Photocatalytic Deactivation of E. coli Bacteria by Copper(II) Oxide Doped-Titanium Dioxide Nanocomposite in Water Catchment Systems

https://doi.org/10.22146/ijc.104537

Kustomo Kustomo(1*), Xiaoli Wu(2)

(1) Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Jl. Prof. Dr. Hamka, Ngaliyan 50185, Semarang, Indonesia
(2) Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P.R. China
(*) Corresponding Author

Abstract


This study investigates the synthesis and evaluation of CuO-doped TiO2 nanocomposites for photocatalytic deactivation of Escherichia coli in the water catchment systems. Nanocomposites with varying CuO concentrations (0.25, 0.50, and 0.85% w/w) doped into TiO2 were prepared via the co-precipitation method and characterized by FTIR, SEM-EDS, and UV-vis DRS. The incorporation of CuO into TiO2 resulted in a progressive reduction of band gap energy, with the 0.85% CuO-TiO2 sample exhibiting the lowest value. Photocatalytic testing demonstrated that the 0.85% CuO-TiO2 nanocomposite achieved a 99.23% reduction of E. coli, surpassing the performance of undoped TiO2. The enhanced activity is attributed to improved visible light absorption and more efficient charge separation due to the synergistic effect between CuO and TiO2. These results indicate that optimizing CuO doping in TiO2 nanocomposites can significantly enhance photocatalytic disinfection, offering a promising solution for water treatment applications.


Keywords


photocatalyst; CuO-TiO2; deactivation; E. coli; water catchment

Full Text:

Full Text PDF


References

[1] Raimondi, A., Quinn, R., Abhijith, G.R., Becciu, G., and Ostfeld, A., 2023, Rainwater harvesting and treatment: State of the art and perspectives, Water, 15 (8), 1518.

[2] García-Ávila, F., Guanoquiza-Suárez, M., Guzmán-Galarza, J., Cabello-Torres, R., and Valdiviezo-Gonzales, L., 2023, Rainwater harvesting and storage systems for domestic supply: An overview of research for water scarcity management in rural areas, Results Eng., 18, 101153.

[3] Palawat, K., Root, R.A., Cruz, L.I., Foley, T., Carella, V., Beck, C., and Ramírez-Andreotta, M., 2023, Dissolved arsenic and lead concentrations in rooftop harvested rainwater: Community generated dataset, Data Brief, 48, 109255.

[4] Batt, C.A., 2014, “Escherichia coli” in Encyclopedia of Food Microbiology, Academic Press, Oxford, UK, 688–694.

[5] Moradi, M., Naderi, A., Bahari, N., Harati, M., Rodríguez-Chueca, J., and Rezaei Kalantary, R., 2022, Visible-light-driven photocatalytic inactivation of Escherichia coli by titanium dioxide anchored on natural pyrite, Inorg. Chem. Commun., 144, 109913.

[6] Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., and Ishii, S., 2017, Environmental Escherichia coli: Ecology and public health implications-A review, J. Appl. Microbiol., 123 (3), 570–581.

[7] Kubiak, A., Bielan, Z., Kubacka, M., Gabała, E., Zgoła-Grześkowiak, A., Janczarek, M., Zalas, M., Zielińska-Jurek, A., Siwińska-Ciesielczyk, K., and Jesionowski, T., 2020, Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline, Appl. Surf. Sci., 520, 146344.

[8] Khatun, H., Rahman, M., Mahmud, S., Ali, M.O., and Akter, M., 2023, Current advancements of hybrid coating on Mg alloys for medical applications, Results Eng., 18, 101162.

[9] Ashok, A., Jeba Beula, R., Magesh, R., Unnikrishnan, G., Paul, P.M., Bennett, H.C., Joselin, F., and Abiram, A., 2024, Bandgap engineering of CuO/TiO2 nanocomposites and their synergistic effect on the performance of dye-sensitized solar cells, Opt. Mater., 148, 114896.

[10] Singha, B., and Ray, K., 2023, Density functional theory insights on photocatalytic ability of CuO/TiO2 and CuO/ZnO, Mater. Today: Proc., 72, 451–458.

[11] Ullah, F., Ghani, U., and Mohamed Saheed, M.S., 2023, A PN-type CuO@TiO2 nanorods heterojunction for efficient PEC water splitting: DFT model and experimental investigation on the effect of calcination temperature, Int. J. Hydrogen Energy, 48 (100), 39866–39884.

[12] Ghosh, C., Dey, A., Biswas, I., Gupta, R.K., Yadav, V.S., Yadav, N., Zheng, H., Henini, M., and Mondal, A., 2024, CuO–TiO2 based self-powered broad band photodetector, Nano Mater. Sci., 6 (3), 345–354.

[13] Fahri, A.N., Ilyas, S., Anugrah, M.A., Heryanto, H., Azlan, M., Ola, A.T.T., Rahmat, R., Yudasari, N., and Tahir, D., 2022, Bifunctional purposes of composite TiO2/CuO/carbon dots (CDs): Faster photodegradation pesticide wastewater and high performance electromagnetic wave absorber, Materialia, 26, 101588.

[14] Bopape, D.A., Mathobela, S., Matinise, N., Motaung, D.E., and Hintsho-Mbita, N.C., 2023, Green synthesis of CuO-TiO2 nanoparticles for the degradation of organic pollutants: Physical, optical and electrochemical properties, Catalysts, 13 (1), 163.

[15] Manoj, D., Rajendran, S., Naushad, M., Santhamoorthy, M., Gracia, F., Moscoso, M.S., and Gracia-Pinilla, M.A., 2023, Mesoporogen free synthesis of CuO/TiO2 heterojunction for ultra-trace detection of catechol in water samples, Environ. Res., 216 (Pt. 1), 114428.

[16] Lv, Y., Liu, J., Zhang, Z., Zhang, W., Wang, A., Tian, F., Zhao, W., and Yan, J., 2021, Green synthesis of CuO nanoparticles-loaded ZnO nanowires arrays with enhanced photocatalytic activity, Mater. Chem. Phys., 267, 124703.

[17] Shi, Q., Qin, Z., Yu, C., Waheed, A., Xu, H., Gao, Y., Abroshan, H., and Li, G., 2020, Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering, Nano Res., 13 (4), 939–946.

[18] Behzadi pour, G., Shajee nia, E., Darabi, E., Fekri aval, L., Nazarpour-Fard, H., and Kianfar, E., 2023, Fast NO2 gas pollutant removal using CNTs/TiO2/CuO/zeolite nanocomposites at the room temperature, Case Stud. Chem. Environ. Eng., 8, 100527.

[19] Chen, Y., Li, J., Teng, W., Liu, W., Ren, S., Yang, J., and Liu, Q., 2023, Revealing the crystal-plane effects of CuO during the NH3-SCR over CuO/TiO2 catalysts, J. Environ. Chem. Eng., 11 (5), 110787.

[20] Djebbari, C., Zouaoui, E., Ammouchi, N., Nakib, C., Zouied, D., and Dob, K., 2021, Degradation of malachite green using heterogeneous nanophotocatalysts (NiO/TiO2, CuO/TiO2) under solar and microwave irradiation, SN Appl. Sci., 3 (2), 255.

[21] Kumar, A., and Hassan, M.A., 2024, Heat transfer in flat tube car radiator with CuO-MgO-TiO2 ternary hybrid nanofluid, Powder Technol., 434, 119275.

[22] Zhao, S., Xiao, H., Chen, Y., Qi, Y., Yan, C., Ma, R., Zhao, Q., Liu, W., and Shen, Y., 2024, Photocatalytic degradation of xanthates under visible light using heterogeneous CuO/TiO2/montmorillonite composites, Green Smart Min. Eng., 1 (1), 67–75.

[23] Turlybekuly, A., Sarsembina, M., Mentbayeva, A., Bakenov, Z., and Soltabayev, B., 2023, CuO/TiO2 heterostructure-based sensors for conductometric NO2 and N2O gas detection at room temperature, Sens. Actuators, B, 397, 134635.

[24] Yao, J., Wang, G., Jiang, X., Xue, B., Wang, Y., and Duan, L., 2023, Exploring the spatiotemporal variations in regional rainwater harvesting potential resilience and actual available rainwater using a proposed method framework, Sci. Total Environ., 858 (Pt. 3), 160005.

[25] Zhu, Y., and Huang, Y., 2024, Development of a novel sensor for the detection of donepezil hydrochloride as Alzheimer's disease drug utilizing CuO-TiO2 hybrid nanostructures, Alexandria Eng. J., 95, 14–23.

[26] Varghese, A., Devi, K.R.S., and Pinheiro, D., 2023, Rational design of PANI incorporated PEG capped CuO/TiO2 for electrocatalytic hydrogen evolution and supercapattery applications, Int. J. Hydrogen Energy, 48 (76), 29552–29564.

[27] Wang, R., Cao, J., Liu, J., and Zhang, Y., 2023, Synthesis of CuO@TiO2 nanocomposite and its photocatalytic and electrochemical properties. Application for treatment of azo dyes in industrial wastewater, Int. J. Electrochem. Sci., 18 (12), 100316.

[28] Yang, R.F., Zhang, S.S., Shi, D.J., Dong, J.X., Li, Y.L., Li, J.X., Guo, C., Yue, Z., Li, G., Huang, W.P., Zhang, S.M., and Zhu, B.L., 2024, Glucose detection via photoelectrochemical sensitivity of 3D CuO-TiO2 heterojunction nanotubes/Ti combined with chemometric tools, Microchem. J., 199, 110017.

[29] Wang, N., Zhang, F., Mei, Q., Wu, R., and Wang, W., 2020, Photocatalytic TiO2/rGO/CuO composite for wastewater treatment of Cr(VI) under visible light, Water, Air, Soil Pollut., 231 (5), 223.

[30] Hao, B., Guo, J., Zhang, L., and Ma, H., 2022, Magnetron sputtered TiO2/CuO heterojunction thin films for efficient photocatalysis of Rhodamine B, J. Alloys Compd., 903, 163851.

[31] Gamedze, N.P., Mthiyane, M.N., Babalola, O.O., Singh, M., and Onwudiwe, D.C., 2022, Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds, Heliyon, 8 (8), e10187.

[32] Kumar, S., and Kumar, R., 2023, Tribological characteristics of synthesized hybrid nanofluid composed of CuO and TiO2 nanoparticle additives, Wear, 518-519, 204623.

[33] Wu, W., Long, J., Guo, Y., Zu, X., Li, S., and Xiang, X., 2023, P-CuO/n-TiO2 heterojunction nanostructure-based surface acoustic wave sensor with strong electric loading effect for highly sensitive H2S gas sensing, Sens. Actuators, B, 394, 134380.

[34] Chen, M., Liu, Y., Zhou, W., and Wu, P., 2023, Microstructure, optical and magnetic properties of TiO2/CuO nanocomposites synthesized by a two-step method, Ceram. Int., 49 (5), 7676–7682.

[35] Lu, D., Zelekew, O.A., Abay, A.K., Huang, Q., Chen, X., and Zheng, Y., 2019, Synthesis and photocatalytic activities of a CuO/TiO2 composite catalyst using aquatic plants with accumulated copper as a template, RSC Adv., 9 (4), 2018–2025.

[36] Yadeta, T.F., and Imae, T., 2023, Effect of carbon dot on photovoltaic performance of n-TiO2/p-NiO and n-TiO2/p-CuO heterojunctions in dye-sensitized solar cells, Appl. Surf. Sci., 637, 157880.

[37] Chi, N., and Wang, Y., 2022, Synthesis and application of CuO-TiO2 hybrid nanostructures as photocatalytst for degradation of p-nitrophenol in wastewater, Int. J. Electrochem. Sci., 17 (10), 221061.

[38] Li, L., Chen, X., Quan, X., Qiu, F., and Zhang, X., 2023, Synthesis of CuOx/TiO2 photocatalysts with enhanced photocatalytic performance, ACS Omega, 8 (2), 2723–2732.

[39] Hamad, H., Elsenety, M.M., Sadik, W., El-Demerdash, A.G., Nashed, A., Mostafa, A., and Elyamny, S., 2022, The superior photocatalytic performance and DFT insights of S-scheme CuO@TiO2 heterojunction composites for simultaneous degradation of organics, Sci. Rep., 12 (1), 2217.

[40] Kamarudin, S.K., Yunos, N.F.M., Johar, B., Illias, S., and Idris, M.A., 2018, Effect of CuO doped TiO2 on morphology, crystal structure and photocatalytic activity, Int. J. Curr. Res. Sci., Eng. Technol., 1 (S1), 239–244.

[41] Bahramian, H., Fattah-alhosseini, A., Karbasi, M., Nikoomanzari, E., and Giannakis, S., 2023, Synergy of Cu2+-Cu(OH)2-CuO with TiO2 coatings, fabricated via plasma electrolytic oxidation: Insights into the multifaceted mechanism governing visible light-driven photodegradation of tetracycline, Chem. Eng. J., 476, 146588.

[42] Adamu, A., Isaacs, M., Boodhoo, K., and Abegão, F.R., 2023, Investigation of Cu/TiO2 synthesis methods and conditions for CO2 photocatalytic reduction via conversion of bicarbonate/carbonate to formate, J. CO2 Util., 70, 102428.

[43] de Lima, M.S., Schio, A.L., Aguzzoli, C., de Souza, W.V., Roesch-Ely, M., Leidens, L.M., Boeira, C.D., Alvarez, F., Elois, M.A., Fongaro, G., Figueroa, C.A., and Michels, A.F., 2024, Visible light-driven photocatalysis and antibacterial performance of a Cu-TiO2 nanocomposite, ACS Omega, 9 (47), 47122–47134.

[44] Pal, S., Villani, S., Mansi, A., Marcelloni, A.M., Chiominto, A., Amori, I., Proietto, A.R., Calcagnile, M., Alifano, P., Bagheri, S., Mele, C., Licciulli, A., Sannino, A., and Demitri, C., 2024, Antimicrobial and superhydrophobic CuONPs/TiO2 hybrid coating on polypropylene substrates against biofilm formation, ACS Omega, 9 (45), 45376–45385.

[45] Sondezi, N., Njengele-Tetyana, Z., Matabola, K.P., and Makhetha, T.A., 2024, Sol-gel-derived TiO2 and TiO2/Cu nanoparticles: Synthesis, characterization, and antibacterial efficacy, ACS Omega, 9 (14), 15959–15970.

[46] Kargar, M., Ahari, H., Kakoolaki, S., and Mizani, M., 2021, Antimicrobial effects of silver/copper/titanium dioxide nanocomposites synthesised by chemical reduction method to increase the shelf life of caviar (Huso huso), Iran. J. Fish. Sci., 20 (1), 13–31.

[47] Ravishankar, T.N., Vaz, M.O., and Teixeira, S.R., 2020, The effects of surfactant in the sol–gel synthesis of CuO/TiO2 nanocomposites on its photocatalytic activities under UV-visible and visible light illuminations, New J. Chem., 44 (5), 1888–1904.

[48] Baig, U., Dastageer, M.A., Gondal, M.A., and Khalil, A.B., 2023, Photocatalytic deactivation of sulphate reducing bacteria using visible light active CuO/TiO2 nanocomposite photocatalysts synthesized by ultrasonic processing, J. Photochem. Photobiol., B, 242, 112698.



DOI: https://doi.org/10.22146/ijc.104537

Article Metrics

Abstract views : 2061 | views : 529


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.