Development and Characterization of Edible Coating Potato Peel Starch (Solanum tuberosum L.) and Sungkai Leaves Extract to Prolong the Shelf Life of Strawberries (Fragaria sp.)

https://doi.org/10.22146/ijc.105258

Ajeng Putri Ardiani(1), Yefrida Yefrida(2), Refilda Refilda(3*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
(*) Corresponding Author

Abstract


This study developed and characterized edible coatings from potato peel starch (Solanum tuberosum L.) to prolong the shelf life of strawberries (Fragaria sp.). Due to its high starch content, the edible coating was formulated using potato peel starch as the base material, and Sungkai leaf extract was added to enhance its antioxidant properties. The coating was characterized by viscosity, pH, color, antioxidant content, and thickness; and analyzed using FTIR, XRD, and SEM. The coating was applied to strawberries, and its effectiveness was evaluated based on weight loss and decay rate during storage. The edible coating was characterized by lower viscosity (10 cP), lower pH (6.83), darker color indicating bioactive compounds, and higher antioxidant content (5.72 mg AAE/g). FTIR data confirmed physical interactions among components; XRD revealed a semi-crystalline structure; and SEM showed a porous surface with visible cracks. Application of strawberries reduced weight loss and decay by 22.88 and 1.33% (day 4 at 3–5 °C) and 46.1 and 2.67% (day 12 at 28–31 °C). These results demonstrate the potential of potato peel starch and Sungkai leaf extract as an eco-friendly preservation solution.


Keywords


starch edible coating; potato peel starch; Sungkai leaves extract; strawberry; circular economy

Full Text:

Full Text PDF


References

[1] United Nations Environment Programme, 2021, Food Waste Index Report 2021, Nairobi.

[2] Devaux, A., Goffart, J.P., Kromann, P., Andrade-Piedra, J., Polar, V., and Hareau, G., 2021, The potato of the future: opportunities and challenges in sustainable agri-food systems, Potato Res., 64 (4), 681–720.

[3] Ministry of Agriculture Republic of Indonesia, Pertanian, K., 2024, Angka Tetap Hortikultura Tahun 2023, Directorate General of Horticulture, Jakarta, Indonesia.

[4] Thakur, M., Rai, A.K., Mishra, B.B., and Singh, S.P., 2021, Novel insight into valorization of potato peel biomass into type III resistant starch and maltooligosaccharide molecules, Environ. Technol. Innovation, 24, 101827.

[5] Charles, A.L., Motsa, N., and Abdillah, A.A., 2022, A comprehensive characterization of biodegradable edible films based on potato peel starch plasticized with glycerol, Polymers, 14 (17), 3462.

[6] Bodana, V., Swer, T.L., Kumar, N., Singh, A., Samtiya, M., Sari, T.P., and Babar, O.A., 2024, Development and characterization of pomegranate peel extract-functionalized jackfruit seed starch-based edible films and coatings for prolonging the shelf life of white grapes, Int. J. Biol. Macromol., 254, 127234.

[7] Friedrichsen, J.S.A., Bruni, A.R.S., Alves, E.S., Saqueti, B.H.F., Figueiredo, A.L., de Souza, P.R., Mikcha, J.M.G., Scapim, M.R.S., Bonafe, E.G., and Santos, O.O., 2024, Biodegradable coatings based on cassava starch and poly(vinyl alcohol): Potential application for prolonging the shelf life of strawberries (Fragaria ananassa) cv. San Andreas, ACS Food Sci. Technol., 4 (2), 365–372.

[8] Khodaei, D., Hamidi-Esfahani, Z., and Rahmati, E., 2021, Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method, NFS J., 23, 17–23.

[9] Refilda, R., Tanjung, M.F., and Yefrida, Y., 2023, The effect of sungkai leaf water extract addition to aloe vera gel edible coating on quality and shelf life of strawberries (Fragaria sp.), IOP Conf. Ser.: Earth Environ. Sci., 1241 (1), 012073.

[10] Wigati, L.P., Wardana, A.A., Jothi, J.S., Leonard, S., Van, T.T., Yan, X., Tanaka, F., and Tanaka, F., 2024, Biochemical and color stability preservation of strawberry using edible coatings based on jicama starch/calcium propionate/agarwood bouya essential oil during cold storage, J. Stored Prod. Res., 107, 102324.

[11] Yıldırım-Yalçın, M., Şeker, M., and Sadıkoğlu, H., 2022, Effect of grape derivatives and cross-linked maize starch coatings on the storage life of strawberry fruit, Prog. Org. Coat., 167, 106850.

[12] Chettri, S., Sharma, N., and Mohite, A.M., 2024, Formulation of extracted soyabean starch based edible coatings by different methods and their impact on shelf life of sapota fruit, J. Saudi Soc. Agric. Sci., 23 (3), 205–211.

[13] Choque-Quispe, D., Obregón Gonzales, F.H., Carranza-Oropeza, M.V., Solano-Reynoso, A.M., Ligarda-Samanez, C.A., Palomino-Ríncón, W., Choque-Quispe, K., and Torres-Calla, M.J., 2024, Physicochemical and technofunctional properties of high Andean native potato starch, J. Agric. Food Res., 15, 100955.

[14] Yu, K., Yang, L., Zhang, S., Zhang, N., Zhu, D., He, Y., Cao, X., and Liu, H., 2025, Tough, antibacterial, antioxidant, antifogging and washable chitosan/nanocellulose-based edible coatings for grape preservation, Food Chem., 468, 142513.

[15] Xu, H., Huang, Y., He, K., Lin, Z., McClements, D.J., Hu, Y., Cheng, H., Peng, X., Jin, Z., and Chen, L., 2024, An effective preserving strategy for strawberries by constructing pectin/starch coatings reinforced with functionalized eggshell fillers, Food Chem., 450, 139314.

[16] Mokhtari, F., Mohtarami, F., Sharifi, A., and Pirsa, S., 2024, Modified potato starch and clove essential oil nanoemulsion coatings: A green approach to prevent fungal spoilage and prolong the shelf life of preservative-free sponge cake, J. Food Meas. Charact., 18 (12), 9805–9818.

[17] Rochima, E., Ilman, B., Sektiaji, R.G.B., Lili, W., Pratama, R.I., Utama, G.L., Damayanti, W., Azhary, S.Y., Panatarani, C., and Joni, I.M., 2025, The influence of nanochitosan-incorporated edible coating on the characteristics of Pangasius (Pangasius sp.) fillet, Food Chem., 464, 141623.

[18] Wu, Y., Zhang, J., Hu, X., Huang, X., Zhang, X., Zou, X., and Shi, J., 2024, Preparation of edible antibacterial films based on corn starch/carbon nanodots for bioactive food packaging, Food Chem., 444, 138467.

[19] Silva, O.A., Pellá, M.C.G., Friedrich, J.C.C., Pellá, M.G., Beneton, A.G., Faria, M.G.I., Colauto, G.A.L., Caetano, J., Simões, M.R., and Dragunski, D.C., 2021, Effects of a native cassava starch, chitosan, and gelatin-based edible coating over guavas (Psidium guajava L.), ACS Food Sci. Technol., 1 (7), 1247–1253.

[20] Li, N., Cheng, Y., Li, Z., Yue, T., and Yuan, Y., 2024, An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.), Int. J. Biol. Macromol., 274, 133273.

[21] Zahra, N.I., Songtipya, P., Songtipya, L., Prodpran, T., Sengsuk, T., and Utami, T., 2025, Xyloglucan based edible coating in combination with Borassus flabellifer seed coat extract for extending strawberry postharvest shelf life, Int. J. Biol. Macromol., 285, 138288.

[22] Fonseca-García, A., Jiménez-Regalado, E.J., and Aguirre-Loredo, R.Y., 2021, Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers, Carbohydr. Polym., 251, 117009.

[23] Abdillah, A.A., and Charles, A.L., 2021, Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging, Int. J. Biol. Macromol., 191, 618–626.

[24] Medeiros Silva, V.D., Coutinho Macedo, M.C., Rodrigues, C.G., Neris dos Santos, A., de Freitas e Loyola, A.C., and Fante, C.A., 2020, Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves, Food Biosci., 38, 100750.

[25] İslamoğlu, A.F., Ceylan, H.G., Polat, Z., and Atasoy, A.F., 2025, Sustainable and UV blocking edible films based on pea protein isolate and psyllium mucilage enriched with pomegranate peel extract, J. Food Meas. Charact., 19 (2), 921–938.

[26] Ali, N.A., and Dash, K.K., 2023, Modified lotus seed starch and red turnip peel extract based pH responsive edible films, Food Packag. Shelf Life, 40, 101182.

[27] Mushtaq, H., Piccolella, S., Cimmino, G., Ferrara, E., Brahmi-Chendouh, N., Petriccione, M., and Pacifico, S., 2025, Polyphenols from Olea europaea L. cv. Caiazzana leaf pruning waste for antioxidant and UV-blocking starch-based plastic films, Food Packag. Shelf Life, 47, 101447.

[28] Rawat, R., and Saini, C.S., 2024, A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterization, and amino acid composition, Int. J. Biol. Macromol., 268, 131940.

[29] González-Torres, B., Robles-García, M.Á., Gutiérrez-Lomelí, M., Padilla-Frausto, J.J., Navarro-Villarruel, C.L., Del-Toro-Sánchez, C.L., Rodríguez-Félix, F., Barrera-Rodríguez, A., Reyna-Villela, M.Z., Avila-Novoa, M.G., and Reynoso-Marín, F.J., 2021, Combination of sorbitol and glycerol, as plasticizers, and oxidized starch improves the physicochemical characteristics of films for food preservation, Polymers, 13 (19), 3356.

[30] Zhang, Z., Wang, Y., Fang, X., Chen, X., Yin, Z., and Zhang, C., 2024, Preparation of edible film from sweet potato peel polyphenols: Application in fresh fruit preservation, Front. Sustainable Food Syst., 8, 1470732.

[31] Chiumarelli, M., and Hubinger, M.D., 2014, Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid, Food Hydrocolloids, 38, 20–27.

[32] Costa, B.P., Carpiné, D., Ikeda, M., Pazzini, I.A.E., da Silva Bambirra Alves, F.E., de Melo, A.M., and Ribani, R.H., 2023, Bioactive coatings from non-conventional loquat (Eriobotrya japonica Lindl.) seed starch to extend strawberries shelf-life: An antioxidant packaging, Prog. Org. Coat., 175, 107320.

[33] Nowak, N., Grzebieniarz, W., Cholewa-Wójcik, A., Juszczak, L., Konieczna-Molenda, A., Dryzek, E., Sarnek, M., Szuwarzyński, M., Mazur, T., and Jamróz, E., 2023, Effects of selected plant extracts on the quality and functional properties of gelatin and furcellaran-based double-layer films, Food Bioprocess Technol., 17 (5), 1201–1214.

[34] Sekarina, A.S., Supriyadi, S., Munawaroh, H.S.H., Susanto, E., Show, P.L., and Ningrum, A., 2023, Effects of edible coatings of chitosan - fish skin gelatine containing black tea extract on quality of minimally processed papaya during refrigerated storage, Carbohydr. Polym. Technol. Appl., 5, 100287.

[35] Aayush, K., Sharma, K., Singh, G.P., Chiu, I., Chavan, P., Shandilya, M., Roy, S., Ye, H., Sharma, S., and Yang, T., 2024, Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation, Int. J. Biol. Macromol., 270, 132220.

[36] Van, T.T., Hang Phuong, N.T., Sakamoto, K., Wigati, L.P., Tanaka, F., and Tanaka, F., 2023, Effect of edible coating incorporating sodium carboxymethyl cellulose/cellulose nanofibers and self-produced mandarin oil on strawberries, Food Packag. Shelf Life, 40, 101197.

[37] Carrillo-Lomelí, D.A., Cerqueira, M.A., Moo-Huchin, V., Bourbon, A.I., Souza, V.G.L., Lestido-Cardama, A., Pastrana, L.M., Ochoa-Fuentes, Y.M., Hernández-Castillo, F.D., Villarreal-Quintanilla, J.Á., and Jasso de Rodríguez, D., 2024, Influence of edible multilayer coatings with Opuntia stenopetala polysaccharides and Flourensia microphylla extract on the shelf-life of cherry tomato (Solanum lycopersicum L.), Sci. Hortic., 332, 113224.

[38] Huang, P.H., Jian, C.H., Lin, Y.W., and Huang, D.W., 2025, Impact of Premna microphylla Turcz leaf water extracts on the properties of gelatin-carrageenan edible film and its application in cherry tomatoes storage, Food Chem.: X, 25, 102186.

[39] Nayak, B., Jain, P., Kumar, L., Mishra, A.A., and Gaikwad, K.K., 2024, UV blocking edible films based on corn starch/moringa gum incorporated with pine cone extract for sustainable food packaging, Int. J. Biol. Macromol., 267, 131545.

[40] Sipayung, K., Sinaga, H., and Suryanto, D., 2021, Edible coating made of taro starch and red dragon fruit peel extract, IOP Conf. Ser.: Earth Environ. Sci., 782 (3), 032101.

[41] Nur, B.M., Zaidiyah, Z., and Luthfi, F., 2021, Characteristics of corn starch-based edible coating enriched with curry leaf extract on quality of the strawberry (Fragaria x ananassa Duch.), IOP Conf. Ser.: Earth Environ. Sci., 922 (1), 012065.

[42] Nurfauziyah, N., Yulizar, Y., and Meliana, Y., 2024, Extraction of Sungkai (Peronema cannescens Jack) leaves, antioxidant activity test and its nanoemulsion formulation, E3S Web Conf., 503, 07008.

[43] Akkuzu, N., Karakas, C.Y., Devecioglu, D., Karbancıoglu Guler, F., Sagdic, O., and Karadag, A., 2024, Emulsion-based edible chitosan film containing propolis extract to extend the shelf life of strawberries, Int. J. Biol. Macromol., 273, 133108.

[44] Gupta, V., Thakur, R., Barik, M., and Das, A.B., 2023, Effect of high amylose starch-natural deep eutectic solvent based edible coating on quality parameters of strawberry during storage, J. Agric. Food Res., 11, 100487.

[45] Marta, H., Chandra, S., Cahyana, Y., Sukri, N., Pangawikan, A.D., Yuliana, T., and Arifin, H.R., 2025, Arrowroot (Maranta arundinaceae L.) starch-based edible coating formulation and its application to shelf-life extension of tomato (Solanum lycopersicum L.), Carbohydr. Polym. Technol. Appl., 9, 100674.

[46] Wang, Y., Wu, W., Liu, R., Niu, B., Fang, X., Chen, H., Farag, M.A., Wang, L.S., Wang, G., Yang, H., Chen, H., and Gao, H., 2025, Silk protein: A novel antifungal and edible coating for strawberry preservation, Food Chem., 463, 141179.

[47] Hu, Q., Zhou, F., Ly, N.K., Ordyna, J., Peterson, T., Fan, Z., and Wang, S., 2023, Development of multifunctional nanoencapsulated trans-resveratrol/chitosan nutraceutical edible coating for strawberry preservation, ACS Nano, 17 (9), 8586–8597.

[48] Taha, I.M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I.H., Mersal, G.A.M., Ibrahim, M.M., and Fahmy, A., 2022, Impact of starch coating embedded with silver nanoparticles on strawberry storage time, Polymers, 14 (7), 1439.

[49] Gautam, A., Gill, P.P.S., Singh, N., Jawandha, S.K., Arora, R., Singh, A., and Ajay, A., 2024, Composite coating of xanthan gum with sodium nitroprusside alleviates the quality deterioration in strawberry fruit, Food Hydrocolloids, 155, 110208.



DOI: https://doi.org/10.22146/ijc.105258

Article Metrics

Abstract views : 1996 | views : 609


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.