburn: Examining activities associated with harmful ultraviolet radiation exposures in college students, J. Primary Prev., 42 (5), 425–440.
[4] Cho, Y.H., Kim, S.Y., Woo, H.D., Kim, Y.J., Ha, S.W., and Chung, H.W., 2015, Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation, Int. J. Environ. Res. Public Health, 12 (12), 15162–15172.
[5] Toriyama, E., Masuda, H., Torii, K., Ikumi, K., and Morita, A., 2021, Time kinetics of cyclobutane pyrimidine dimer formation by narrowband and broadband UVB irradiation, J. Dermatol. Sci., 103, 151–155.
[6] Smijs, T.G., and Pavel, S., 2011, Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness, Nanotechnol. Sci., 4, 95–112.
[7] Baker, L.A., Marchetti, B., Karsili, T.N.V., Stavros, V.G., and Ashfold, M.N.R., 2017, Photoprotection: Extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents, Chem. Soc. Rev., 46 (12), 3770–3791.
[8] Baker, L.A., Greenough, S.E., and Stavros, V.G., 2016, A perspective on the ultrafast photochemistry of solution-phase sunscreen molecules, J. Phys. Chem. Lett., 7 (22), 4655–4665.
[9] Ramos, S., Homem, V., Alves, A., and Santos, L., 2015, Advances in analytical methods and occurrence of organic UV-filters in the environment — A review, Sci. Total Environ., 526, 278–311.
[10] Jesus, A., Mota, S., Torres, A., Cruz, M.T., Sousa, E., Almeida, I.F., and Cidade, H., 2023, Antioxidants in sunscreens: Which and what for?, Antioxidants, 12 (1), 138.
[11] Aguiar, A.S.N., Dias, P.G.M., Queiroz, J.E., Firmino, P.P., Custódio, J.M.F., Dias, L.D., Aquino, G.L.B., Camargo, A.J., and Napolitano, H.B., 2023, Insights on potential photoprotective activity of two butylchalcone derivatives: Synthesis, spectroscopic characterization and molecular modeling, Photonics, 10 (3), 228.
[12] Mittal, A., Vashistha, V.K., and Das, D.K., 2022, Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review, Free Radic. Res., 56 (5-6), 378–397.
[13] Wijayanti, L.W., Swasono, R.T., Lee, W., and Jumina, J., 2021, Synthesis and evaluation of chalcone derivatives as novel sunscreen agent, Molecules, 26 (9), 2698.
[14] Zainuri, D.A., Abdullah, M., Arshad, S., Abd Aziz, M.S., Krishnan, G., Bakhtiar, H., and Abdul Razak, I., 2018, Crystal structure, spectroscopic and third-order nonlinear optical susceptibility of linear fused ring dichloro-substituent chalcone isomers, Opt. Mater., 86, 32–45.
[15] Głębocka, A., Raczyńska, E.D., Chylewska, A., and Makowski, M., 2016, Experimental (FT‐IR) and theoretical (DFT) studies on prototropy and H‐bond formation for pyrazine‐2‐amidoxime, J. Phys. Org. Chem., 29, 326–335.
[16] Wachter, N.M., Rani, N., Zolfaghari, A., Tarbox, H., and Mazumder, S., 2020, DFT investigations of the unusual reactivity of 2‐pyridinecarboxaldehyde in base‐catalyzed aldol reactions with acetophenone, J. Phys. Org. Chem., 33 (5), e4048.
[17] Tri Suma, A.A., Dwi Wahyuningsih, T., and Mustofa, M., 2019, Efficient synthesis of chloro chalcones under ultrasound irradiation, their anticancer activities and molecular docking studies, Rasayan J. Chem., 12 (2), 502–510.
[18] Deshmukh, N., and Shinde, A., 2021, An efficient, ultrasound induced ring closure of hydroxy chalcone in 2-ethoxy ethanol as an green reaction medium and study of antimicrobial potential, Chem. Data Collect., 31, 100606.
[19] Hutama, A.S., Huang, H., and Kurniawan, Y.S., 2019, Investigation of the chemical and optical properties of halogen-substituted N-methyl-4-piperidone curcumin analogs by density functional theory calculations, Spectrochim. Acta, Part A, 221, 117152.
[20] López, G., Mellado, M., Werner, E., Said, B., Godoy, P., Caro, N, Besoain, X, Montenegro, I., and Madrid, A., 2020, Sonochemical synthesis of 2’-hydroxy-chalcone derivatives with potential anti-oomycete activity, Antibiotics, 9 (9), 576.
[21] Sayre, R.M., Agin, P.P., LeVee, G.J., and Marlowe, E., 1979, A comparison of in vivo and in vitro testing of sunscreening formulas, Photochem. Photobiol., 29 (3), 559–566.
[22] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2013, Gaussian-09 Revision D.01, Gaussian, Inc., Wallingford, CT.
[23] Zhao, Y., and Truhlar, D.G., 2008, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 120 (1), 215–241.
[24] Hehre, W.J., 1976, Ab initio molecular orbital theory, Acc. Chem. Res., 9 (11), 399–406.
[25] Xue, Y., Zheng, Y., An, L., Dou, Y., and Liu, Y., 2014, Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins, Food Chem., 151, 198–206.
[26] Zheng, Y.Z., Deng, G., Liang, Q., Chen, D.F, Guo, R., and Lai, R.C., 2017, Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study, Sci. Rep., 7 (1), 7543.
[27] Boli, L.S.P., Aisyah, N.D., Khoirunisa, V., Rachmawati, H., Dipojono, H.K., and Rusydi, F., 2019, Solvent effect on bond dissociation enthalpy (BDE) of tetrahydrocurcumin: A theoretical study, Mater. Sci. Forum, 966, 215–221.
[28] Nikšić-Franjić, I., and Ljubić, I., 2021, Comparing the performances of various density functionals for modelling the mechanisms and kinetics of bimolecular free radical reactions in aqueous solution, Phys. Chem. Chem. Phys., 21 (42), 23425–23440
[29] Barone, V., and Cossi, M., 1998, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, 102 (11), 1995–2001.
[30] Rimarčík, J., Lukeš, V., Klein, E., and Ilčin, M., 2010, Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, J. Mol. Struct.: THEOCHEM, 952 (1), 25–30.
[31] Szeląg, M., Urbaniak, A., and Bluyssen, H.A.R., 2015, A theoretical antioxidant pharmacophore for natural hydroxycinnamic acids, Open Chem., 13 (1), 17–31.
[32] Huang, Y., Rong, C., Zhang, R., and Liu, S., 2016, Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory, J. Mol. Model., 23 (1), 3.
[33] Marlina, L.A., Hutama, A.S., Arief, I., Mazaya, M., Syafarina, I., and Saputri, W.D., 2024, Exploring the potential of metalloporphyrin-like C54N4 fullerene (TM-PC60F) nanoclusters as new drug delivery platform for 5-fluorouracil: A DFT and QTAIM study, Diamond Relat. Mater., 147, 111267.
[34] Pires, D.E.V., Blundell, T.L., and Ascher, D.B., 2015, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem., 58 (9), 4066–4072.
[35] Myung, Y., de Sá, A.G.C., and Ascher, D.B., 2024, Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction, Nucleic Acid Res., 52 (W1), W469-W475.
[36] Seck, S., Hamad, J., Schalka, S., and Lim, H.W., 2023, Photoprotection in skin of color, Photochem. Photobiol. Sci., 22 (2), 441–456.
[37] Nasihun, T., and Widayati, E., 2018, Pimpinella alpina Molk administration is capable of increasing antioxidant and decreasing prooxidant level following UVB irradiation, J. Nat. Rem., 18 (1), 29–39.
[38] Abdlaty, R., Hayward, J., Farrell, T., and Fang, Q., 2021, Skin erythema and pigmentation: A review of optical assessment techniques, Photodiagn. Photodyn. Ther., 33, 102127.
[39] Abdassah, M., Aryani, R., Surachman, E., and Muchtaridi, M., 2015, In-vitro assessment of effectiveness and photostability avobenzone in cream formulations by combination ethyl ascorbic acid and alpha tocopherol acetate, J. Appl. Pharm. Sci., 5 (6), 70–74.
[40] Shanbhag, S., Nayak, A., Narayan, R., and Nayak, U.G., 2019, Anti-aging and sunscreens: Paradigm shift in cosmetics, Adv. Pharm. Bull., 9 (3), 348–359.
[41] Farooq, S., Mazhar, A., Ihsan-Ul-Haq, and Ullah, N., 2020, One-pot multicomponent synthesis of novel 3,4-dihydro-3-methyl-2(1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents, Arabian J. Chem., 13, 9145–9165.
[42] Pandithavidana, D.R., and Jayawardana, S.B., 2019, Comparative study of antioxidant potential of selected dietary vitamins; Computational insights, Molecules, 24 (9), 1646.
[43] Tao, Y., Zhang, H., and Wang, Y., 2023, Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids, LWT, 174, 114433.
[44] Deshlahra, P., and Iglesia, E., 2016, Reactivity and selectivity descriptors for the activation of C–H bonds in hydrocarbons and oxygenates on metal oxides, J. Phys. Chem. C, 120 (30), 16741–16760.
[45] Vo, Q.V., Thi Hoa, N., and Mechler, A., 2023, The hydroperoxyl antiradical activity of natural chalcones in physiological environments: Theoretical insights into the mechanism, kinetics and pH effects, J. Mol. Liq., 383, 122193.
[46] Borgohain, R., Guha, A.K., Pratihar, S., and Handique, J.G., 2015, Antioxidant activity of some phenolic aldehydes and their diimine derivatives: A DFT study, Comput. Theor. Chem., 1060, 17–23.
[47] Borges, R.S., Aguiar, C.P.O., Oliveira, N.L.L., Amaral, I.N.A., Vale, J.K.L., Chaves Neto, A.M.J., Queiroz, A.N., and da Silva, A.B.F., 2023, Antioxidant capacity of simplified oxygen heterocycles and proposed derivatives by theoretical calculations, J. Mol. Model., 29 (8), 232.
[48] Thong, N.M, Quang, D.T., Bui, N.H.T., Dao, D.Q., and Nam, P.C., 2015, Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study, Chem. Phys. Lett., 625, 30–35.
[49] Li, M., Liu, W., Peng, C., Ren, Q., Lu, W., and Deng, W., 2013, A DFT study on reaction of eupatilin with hydroxyl radical in solution, Int. J. Quantum Chem., 113 (7), 966–974.
[50] Tumilaar, S.G., Hardianto, A., Dohi, H., and Kurnia, D., 2024, A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds, J. Chem., 2024 (1), 5594386.
[51] Lipinski, B., 2011, Hydroxyl radical and its scavengers in health and disease, Oxid. Med. Cell. Longevity, 2011 (1), 809696.
[52] Socrates, G., 2001, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, Chichester.
[53] Petrescu, A.M., Paunescu, V., and Ilia, G., 2019, The antiviral activity and cytotoxicity of 15 natural phenolic compounds with previously demonstrated antifungal activity, J. Environ. Sci. Health, Part B, 54 (6), 498–504.
[54] Wang, N.N., Huang, C., Dong, J., Yao, Z.J., Zhu, M.F., Deng, Z.K., Lv, B., Lu, A.P., Chen, A.F., and Cao, D.S., 2017, Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues, RSC Adv., 7 (31), 19007–19018.
[55] Lombardo, F., Bentzien, J., Berellini, G., and Muegge, I., 2021, In silico models of human PK parameters. Prediction of volume of distribution using an extensive data set and a reduced number of parameters, J. Pharm. Sci., 110 (1), 500–509.
[56] Basheer, L., and Kerem, Z., 2015, Interactions between CYP3A4 and dietary polyphenols, Oxid. Med. Cell. Longevity, 2015 (1), 854015.
[57] Shen, Q., Wang, J., Yuan, Z., Jiang, Z., Shu, T., Xu, D., He, J., Zhang, L., and Huang, X., 2019, Key role of organic cation transporter 2 for the nephrotoxicity effect of triptolide in rheumatoid arthritis, Int. Immunopharmacol., 77, 105959.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.










