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 Abstract: The corrosion inhibition performance of 4-hydrocoumarin derivatives has 
been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic 
polarization, and electrochemical frequency modulation techniques. However, 
experimental studies have not explained why the methoxy (OCH3) group contributes 
more to the increase in corrosion inhibition than the methyl (CH3) and chlorine (Cl) 
functional groups. In this theoretical study, the electronic aspect of the target corrosion 
inhibitors will be studied in detail to help strengthen the explanation in the experimental 
research. Density functional theory, ab initio, and Monte Carlo simulations have been 
used to analyze the corrosion inhibition performance of 4 curcumin derivatives against 
copper. The quantum chemistry approach is carried out under gas and aqueous 
conditions in neutral and protonated inhibitors. The Monte Carlo simulation was used 
to observe the dynamics and the mechanism of inhibition of the target molecule on the 
copper surface. The quantum chemistry approach can mimic the geometrical parameters 
of molecular inhibitors. It can also explain electronically why the OCH3 functional group 
is superior to other substituents. The adsorption energy of the 4-hydroquinone derivative 
is linearly correlated with the reported experimental study. The level of corrosion 
inhibition efficiency is OCH3 > CH3 > H > Cl. 

Keywords: copper; corrosion inhibitor; DFT; ab initio MP2; Monte Carlo; 4-
hydrocoumarin 

 
■ INTRODUCTION 

Efforts to find green corrosion inhibitors that are 
economical, effective, but environmentally friendly are 
still intensive. Reports show that organic inhibitors are 
efficient for preventing the corrosion of metals [1-6]. 
Organic inhibitors have phi bonds and N, O, S 
heteroatom groups with high electron density, acting as 
active sites to interact with metal surfaces [7-10]. Organic 
inhibitors will donate electrons to the empty d orbital of 
the metal so that complex compounds will be formed. The 
adsorption of organic molecules on the metal surface can 
limit the initial contact of the metal with the corrosive 
environment so that the corrosion process can be 
prevented [11-12]. 

Experimental studies on the performance of 
organic inhibitors have been widely published, especially 
in preventing the corrosion of copper [13-16]. Jmiai et 
al. [17] tested the corrosion inhibitor of Jujube shell 
extract on copper in hydrochloric acid media. The 
corrosion inhibition efficiency value of Jujube shell 
extract against copper was 91%. Fouda et al. [18] tested 
four hydrocoumarin derivatives as corrosion inhibitors, 
namely 4-hydroxy-3-phenylazobenzopyrane-2-one 
(4HD-OCH3), 4-hydroxy-3-(p-methylphenylazo)-
benzopyrane-2-one (4HD-CH3), 4-hydroxy-3-(p-
methoxyphenyl azo)-benzopyrane-2-one (4HD-CH), 
and 4-hydroxy-3-(p-chlorophenylazo)-benzopyrane-2-
one (4HD-Cl), on copper in nitric acid medium. The 
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highest corrosion inhibition efficiency value was given by 
4HD-OCH3, with a value of 94.9%. However, the report 
of Fouda et al. has not explained in more detail why 4HD-
OCH3 has the highest inhibition efficiency compared to 
other derivatives. Therefore, the current study focuses on 
bridging these problems theoretically. This study explains 
why the OCH3 functional group contributes maximally to 
corrosion inhibition efficiency compared to CH3 and Cl. 
Theoretical studies have reported many corrosion 
inhibition performances of various compounds [19-23]. 
Methods such as DFT and ab initio [24-30] can explain 
the electron distribution when the inhibitor interacts with 
the metal surface. The Monte Carlo simulation can define 
the orientation of each inhibitor molecule when 
interacting with the metal surface and show the 
adsorption pattern that occurs [31-32]. 

■ COMPUTATIONAL METHODS 

Quantum Chemical Calculations 

Quantum chemical calculations were carried out to 
predict the molecular structure, electron distribution, and 
electron transfer from corrosion inhibitors (4HC–H, 
4HC–CH3, 4HC–OCH3, and 4HC–Cl) to the copper 
metal surface. The structure of targeted inhibitor 
molecules can be seen in Fig. 1. Geometry optimization is 
carried out first using the DFT method B3LYP/6-31G(d) 
to speed up the calculation of molecular geometry. The 
structures of 4HC–H, 4HC–CH3, 4HC–OCH3, and 4HC–
Cl were re-optimized using the DFT and ab initio MP2 
methods at the theoretical level 6-311++G (d,p) in the gas 
phase, for both neutral and protonated molecules. A 
polarized continuum model based on the Gaussian code 
is used to incorporate the effect of solvent in the 
calculation. Water has a dielectric constant of 78.4, and 
other solvents follow the gaussian code. The gas-phase 
geometries from single-point estimates are sufficient for 
energetics in the solvent phase. Previous studies showed 
that it had only a small effect on structure and energy [33-
35]. All calculations of quantum chemical and geometric 
parameters using the Gaussian 09 program [36]. 

Quantum chemical parameters such as high 
occupied and low unoccupied molecular orbitals (EHOMO 
and  ELUMO),  gap  energy  ΔE,  ionization  potential  (I),  

 
Fig 1. The efficiency of corrosion inhibition of 4-
hydrocoumarin derivatives against copper [18] 

electron affinity (A), electronegativity (χ), hardness (η), 
and the number of electron transfers (ΔN) were 
calculated based on DFT and ab initio methods. 
According to Koopman's theorem, the energy values of 
HOMO and LUMO in each organic inhibitor are related 
to the ionization potential (I) and electron affinity (A) 
[37] according to Eq. 1 and Eq. 2. 
I EHOMO   (1) 
A ELUMO   (2) 
Electronegativity (χ) and hardness of each organic 
inhibitor can be calculated by Eqs. 3 4 [38-39]: 

(I A)
2


   (3) 

(I A)
2


  (4) 

According to Pearson's theory [40-41], the number of 
electrons transferred (ΔN) from each organic inhibitor 
to the metal can be calculated by Eq. 5. 

 
Cu InhN

2 CU Inh
 

 
 

 (5) 

where χCu and χInh represent absolute electronegativity 
values of copper and organic inhibitors, respectively. 
ηCu and ηInh, respectively, represent absolute hardness 
values of copper and organic inhibitors. The theoretical 
study values of χCu = 4.48 eV/mol and ηCu = 0 eV/mol 
were used to calculate the number of electrons 
transferred [42]. 

The Fukui index to determine nucleophilic (f+) and 
electrophilic (f-) attacks [43] can be calculated by Eq. 6 
and Eq. 7. 
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   k kf q N 1 q N    (6) 

   k kf q N q N 1     (7) 
where qk(N+1) is atomic charge (+1), qk(N) is atomic 
charge (0), qk(N-1) is atomic charge (-1) in organic 
inhibitors. f+ indicates that the attack is nucleophilic while 
f– indicates that the attack is electrophilic [43]. 

Monte Carlo Simulation 

The interactions between organic inhibitors, water 
molecules, and metal surfaces were studied using the 
Material Studio software [44-45]. The Monte Carlo 
simulation can help find the most stable adsorption site 
on the metal surface by searching for the lowest energy 
adsorption site. The Monte Carlo simulation protocol in 
this study uses the steps as previously published [46]. All 
simulations are implemented with the COMPASS force 
field to optimize all system components. The adsorbates 
used in this simulation are 4HC–H, 4HC–CH3, 4HC–
OCH3, and 4HC–Cl. Each adsorbate added 100 molecules 
of water to simulate the effect of the solvent because 
corrosion occurs in the solution. The simulation aims to 
find the lowest energy adsorption side to determine the 
adsorption preference of organic inhibitors on the surface 
of Cu(111) in 100 water molecules. 

■ RESULTS AND DISCUSSION 

Experimental studies on 4-Hydrocoumarin 
derivatives as corrosion inhibitors on copper in nitric 
acidmedia have been reported by Fouda et al. [18]. The 

highest inhibition efficiency value in 4H–OCH3 was 
obtained at 97.3%, according to Fig. 1. From the 
experimental study, it was seen that the OCH3 group 
gave the maximum contribution to the efficiency of 
corrosion inhibition. However, in the publication, 
Fouda et al. [18] have not explained why OCH3 
contributes more to the corrosion inhibition 
performance than the CH3 and Cl functional groups. 
Revisiting the corrosion inhibition performance of 4-
hyrdrocoumarin derivatives was remodeled using DFT, 
ab initio, and Monte Carlo simulation studies. The 
structures of derivatives of 4-hyrocoumarin such as 
4HC–H, 4HC–CH3, 4HC–OCH3, and 4HC–Cl are 
depicted in Fig. 2. The four corrosion inhibitors were 
tested theoretically as corrosion inhibitors on copper 
surfaces. 

First, the DFT and ab initio methods determine the 
geometry and quantum chemical parameters. As a 
consequence of choosing the DFT and ab initio 
methods, it is necessary to validate its accuracy. The 
theoretical level validation was carried out by comparing 
the crystal structure of the 4-hydrocoumarin derivative 
with the theoretical results [47]. A comparison of 
experimental and theoretical geometry parameters can 
be seen in Table 1. There is a relatively low difference 
between bond distance and bond angle between DFT/6-
311++G (d,p) and experimental, 0.016 and 0.818, 
respectively. It shows that the level theory for testing 
corrosion inhibition is accurate. 

 
Fig 2. 2D and 3D structures of the inhibitors, 4HC-H, 4HC-CH3, 4HC-OCH3, and 4HC-Cl 



Indones. J. Chem., 2022, 22 (2), 413 - 428    

 

Saprizal Hadisaputra et al.   
 

416 

 
Fig 2. 2D and 3D structures of the inhibitors, 4HC-H, 4HC-CH3, 4HC-OCH3, and 4HC-Cl (Continued) 

Table 1. Comparison of geometrical parameters from X-ray structure of the 4-hydrocoumarin [32] and DFT/6-
311++G (d,p) 

Bond (Å) Exp. [32] Theory  Angle (º) Exp. [32] Theory 
C(1)-O(1) 1.199 1.202 O(2)-C(2)-C(3) 116.7 117.443 
C(1)-O(2) 1.378 1.414 O(2)-C(2)-C(7) 121.9 122.036 
C(1)-C(9) 1.450 1.464 C(3)-C(2)-C(7) 121.4 120.520 
O(2)-C(2) 1.371 1.358 C(2)-C(3)-C(4) 118.9 119.181 
C(2)-C(3) 1.374 1.398 C(3)-C(4)-C(5) 120.6 120.952 
C(2)-C(7) 1.384 1.407 C(6)-C(5)-C(4) 120.5 119.868 
C(3)-C(4) 1.376 1.390 C(5)-C(6)-C(7) 119.3 120.022 
C(4)-C(5) 1.387 1.405 C(2)-C(7)-C(6) 119.3 119.457 
C(5)-C(6) 1.372 1.386 C(2)-C(7)-C(8) 117.3 116.739 
C(6)-C(7) 1.398 1.409 C(6)-C(7)-C(8) 123.4 123.805 
C(7)-C(8) 1.435 1.436 O(3)-C(8)-C(9) 123.3 120.411 
C(8)-O(3) 1.310 1.334 O(3)-C(8)-C(7) 115.6 118.067 
C(8)-C(9) 1.375 1.390 C(9)-C(8)-C(7) 121.1 121.522 

- - - C(8)-C(9)-C(1) 120.0 120.810 
 

EHOMO is associated with the ability to donate 
electrons from molecules to metals. The EHOMO value 
indicates the tendency of the molecule to donate electrons 
to the acceptor molecule [37]. Therefore, the higher the 
EHOMO value, the stronger the organic inhibitor 
molecules attached to the metal surface. Prediction of 
organic inhibitors with the highest corrosion inhibition 
efficiency value can be based on the EHOMO value. 
Tables 2, 3, 4, and 5 show the quantum parameters of the 
4-hydrocoumarin derivatives calculated using the DFT/6-
311++G and MP2/6-311++G methods—calculation of 
quantum chemical parameters based on Eqs. 1, 2, 3, 4, and 

5. Tables 2, 3, 4, and 5 show that the highest EHOMO 
values correlate with the order of corrosion inhibition 
efficiency values in copper. The order of EHOMO values 
is 4HC–OCH3 > 4HC–CH3 > 4HC–H> 4HC–Cl. It can 
be seen that 4HC–OCH3 has a higher EHOMO 
compared to other inhibitors. Table 3, for example, 
shows that the EHOMO value of 4HC–OCH3 is the 
largest, -8.0233 eV. The results of a linear theoretical 
study with experimental results that have been 
previously reported by Fouda et al. [18]. The distribution 
of electrons in the HOMO orbitals of the four inhibitors 
is visualized in Fig. 3. 
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Table 2. The quantum chemical parameters (in eV) of neutral 4-hydrocoumarin derivatives were calculated using 
B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) in the gas phase 

 EHOMO ELUMO ΔE I A χ η ΔN 
4HC-H               
B3LYP/6-311++G(d,p) -6.4458 -2.9603 -3.4855 6.4458 2.9603 4.7031 1.7428 -0.0640 
MP2/6-311++G(d,p) -8.2429 0.5761 -8.8189 8.2429 -0.5761 3.8334 4.4095 0.0733 
4HC-CH3 

B3LYP/6-311++G(d,p) -6.2959 -2.8719 -3.4240 6.2959 2.8719 4.5839 1.7120 -0.0303 
MP2/6-311++G(d,p) -8.0644 0.6585 -8.7229 8.0644 -0.6585 3.7029 4.3614 0.0890 
4HC-OCH3 
B3LYP/6-311++G(d,p) -6.0665 -2.7952 -3.2714 6.0665 2.7952 4.4308 1.6357 0.0150 
MP2/6-311++G(d,p) -7.8913 0.7064 -8.5977 7.8913 -0.7064 3.5924 4.2989 0.1032 
4HC-Cl 
B3LYP/6-311++G(d,p) -6.4997 -3.1007 -3.3990 6.4997 3.1007 4.8002 1.6995 -0.0942 
MP2/6-311++G(d,p) -8.3493 0.4079 -8.7572 8.3493 -0.4079 3.9707 4.3786 0.0581 

Table 3. The quantum chemical parameters (in eV) of neutral the 4-hydrocoumarin derivative were calculated using 
B3LYP6-311++G(d,p) and MP2/6-311++G(d,p) in the aqueous phase 

  EHOMO ELUMO ΔE  I A χ η ΔN 
4HC-H               
B3LYP/6-311++G(d,p) -6.5454 -3.0153 -3.5301 6.5454 3.0153 4.7804 1.7651 -0.0851 
MP2/6-311++G(d,p) -8.3558 0.5524 -8.9082 8.3558 -0.5524 3.9017 4.4541 0.0649 
4HC-CH3 

B3LYP/6-311++G(d,p) -6.4050 -2.9560 -3.4490 6.4050 2.9560 4.6805 1.7245 -0.0581 
MP2/6-311++G(d,p) -8.1876 0.6052 -8.7928 8.1876 -0.6052 3.7912 4.3964 0.0783 
4HC-OCH3 
B3LYP/6-311++G(d,p) -6.1707 -2.9013 -3.2694 6.1707 2.9013 4.5360 1.6347 -0.0171 
MP2/6-311++G(d,p) -8.0233 0.6425 -8.6657 8.0233 -0.6425 3.6904 4.3329 0.0911 
4HC-Cl 
B3LYP/6-311++G(d,p) -6.5321 -3.0801 -3.4520 6.5321 3.0801 4.8061 1.7260 -0.0945 
MP2/6-311++G(d,p) -8.3890 0.4740 -8.8630 8.3890 -0.4740 3.9575 4.4315 0.0590 

Table 4. Quantum chemical parameters (in eV) of protonated 4-hydrocoumarin derivative calculated using B3LYP6-
311++G(d,p) and MP2/6-311++G(d,p) in the gas phase 

 EHOMO ELUMO ΔE  I A χ η ΔN 
Pronated 4HC-H         
B3LYP/6-311++G(d,p) -9.8622 -6.4328 -3.4295 9.8622 6.4328 8.1475 1.7147 -1.0694 
MP2/6-311++G(d,p) -11.5624 -2.8945 -8.6679 11.5624 2.8945 7.2284 4.3340 -0.3171 
Pronated 4HC-CH3 

B3LYP/6-311++G(d,p) -9.5580 -6.3296 -3.2284 9.5580 6.3296 7.9438 1.6142 -1.0729 
MP2/6-311++G(d,p) -11.2348 -2.8169 -8.4178 11.2348 2.8169 7.0258 4.2089 -0.3024 
Pronated 4HC-OCH3 
B3LYP/6-311++G(d,p) -9.1349 -6.2385 -2.8964 9.1349 6.2385 7.6867 1.4482 -1.1071 
MP2/6-311++G(d,p) -10.9499 -2.7807 -8.1691 10.9499 2.7807 6.8653 4.0846 -0.2920 
Pronated 4HC-Cl 
B3LYP/6-311++G(d,p) -9.9420 -6.7599 -3.1821 9.9420 6.7599 8.3509 1.5911 -1.2165 
MP2/6-311++G(d,p) -11.8078 -3.1984 -8.6094 11.8078 3.1984 7.5031 4.3047 -0.3511 
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Table 5. The derived quantum chemical parameters (in eV) of protonated 4-hydrocoumarin were calculated using 
B3LYP6-311++G(d,p) and MP2/6-311++G(d,p) in the aqueous phase 

 EHOMO ELUMO ΔE I A χ η ΔN 
Pronated 4HC-H        
B3LYP/6-311++G(d,p) -7.1128 -3.4349 -3.6779 7.1128 3.4349 5.2738 1.8389 -0.2158 
MP2/6-311++G(d,p) -8.8987 0.1981 -9.0968 8.8987 -0.1981 4.3503 4.5484 0.0143 
Pronated 4HC-CH3 

B3LYP/6-311++G(d,p) -6.9084 -3.3737 -3.5348 6.9084 3.3737 5.1410 1.7674 -0.1870 
MP2/6-311++G(d,p) -8.6709 0.2397 -8.9106 8.6709 -0.2397 4.2156 4.4553 0.0297 
Pronated 4HC--OCH3 
B3LYP/6-311++G(d,p) -6.5819 -3.3157 -3.2662 6.5819 3.3157 4.9488 1.6331 -0.1435 
MP2/6-311++G(d,p) -8.4614 0.2672 -8.7286 8.4614 -0.2672 4.0971 4.3643 0.0439 
Pronated 4HC-Cl 
B3LYP/6-311++G(d,p) -7.1253 -3.6616 -3.4637 7.1253 3.6616 5.3934 1.7319 -0.2637 
MP2/6-311++G(d,p) -9.0040 -0.0041 -8.9999 9.0040 0.0041 4.5040 4.4999 -0.0027 

 
EHOMO is directly related to the value of the 

ionization potential [38]. The potential ionization value 
can be calculated by Eq. 1. Table 4 shows that the lowest 
ionization potential value is indicated by 4HC-OCH3 
(8.0233 eV) compared to the potential ionization value of 
4HC-H (8.3558 eV), 4HC-CH3 (8.1876 eV), and 4HC-Cl 
(8.3890 eV). Based on the potential ionization value, it can 
be predicted that 4HC-OCH3 has a higher inhibition 
efficiency value than 4HC-H, 4HC-CH3, and 4HC-Cl. 
The value of ionization potential is the minimum energy 
required for the release of electrons to bind to the metal 
surface to protect the metal from corrosive media. 
Therefore, a low ionization potential value can increase 
the inhibition efficiency [38]. 

Electronegativity (χ) has proven to significantly 
influence the theory of chemical reactivity. When organic 
inhibitors and copper metal interact, electrons will flow 
from a lower electronegativity value (organic inhibitor) to 
a high electronegativity value (Cu) so that the chemical 
potential is balanced [39]. Electronegativity values were 
calculated using Eq. 3. Table 3 shows the calculations 
using the MP2/6-311++G(d,p) method. The lowest 
electronegativity value at 4HC–OCH3 was 3.6904 eV. The 
electronegativity values for the other molecules 4HC–H, 
4HC–CH3, and 4HC–Cl were 3.9017, 3.7912, and 3.9575 
eV, respectively. Based on the electronegativity value, it 
can be predicted that 4HC–OCH3 has the highest 
corrosion inhibition efficiency value compared to the 

other three inhibitors. The value of electronegativity was 
obtained in linear theoretical calculations with 
experimental studies from Fouda et al. [18]. 

The number of electrons transferred (ΔN) from the 
inhibitor to the metal is calculated using Eq. 5. The 
electron transfer value shows that the electron donor's 
inhibition efficiency value is generated [37]. If the 
electron transfer value is less than 3.6, then the value of 
the inhibition efficiency increases. Electron transfer can 
occur in inhibited corrosion processes [38]. Inhibitors 
4HC–H, 4HC–CH3, 4HC–OCH3, and 4HC–Cl are 
electron donors, while copper metal is an acceptor to 
produce an inhibitory adsorption layer against 
corrosion. More inhibitors will coat the Cu surface with 
the increased ability to donate electrons to the Cu 
surface. The order of high to low electron transferability 
is 4HC–OCH3 > 4HC–CH3 > 4HC–H > 4HC–Cl. These 
results are valid for all gaseous media and solution 
phases and neutral and protonated conditions. This 
trend of electron donors could explain why the OCH3 
functional group contributes to corrosion inhibition 
efficiency. 

Molecular Electrostatic Potential (MEP) explains 
hydrogen bonding, reactivity, and the structural 
relationship of molecular activity. The structure of the 
electron density surface plot mapped by MEP describes 
the shape, size, distribution of charge density, and the 
place of chemical reactivity in a molecule. The color 
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scheme for the MEP surface is red, indicating electron-
rich and partially negative charge; blue color indicates a 
lack of electrons and a partial positive charge; a light blue 
color indicates a slightly electron-deficient region; the 
yellow color indicates a slightly electron-rich region; and 
green color indicates neutral [48]. The MEP plots of the 
targeted organic inhibitors 4HC–H, 4HC–CH3, 4HC–
OCH3, and 4HC-Cl can be seen in Fig. 3. Low electron 
density in blue is seen in the delocalized region of 
benzene. The electron density is higher in the red to the 
green color of the oxygen atom in the carbonyl of the 
coumarin structure. It shows that the oxygen atom in the 
carbonyl of the coumarin structure has a high electron 
density. It will be attracted to the Cu surface as a region of 
low electron density. The MEP only describes the change 
in the electron density of an atom as a result of the 
addition or removal of charge [49]. As a complement to 
the MEP data, the Fukui function is a more accurate 
indicator of the part of the organic inhibitor exposed to 
electrophilic or nucleophilic attack. 

The use of Mulliken population analysis can 
estimate binding sites of organic inhibitors. The 
calculation of the atomic charge distribution across the 
charge frame is widely used as a reference for determining 

binding sites [49]. The more negatively charged 
heteroatoms, the easier it is to be adsorbed on the metal 
surface. The local reactivity of the corrosion inhibitor 
can be studied by observing the Fukui index of each 
atom. The Fukui function provides more comprehensive 
information about the reactivity of the molecule being 
studied [49]. The Fukui function can be used to measure 
the local reactivity of organic inhibitors and 
demonstrate chemical reactivity for nucleophilic and 
electrophilic attacks [50-51]. Fukui function values can 
be used to identify which atoms in each inhibitor are 
more susceptible to electrophilic or nucleophilic attack. 
The value of the Fukui function can be calculated using 
Eqs. 6 and 7. The f+ value measures the reactivity side 
that is susceptible to nucleophilic attack associated with 
ELUMO to accept electrons. The f-value measures the 
reactivity of molecules exposed to electrophilic attack; it 
is related to electron-donating EHOMO [51]. Table 6 
shows the nucleophilic attack (f+) of the 4HC–H 
inhibitor on the C9 and O19 atoms; 4HC–CH3 
nucleophilic attack occurs on the N12 and C16. 
Furthermore, 4HC–OCH3 nucleophilic attack is likely to 
occur on the C17 and O21; while 4HC–Cl occurs in O19 
and Cl21. The active site most likely accepts electrons from  

 
Fig 3. Visualization of the HOMO-LUMO, MEP, and ESP orbitals of 4HC-H, 4HC-CH3, 4HC-OCH3, 4HC-Cl 
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Table 6. Fukui function analysis of corrosion inhibitors 4-hydrocoumarin derivatives, 4HC-H, 4HC-CH3, 4HC-OCH3 
and 4HC-Cl 

4HC-H N- N N+ f+ f- 
C1 -0.4041 -0.3946 -0.3732 0.0214 0.0095 
C2 -0.3776 -0.3263 -0.2889 0.0374 0.0513 
C3 -0.2421 -0.2375 -0.2333 0.0041 0.0046 
C4 -1.4233 -1.4690 -1.5317 -0.0626 -0.0458 
C5 0.9335 0.9751 1.0491 0.0739 0.0416 
C6 -0.0599 -0.0136 0.0046 0.0182 0.0463 
O7 -0.1928 -0.1549 -0.1126 0.0423 0.0379 
C8 0.2791 0.2855 0.2741 -0.0114 0.0063 
C9 0.2159 0.2135 0.3028 0.0893 -0.0024 

C10 0.4810 0.5575 0.6015 0.0440 0.0765 
N11 -0.4339 -0.2901 -0.2231 0.0670 0.1438 
N12 0.0525 0.2222 0.3051 0.0829 0.1697 
C13 -0.5057 -0.6111 -0.6467 -0.0355 -0.1054 
C14 0.0484 0.0928 0.1299 0.0370 0.0445 
C15 -0.1607 -0.1383 -0.1107 0.0276 0.0224 
C16 -0.3516 -0.3121 -0.2506 0.0615 0.0395 
C17 -0.2377 -0.2026 -0.1677 0.0348 0.0352 
C18 0.0568 0.1353 0.1945 0.0592 0.0784 
O19 -0.3773 -0.3430 -0.2514 0.0915 0.0343 
O20 -0.2560 -0.1876 -0.1310 0.0567 0.0684 

4HC-CH3 N- N N+ f+ f- 
C1 -0.3980 -0.3897 -0.3728 0.0170 0.0083 
C2 -0.3727 -0.3202 -0.2867 0.0336 0.0525 
C3 -0.2782 -0.2756 -0.2743 0.0013 0.0026 
C4 -1.3012 -1.3405 -1.3925 -0.0520 -0.0393 
C5 0.9436 0.9844 1.0486 0.0642 0.0407 
C6 -0.0393 0.0072 0.0240 0.0169 0.0465 
C7 -0.1964 -0.1585 -0.1210 0.0374 0.0379 
C8 0.2766 0.2821 0.2731 -0.0090 0.0055 
C9 0.1393 0.1517 0.2249 0.0732 0.0125 

C10 0.4341 0.5021 0.5451 0.0430 0.0680 
N11 -0.4843 -0.3597 -0.2940 0.0657 0.1246 
N12 0.1089 0.2951 0.3760 0.0808 0.1862 
C13 -0.7795 -0.9208 -0.9724 -0.0516 -0.1413 
C14 0.0636 0.1361 0.1791 0.0430 0.0725 
C15 -0.6303 -0.6245 -0.6219 0.0026 0.0058 
C16 0.6368 0.6776 0.7641 0.0865 0.0408 
C17 -0.1278 -0.0740 -0.0046 0.0695 0.0537 
C18 -0.0337 0.0295 0.0814 0.0520 0.0631 
O19 -0.3750 -0.3405 -0.2605 0.0800 0.0345 
O20 -0.2593 -0.1910 -0.1376 0.0535 0.0682 
C21 -0.5677 -0.5710 -0.5747 -0.0037 -0.0034 
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Table 6. Fukui function analysis of corrosion inhibitors 4-hydrocoumarin derivatives, 4HC-H, 4HC-CH3, 4HC-OCH3 
and 4HC-Cl (Continued) 

4HC-OCH3 N- N N+ f+ f- 
C1 -0.3891 -0.3803 -0.3677 0.0126 0.0088 
C2 -0.3957 -0.3433 -0.3169 0.0264 0.0524 
C3 -0.2396 -0.2354 -0.2321 0.0034 0.0041 
C4 -1.5237 -1.5689 -1.6218 -0.0529 -0.0452 
C5 1.0002 1.0498 1.1044 0.0546 0.0496 
C6 -0.0090 0.0362 0.0512 0.0150 0.0452 
O7 -0.1953 -0.1575 -0.1268 0.0306 0.0379 
C8 0.2597 0.2546 0.2466 -0.0081 -0.0051 
C9 0.2366 0.2512 0.3069 0.0557 0.0146 

C10 0.4550 0.5233 0.5591 0.0358 0.0683 
N11 -0.4816 -0.3589 -0.2889 0.0700 0.1227 
N12 0.0980 0.2803 0.3460 0.0657 0.1823 
C13 -0.8710 -1.0206 -1.0535 -0.0328 -0.1496 
C14 0.2856 0.3565 0.3986 0.0421 0.0709 
C15 -0.3688 -0.3714 -0.3546 0.0168 -0.0026 
C16 -0.3980 -0.3860 -0.3893 -0.0033 0.0120 
C17 0.2840 0.3548 0.4683 0.1135 0.0708 
C18 0.0448 0.1369 0.2140 0.0772 0.0921 
O19 -0.3756 -0.3413 -0.2796 0.0617 0.0342 
O20 -0.2608 -0.1933 -0.1468 0.0466 0.0674 
O21 -0.2111 -0.1811 -0.0866 0.0945 0.0301 
C22 -0.3121 -0.3236 -0.3481 -0.0245 -0.0114 

4HC-Cl N- N N+ f+ f- 
C1 -0.3961 -0.3882 -0.3693 0.0189 0.0078 
C2 -0.3625 -0.3127 -0.2768 0.0359 0.0498 
C3 -0.2798 -0.2771 -0.2759 0.0012 0.0026 
C4 -1.3035 -1.3419 -1.3929 -0.0511 -0.0383 
C5 0.9649 1.0054 1.0770 0.0716 0.0405 
C6 -0.0082 0.0360 0.0541 0.0181 0.0442 
C7 -0.1901 -0.1533 -0.1137 0.0395 0.0369 
C8 0.2900 0.2965 0.2860 -0.0105 0.0065 
C9 0.0839 0.0865 0.1605 0.0739 0.0027 

C10 0.4374 0.5026 0.5452 0.0426 0.0652 
N11 -0.4995 -0.3704 -0.3100 0.0605 0.1291 
N12 0.1302 0.3170 0.4004 0.0834 0.1867 
C13 -0.9846 -1.1220 -1.1737 -0.0517 -0.1374 
C14 0.0299 0.1105 0.1558 0.0453 0.0806 
C15 -0.4149 -0.3841 -0.3499 0.0342 0.0308 
C16 0.4784 0.4865 0.5036 0.0171 0.0081 
C17 -0.2878 -0.2465 -0.2020 0.0445 0.0413 
C18 -0.2872 -0.2289 -0.1855 0.0434 0.0583 
O19 -0.3729 -0.3390 -0.2535 0.0855 0.0340 
O20 -0.2520 -0.1847 -0.1312 0.0534 0.0673 
Cl21 0.3584 0.4271 0.5569 0.1298 0.0687 
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the Cu(111) surface—the electrophilic attack (f-) of the 
targeted inhibitors present on atoms of N11 and N12. The 
active sites of N11 and N12 atoms are more likely to 
donate electrons to vacant orbitals to the Cu(111) surface 
to form coordination bonds. 

Monte Carlo simulations were carried out on 
corrosion inhibitor systems, water molecules, and metal 
surfaces. Monte Carlo simulation was used to explore the 
adsorption properties of inhibitors and 100 molecules of 
H2O on Cu(111) metal [52]. Cu(111) surface is used for 
the Monte Carlo simulation process because it has the 
most stable surface. Fig. 4 shows the most stable 
adsorption pattern on the Cu(111) surface containing 100 
water molecules and the targeted inhibitors (4HC-H, 
4HC-CH3, 4HC-OCH3, and 4HC-Cl). The distance 
between the organic corrosion inhibitor and the Cu(111) 
surface can determine the nature of the adsorption 
process [53]. In general, distances having less than 3.5 
indicate that the interaction model is chemisorption, 
whereas lengths greater than 3.5 are associated with 
physisorption [53-54]. Fig. 4 shows that the distance value 
is less than 3.5, chemisorption's adsorption properties and 
a strong layer on the surface of Cu(111) can protect the 
copper from corrosion attack [46]. This system is also in 
equilibrium so that the predicted organic inhibitors are 

adsorbed on the Cu(111) surface. The targeted corrosion 
inhibitors, each having nitrogen, oxygen, and aromatic 
rings can donate electrons to the Cu(111) surface, 
respectively. The vacant orbital on the Cu(111) surface 
can facilitate the adsorption process by accepting 
electrons from the inhibitor to form a stable 
coordination bond [46]. Fig. 5 and Table 7 shows the 
adsorption energy for the most stable configuration for 
systems Cu(111)/4HC–H/100H2O, Cu(111)/4HC–
CH3/100H2O, and Cu(111)/4HC–OCH3/100H2O and 
4HC–Cl/100H2O. The adsorption energy of 4HC–OCH3 
is higher than that of water molecules. The distribution 
of adsorption energy of organic and water inhibitors can 
be seen in Fig. 4. It can be seen that the distribution of 
adsorption energy of each organic and water inhibitor is 
separate from each other. The 4-hydrocoumarin 
derivative can form a firm layer, so it is good to be used 
as an inhibitor of corrosion on the surface of Cu metal 
[52,54]. The order of adsorption energy of organic 
inhibitors on the surface of Cu(111) in the presence of 
100 water molecules is 4HC–OCH3 > 4HC–CH3 > 4HC–
H > 4HC–Cl. This sequence agrees with the 
experimental study of 4-hydrocoumarin derivatives 
reported by Fouda et al. [18]. The highest adsorption 
energy  value was  obtained at  137.14908 kcal/mol  from  

 
Fig 4. Adsorption of 4-hydrocoumarin derivatives on copper metal surfaces in the Monte Carlo 
Cu(111)/inhibitor/100H2O system 
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Table 7. The adsorption energy of 4-hydrocoumarin derivative Cu(111)/inhibitor/100H2O system calculated by Monte 
Carlo simulation 

System 
The energy of adsorption (inhibitors) 

kcal/mol 
Adsorption energy (H2O) 

kcal/mol 
Inhibitor Neutral   
Cu(111)/4HC-H /100H2O -91.83275390 -13.39012994 
Cu(111)/4HC-CH3 /100H2O -103.55094600 -13.52416666 
Cu(111)/4HC-OCH3 /100H2O -137.14908485 -13.84864802 
Cu(111)/4HC -Cl /100H2O -77.13014067 -16.68505331 
Protonates inhibitors   
Cu(111)/4HC-H /100H2O -119.45137639 -14.07508940 
Cu(111)/4HC-CH3 /100H2O -127.25878413 -13.24084863 
Cu(111)/4HC-OCH3 /100H2O -133.57017060 -14.00594325 
Cu(111)/4HC -Cl /100H2O -115.50218473 -15.79042158 

 
Fig 5. Distribution of the adsorption energy of the 4-hydrocoumarin derivative for the Cu(111)/inhibitor/100H2O system 

 
Fig 6. Correlation between adsorption energy and quantum chemical parameters of 4-hydrocoumarin derivatives from 
neutral conditions 
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Fig 6. Correlation between adsorption energy and quantum chemical parameters of 4-hydrocoumarin derivatives from 
neutral conditions (Continued) 

 
Fig 7. Correlation between adsorption energy and quantum chemical parameters of 4-hydrocoumarin derivatives 
under protonated inhibitor conditions 
 
4HC–OCH3 on the surface of Cu(111) in aqueous media. 
The greater the negative value of the adsorption energy, 
the stronger the adsorption [52-54]. That explains why 
4HC–OCH3 has high inhibitory efficiency compared to 
4HC–H, 4HC–CH3, and 4HC–Cl. The Pearson 
connection between adsorption energy and quantum 
characteristics for neutral and protonated inhibitors is 

shown in Fig. 6 and 7. They demonstrate linear 
connections, particularly for EHOMO and electron 
transfer. It demonstrates that these quantum factors play 
a significant influence in inhibitor adsorption on metal 
surfaces. The adsorption of inhibitor molecules on the 
metal surface is the general mechanism of corrosion 
inhibition. The adsorption energy can be used as a tool 
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for determining the inhibitors' amount of inhibition. The 
lower the inhibition energy, the more stable and stronger 
the adsorption of inhibitor on the metal surface. 

■ CONCLUSION 

Experimental studies show that 4-hydrocoumarin 
derivatives have potential as corrosion inhibitors. 
However, previous publications have not explained in 
detail why the 4HC–OCH3 has the highest corrosion 
inhibition. Quantum chemistry calculations and Monte 
Carlo simulations were carried out to explain the 
inhibitor molecule's electronic side. Density functional 
theory and ab initio MP2 calculate quantum chemical 
parameters such as EHOMO, ELUMO, EGAP, ionization 
potential, electron affinity, electronegativity, hardness, 
and electron transfer on target organic inhibitors under 
neutral or protonated conditions. The correlation 
between quantum chemical parameters such as EHOMO, 
ionization potential, electronegativity, electron transfer 
with adsorption energy provides an excellent correlation. 
Quantum parameters explain why OCH3 functional 
group has the highest corrosion inhibition while the 
chlorine group gives the lowest yield. In addition, the 
highest adsorption energy of 4HC–OCH3 also supports 
the previous explanation. The highest adsorption energy 
was obtained at 4HC–OCH3, with a value of -137.1490 
kcal/mol, followed by 4HC–CH3 > 4HC–H > 4HC–Cl. 
The study is expected to strengthen the explanation of the 
experimental study. 
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