SYNTHESIS AND REACTIONS OF 1-(4'-BROMOPHENACYL)-3-(4'-BROMO-PHENYL)-4,6-DIMETHOXYINDOLE

Jumina*
Chemistry Department, Faculty of Mathematics and Natural Sciences
Gadjah Mada University, Yogyakarta, Sekip Utara Bulaksumur Yogyakarta 55281

Received 6 March 2005; Accepted 19 April 2005

ABSTRACT

1-Phenacyl-3-aryl-4,6-dimethoxyindoles 2b and 2c were obtained in good yields respectively through cyclization of N,N-diphenacylaniline 1b and 1c in trifluoroacetic acid. However, instead of giving pyrroloindole 3c, treatment of phenacylindole 2c with polyphosphoric acid afforded indolizine 5 in 42% yield. Phenacylindole 2c reacts with the Vilsmeier aroylation reagent consisted of a mixture of phosphoryl chloride and p-chloro-N,N-dimethylbenzamide to give 2-arylimidole 6 (32%) and pyrroloindole 7 (22%). When treated with sodium borohydride, phenacylindole 2c gave alcohol 8 in 83% yield. Nonetheless, treatment of alcohol 8 with either p-toluenesulfonic acid in glacial acetic acid or boron trifluoride etherate in benzene did not give the desired dihydropyrroloindole 12. Instead, the reactions afforded respectively acetyl ester 9 and indole 10 in 56% and 63% yield.

Keywords: phenacylindole, aroylindole, pyrroloindole, and indolizine.

INTRODUCTION

The reaction of N,N-diphenacylaniline 1a with polyphosphoric acid (PPA) has been reported by Bartsch [1,2] to afford either 1-phenacyl-3-phenylindole 2a or 1,5-diphenylpyrrolo[3,2,1-hij]indole 3a. When the reaction was carried out at 130°C for 4 hours, 1-phenacyl-3-phenylindole 2a was the major product. However, when the reaction was performed at the same temperature but in a much longer period of time (50 hours), 1,5-diphenylpyrrolo[3,2,1-h]indole 3a was obtained in 39%. Clear evidence for this symmetrical pyrroloindole 3 was given by its mass spectrum, which revealed a molecular ion at m/z 293, and two fragments at m/z 216 and m/z 139 originating from the loss of one and two phenyl groups respectively. The elemental analysis and 60 MHz 1H n.m.r. spectrum of this pyrroloindole were consistent with the structure: the latter gave only one multiplet in the aromatic region (7.9-8.1 ppm).

An attempt to develop the Bartsch method has been conducted by Keller [3] who reacted N,N-di(4'-bromophenacyl)-3,5-dimethoxyaniline 1c with PPA under the same conditions as reported by Bartsch. However, instead of the symmetrical pyrroloindole 3c, the main outcome of this reaction was 3-bromo-5-(4'-bromophenyl)-9,11-dimethoxydibenzo[b,g]-indolizine 5. Although this product could not be obtained analytically pure, structural assignment based on its 1H and 13C n.m.r. spectra clearly showed the formation of this compound. Acid-catalyzed rearrangement of the presumed 3-substituted indole 2c intermediate to afford a 2-substituted indole 4, which underwent further cyclisation was considered to be the mechanism leading to the formation of the indolizine.

As an attempt to further develop the synthetic route towards pyrroloindole molecules, here the author reports the synthesis and reactions of 1-(4'-bromophenacyl)-3-(4'-bromophenyl)-4,6-dimethoxyindole. The latter aspect includes reaction of the phenacylindole with PPA and Vilsmeier aroylation agent, as well as reduction of the phenacylindole carbonyl group with NaBH4 followed by treatment of related alcohol with acids. In the case of PPA, a more recent work by Black and coworkers [4] has shown that PPA was a useful medium for the cyclisation of N-trifluoroacetyl-N-phenacylanilines leading to the generation of 3-aryl-4,6-dimethoxyindoles.

EXPERIMENTAL SECTION

General information

Melting points were measured on a Reichert microscope melting point apparatus and were uncorrected. Microanalyses were performed by Dr. H.P. Pham of the University of New South Wales.

* Email address: pak_jumina@yahoo.com
1H n.m.r. and 13C n.m.r. spectra were recorded in the designated solvents on a Bruker AC300F (300 MHz) or a Bruker AM500 (500MHz) spectrometer. Chemical shifts were determined on the δ scale internally referenced to the solvent peaks: CDCl₃ (7.30 ppm, 77.7 ppm) and DMSO-d₆ (2.50 ppm, 39.9 ppm). Ultraviolet spectra were measured on a Hitachi U-3200 spectrometer and refer to solutions in absolute methanol. Infrared spectra were obtained on a Perkin Elmer 298 IR spectrometer and refer to paraffin mulls. The E.I. mass spectra were recorded on a VG Quattro mass spectrometer at 70eV ionisation voltage and 200°C ion source temperature by Dr. Joe Brophy. E.S. mass spectra were recorded on a VG Quattro mass spectrometer at 4000 volts probe voltage, 1000 volts counter electrode, 65 volts cone voltage using a mixture of acetonitrile and water (1:1) containing 1% acetic acid as the solvent and at 5 μL/min flow rate also by Dr. Joe Brophy. High molecular weight compounds were run on matrix assisted laser desorption (MALDI) mass spectrometers Finnigan MAT or lasermat 2000 using a matrix of α-cyano-4-hydroxycinnamic acid by Mr. Ray Lidgard.

Flash column chromatography was carried out using Merck 230-400 mesh silica gel and refers to the technique described by Still [5] using pressure at the top of the column. Suction chromatography was performed using Merck 60H silica gel and refers to the technique of applying suction at the base of the column. Preparative thin layer chromatography was carried out on 20x20x0.1 cm plates using Merck silica gel 7730 60GF254. Compounds were detected by short and long wavelength ultraviolet light.

3,5-Dimethoxy-N,N-diphenacylaniline (1b)
A mixture of 3,5-dimethoxyaniline (3.0 g, 19.59 mmol), α-bromoacetophenone (7.80 g, 39.20 mmol) and sodium carbonate (8.30 g, 78.40 mmol) in 95% ethanol (50 mL) was heated at reflux for 4h. The mixture was allowed to cool, the resulting precipitate was filtered, washed with water and recrystallized from chloroform/light petroleum to give the diphenacylaniline as a brown solid (2.74 g, 36%), m.p. 130-133°C. 1H n.m.r. (CDCl₃): δ 3.67, s, OMe; 4.91, s, CH₂; 5.72, d, J 2.5Hz, H₂,6; 5.92, t, J 2.5Hz, H₄; 7.51, 7.61 and 8.01, m, ArH. 13C n.m.r. (CDCl₃): δ 55.0, OMe; 58.0, CH₂; 89.6, C4; 92.4, C2,6; 127.8, 128.8 and 133.6, ArCH; 135.1, 150.4 and 161.6, ArC; 196.4, CO. Mass spectrum: m/z 389(M, 8%), 284(62), 166(22), 122(19), 105(84), 91(100), 84(30), 77(74).
4,6-Dimethoxy-1-phenacyl-3-phenylindole (2b)

Diphenacylaniline 1b (0.20 g, 0.51 mmol) was added into ice-cooled trifluoroacetic acid (4.0 mL), then the mixture was heated at 70°C for 1 h. The mixture was allowed to cool, diluted with ice-water (15 mL) and the resulting precipitate was filtered, washed with water and dried. Thin layer chromatography and elution with chloroform afforded the phenacylindole as a brown solid (0.17 g, 87%), m.p. 96-98°C. (Found: C, 77.5; H, 6.0; N, 3.6. C24H23NO3 requires C, 77.6; H, 5.7; N, 3.8%). \(\lambda_{\text{max}} \) 210 nm (c 63900), 241 (70600), 282 (39000). \(\nu_{\text{max}} \) 1700, 1620, 1600, 1220, 1100 cm\(^{-1}\). \(^1\)H n.m.r. (CDCl\(_3\)): \(\delta \) 3.80 and 3.81, each s, OMe; 5.39, s, CH\(_2\); 6.25, d, J 2.3 Hz, H5; 6.28, d, J 2.3 Hz, H7; 6.89, s, H2; 7.36 and 7.51, t, J 7.3 Hz, H3',4'; 7.63 and 8.00, d, J 1.8 Hz, H5; 6.77, d, J 8.0 Hz, ArH. Mass spectrum: m/z 531(M, 19%), 530(M+1, 19%), 529(M, 79.81Br, 58), 528(M+1, 79Br, 11), 527(M, 79Br, 23), 346(87), 345(42), 344(100), 207(32), 185(37), 185(39), 156(62), 155(65), 76(68), 75(58), 69(53), 43(47).

3-Bromo-5-(4'-bromophenyl)-9,11-dimethoxy-dibenz[b,g]indolizine (5)

Polyphosphoric acid (4.0 g) was heated at 130°C, then indole 2c (0.15 g, 0.28 mmol) was added and the mixture stirred for 1 h. The mixture was allowed to cool, diluted with water (30 mL) and basified with 20% sodium hydroxide. The resulting suspension was extracted with dichloromethane (3x60 mL), and the combined organic layers were washed with water, dried over magnesium sulfate and evaporated to leave a brown solid. Thin layer chromatography and elution with light petroleum in dichloromethane (1:4) gave the title compound as a yellow solid (60 mg, 42%), m.p. 86-88°C. \(^1\)H n.m.r. (CDCl\(_3\)) \(\delta \) 3.90 and 4.00, each s, OMe; 6.43, d, J 1.8 Hz, H5; 6.77, d, J 1.8 Hz, H7; 7.37-8.01, m, H3 and ArH. Mass spectrum: m/z 513(M, 81Br, 28%), 511(M, 79, 81Br, 56), 509(M, 79Br, 28), 498(22), 49(41), 49(24), 313(26), 26 (50), 236(43), 97(100), 83(84).

Reaction of indole 2c with 4-chloro-N,N-dimethylbenzamide and POCl\(_3\)

Indole 2c (0.15 g, 0.28 mmol) was added into portions in a solution of 4-chloro-N,N-dimethylbenzamide (0.10 g, 0.55 mmol) in phosphoryl chloride (1.0 mL) at 80°C. The mixture was stirred for 3 h, then cooled in an ice-bath, diluted cautiously with cold water (20 mL) and basified with 2 N sodium hydroxide. The resulting suspension was extracted with dichloromethane (3x60 mL), and the combined organic layers were washed with water, dried over magnesium sulfate and evaporated to leave a brown solid. Thin layer chromatography and elution with light petroleum in dichloromethane (1:4) gave two products.

i. 1-(4'-Bromophenacyl)-3-(4'-bromophenyl)-4,6-dimethoxyindole (6)

The title compound was obtained as a pale yellow solid (60 mg, 32%). \(^1\)H n.m.r. (CDCl\(_3\)) \(\delta \) 3.69 and 3.84, each s, OMe; 5.86, s, CH\(_2\); 6.21, d, J 1.8 Hz, H5; 6.24, d, J 1.8 Hz, H7; 6.98-7.82, m, ArH. ii. 1,5-Di-(4'-bromophenyl)-2-(4'-chlorobenzoyl)-6,8-dimethoxypyrrolo[3,2,1-i]indole (7)

This compound was isolated as a yellow solid (40 mg, 22%), m.p. 173-175°C. \(^1\)H n.m.r. (CDCl\(_3\)) \(\delta \)
3.91 and 4.05, each s, OMe; 6.42, s, H7; 7.06-7.78, m, ArH; 7.98, s, H4. Mass spectrum: m/z 655(M+2, 81Br, 37Cl, 10%), 653(M, 81Br, 37Cl, 14), 651(M, 79,81Br, 37Cl(12), 471(9), 185(97), 183(100), 157(69), 155(76), 139(30), 75(26).

3-(4'-Bromophenyl)-1-(2-(4'-bromophenyl)-2-hydroxyethyl)-4,6-dimethoxyindole (8)

Sodium borohydride (86 mg, 2.28 mmol) was added into a cooled solution of indole 2c (0.30 g, 0.57 mmol) in a mixture of absolute ethanol and tetrahydrofuran (1:1, 10 mL). The mixture was stirred at 0°C for 45 min, then at room temperature for another 30 min. The solvent was removed under reduced pressure and the residue was diluted with water (40 mL). The resulting precipitate was filtered, washed with water and used to give the hydroxyindole as a white solid (0.25 g, 83%), m.p. 97-99 °C (from dichloromethane/light petroleum). (Found: C, 53.9; H, 4.2; N, 2.4.

C24H27Br2NO3 requires C, 54.3; H, 4.0; N, 2.6%).

λmax 214 nm (ε7400), 315(5600). υmax 3200, 1620, 1590, 1545, 1340, 1205, 1165, 1060, 1010, 800 cm⁻¹. 1H n.m.r (CDCl3): δ 2.06, s (br), OH; 3.78 and 3.85, each s, OMe; 4.16, d, J 6.2 Hz, CH2; 4.98, d, J 6.2 Hz, CH; 6.25, s, H5; 6.35, s, H7; 6.82, s, H2; 7.17-7.51, m, ArH. 13C n.m.r. (CDCl3): δ 54.0, CH2; 55.1 and 55.7, OMe; 72.8, CH; 85.6, C5; 92.1, C7; 110.6, 117.0, 119.6, 122.2, 134.7, 138.7, 140.0, 155.0 and 157.7, ArC; 125.0, C2; 127.6, 130.6, 131.0 and 131.8, ArH. Mass spectrum: m/z 533(M, 81Br, 21%), 531(M, 79,81Br, 42), 529(M, 79Br, 21), 347(20), 346(97), 344(100), 265 (18), 77 (28).

1-(4'-Bromophenyl)-2-[3'(4''-bromophenyl)-4',6'-dimethoxyindol-1-yl]acetate (9)

A mixture of indole 8 (0.15 g, 0.28 mmol), p-toluenesulfonyl acid monohydrate (0.28 mmol) and glacial acetic acid (8 mL) was heated at reflux for 2 h. The mixture was allowed to cool, then diluted with water (40 mL), cooled in an ice-bath, and basified by adding sodium hydroxide pellets slowly. The resulting suspension was extracted with ether (3x70 mL), the combined ethereal layers were washed with water, dried over magnesium sulfate and evaporated to leave a brown solid. Thin layer chromatography and elution with dichloromethane gave the acetoxyindole as a yellow solid (0.13 g, 83%), m.p. 97-99 °C. (Found: C, 61.7; H, 4.9; N, 2.0. C30H25Br2NO2 requires C, 60.9; H, 4.2; N, 2.4%)

1H n.m.r. (CDCl3) δ 3.80 and 3.82, each s, OMe; 4.45, t, J 7.4 Hz, CH; 4.60 and 4.63, each d, J 7.4 Hz, CH2; 6.25, d, J 1.8 Hz, H5; 6.27, d, J 1.8 Hz, H7; 6.40, s, H2; 6.99-7.43, m, ArH. Mass spectrum (MALDI): m/z 590(M⁺+, 79Br, 47%), 400(32), 379(46), 190(95), 172(95), 146(52).

DISCUSSION

A classical problem arising frequently in the Bischler indole synthesis is migration of the related alkyl or aryl substituents which leads to the formation of either the isomeric 2- or 3-substituted indoles. An example of such migration was observed by Crowther and coworkers [6] in which secondary phenacylanilines underwent rapid cyclisation in the presence of a trace of aniline hydrobromide to form 2-phenylindoles. A similar phenomenon was seen by Black and coworkers [4] who found that secondary α-aryliminoketones derived from 3,5-dimethoxyaniline and phenacyl bromides cyclised to afford 2-aryindoles rather than 3-aryindoles.

A different situation, indeed, has also been reported by Crowther and coworkers [6] for the cyclization of tertiary phenacylanilines such as N-phenylphenacylanilines. Instead of the 1,2-arylindoles reported by Crowther and coworkers [6] for the cyclization of secondary phenacylanilines with zinc chloride formed the 1,3-diphenylindole.

Black and co-workers [7] have shown that N-trifluoroacetetyl-N-phenacylanilines underwent cyclization leading to a series of 3-aryindoles. Two cyclising media used were a slurry of polyphosphoric
acid at 110°C and trifluoroacetic acid. Although good yields of the indoles were obtained in both media, easy isolation of the product and cleaner reactions were generally found when the cyclisations were conducted in trifluoroacetic acid. It was envisaged that cyclisation of N,N-diphenacylanilines with trifluoroacetic acid would lead to the generation of 1-phenacyl-3-arylindoles rather than 1-phenacyl-2-arylindoles.

Treatment of diphenacylanilines 1b and 1c with trifluoroacetic acid at 70°C for 1.5h gave respectively indoles 2b and 2c in high yields. There was no further cyclisation observed when the reaction was further heated at reflux for 5 hours. On the other hand, the majority of starting material was still present when the reaction was conducted at room temperature.

Clear evidence for indoles 2b and 2c was obtained from the 1H n.m.r. spectra which show typical doublets for H5 and H7 (6.19-6.28 ppm), more downfield singlets for H2 (6.85-6.89 ppm) and intense singlets of the acetyl CH$_2$ (5.35-5.39 ppm). In addition, the infrared spectra proved the absence of NH groups and the existence of carbonyl stretching frequencies (1700-1710 cm$^{-1}$).

Treatment of N-phenacylindole 2c with PPA at 130°C gave a mixture of products with indolizine 5 being isolated as the major component (42%). Evidence for the indolizine structure 5 was obtained from its mass spectrum showing a molecular ion at 513 (81Br, 28%) and the 1H n.m.r. spectrum demonstrating the existence of two doublets at 6.43 and 6.77 ppm respectively. The same compound, indeed, was obtained by Keller [4] from the reaction of diphenacylaniline 1c with PPA. Hence, the mechanism as proposed by Keller is consistent with this result.

Treatment of indole 2c with 2 equivalents of phosphoryl chloride and p-chloro-N,N-dimethylbenzamide at 70°C for 2h gave only starting materials. When the reaction was conducted in more vigorous conditions using the same amount of the benzamide and a large excess of phosphoryl chloride at 100°C for 3h, the product was 2-aroylindole 6 and pyrroloindole 7 in 32 and 22% yield respectively (Scheme 1).

It was quite surprising that indole 2c underwent benzoylation at C2, as the analogous formylation gave a good yield of the 7-carbaldehyde. Perhaps these phenomena indicated that greater steric hindrance for substitution at C7 should be encountered for the benzoylation rather than formylation. This is understandable as the chloromethyleniminium salt involved in the benzoylation should be more bulky than the intermediate participating in the formylation. The formation of pyrroloindole 7 itself presumably was assisted by the buttressing effect originating from the 2-aroyl substituent.
Evidence for aroylindole 6 was given by its 1H n.m.r. spectrum showing the disappearance of a singlet at 6.85 ppm corresponding to H2 of the starting indole 2c and the presence of an additional four protons in the aromatic region. The resonances for CH$_2$, H5 and H7 appeared as a singlet and doublets at 5.86, 6.21 and 6.24 ppm (J 1.8Hz) respectively. However, aroylindole 6 could not be well characterized, and the mass spectrum showed that the compound was still contaminated with other materials having higher molecular ions.

Pyrroloindole 7 revealed a molecular ion peak at m/z 653 (81Br, 37Cl, 14%) in its mass spectrum. The 1H n.m.r. spectrum showed the existence of two singlets at 6.42 and 7.98 ppm originating from H7 and H4 respectively, typical singlets for the protons of the methoxy groups (3.91 and 4.05 ppm), and multiplets between 7.06-7.78 ppm of the aromatic protons.

Attempts to generate the pyrroloindole 3c via direct cyclisation of N-phenacylindole 2c, were so far unsuccessful. It was of interest to reduce phenacylindole 2c to the corresponding benzylic alcohol, which could be expected to generate a stabilized carbocation 11 on treatment with acid. It was hoped that this carbocation would be sufficiently reactive to react with the indole C7 to give the dihydro-pyrroloindole 12.

Reduction of N-phenacylindole 2c with sodium borohydride in a mixture of ethanol and tetrahydrofuran (1:1) at room temperature for 45 min afforded alcohol 6 in 83% yield. The reaction was simple and the crude product was pure enough for spectroscopic measurements and further reaction. The reduction could be seen to be complete when the initial yellow colour turned colourless. Evidence for alcohol 6 was given by its elemental analysis, mass and 1H n.m.r. spectra.

Evidence for aroylindole 6 was given by its 1H n.m.r. spectrum showing the disappearance of a singlet at 6.85 ppm corresponding to H2 of the starting indole 2c and the presence of an additional four protons in the aromatic region. The resonances for CH$_2$, H5 and H7 appeared as a singlet and doublets at 5.86, 6.21 and 6.24 ppm (J 1.8Hz) respectively. However, aroylindole 6 could not be well characterized, and the mass spectrum showed that the compound was still contaminated with other materials having higher molecular ions.

Pyrroloindole 7 revealed a molecular ion peak at m/z 653 (81Br, 37Cl, 14%) in its mass spectrum. The 1H n.m.r. spectrum showed the existence of two singlets at 6.42 and 7.98 ppm originating from H7 and H4 respectively, typical singlets for the protons of the methoxy groups (3.91 and 4.05 ppm), and multiplets between 7.06-7.78 ppm of the aromatic protons.

Attempts to generate the pyrroloindole 3c via direct cyclisation of N-phenacylindole 2c, were so far unsuccessful. It was of interest to reduce phenacylindole 2c to the corresponding benzylic alcohol, which could be expected to generate a stabilized carbocation 11 on treatment with acid. It was hoped that this carbocation would be sufficiently reactive to react with the indole C7 to give the dihydro-pyrroloindole 12.

Reduction of N-phenacylindole 2c with sodium borohydride in a mixture of ethanol and tetrahydrofuran (1:1) at room temperature for 45 min afforded alcohol 6 in 83% yield. The reaction was simple and the crude product was pure enough for spectroscopic measurements and further reaction. The reduction could be seen to be complete when the initial yellow colour turned colourless. Evidence for alcohol 6 was given by its elemental analysis, mass and 1H n.m.r. spectra.

The cyclisation of alcohol 8 to the related dihydropyrroloindole has been tried using several acids. A complex reaction mixture was the sole product when the reaction was carried out utilizing PPA. Likewise, only the corresponding ester 9 in 56% yield was obtained when alcohol 8 was heated in refluxing acetic acid in the presence of p-toluenesulfonic acid. The similar ester formation was seen when the reaction was conducted in refluxing trifluoroacetic acid.

While the two diastereotopic methylene protons of alcohol 8 appeared in the 1H n.m.r. spectrum only as a doublet at 4.16 ppm (J 6.2Hz), those of ester 9 resonated individually and appeared as two quartets at 4.22 ppm and 4.45 ppm (Jgem 14.6Hz, Jvic 6.4Hz and 6.2Hz). Probably, the presence of the bulkier acetyl group retards the rotation of the ethyl C-C bond to such a rate that enables separate detection on the n.m.r. time scale.

The use of a Lewis acid such as BF$_3$.OEt$_2$ was also tried. Surprisingly, treatment of either alcohol 8 or ester 9 with this acid in refluxing benzene
afforded indole 10 as a result of electrophilic substitution of benzene. Indole 10 was obtained in 63% yield and its mass spectrum revealed a molecular ion at 590 (79Br, 47%). Although the compound could not be obtained analytically pure, clear evidence was given by the 1H n.m.r spectrum showing the presence of two doublets at 6.25 and 6.27 ppm (J 1.8Hz) which are typical for indole H5 and H7. In addition, the spectrum also demonstrated the existence of two doublets at 4.60 and 4.63 ppm (J 7.4Hz), and a triplet at 4.45 ppm (J 7.4Hz) corresponding to CH$_2$ and CH respectively.

Both alcohol 8 and ester 9 remained intact when these were treated with BF$_3$.OEt$_2$ in refluxing dichloromethane, chloroform or acetonitrile. Similarly, no reaction was observed when K10-clay or p-toluenesulfonic acid in various solvents were utilized.

CONCLUSIONS

Cyclization of N,N-diphenacylaniline 1b and 1c in trifluoroacetic acid afforded respectively phenacylindole 2b and 2c in high yields. Treatment of phenacylindole 2c with polyphosphoric acid gave indolizine 5 in 42% yield. Phenacylindole 2c reacts with the Vilsmeier aroylation reagent consisted of a mixture of phosphoryl chloride and p-chloro-N,N-dimethylbenzamide to give 2-arylindole 6 (32%) and pyrroloindole 7 (22%). Treatment of phenacylindole 2c with sodium borohydride gave alcohol 8 in 83% yield. Alcohol 8 reacts with p-toluenesulfonic acid in glacial acetic acid to give acetyl ester 9 in 56% yield. On the other hand, treatment of alcohol 8 with boron trifluoride etherate in benzene afforded indole 10 in 63% yield.

ACKNOWLEDGEMENT

The author deeply thanks to Prof. David St. C. Black and Dr. Naresh Kumar, both of University of New South Wales Sydney-Australia, for their suggestions and assistance. Financial support from Australian Assistance for International Development (AusAID) for the implementation of this research is also greatly appreciated.

REFERENCES