SYNTHESIS OF THIN FILM OF TIO₂ ON GRAPHITE SUBSTRATE BY CHEMICAL BATH DEPOSITION

Sintesis Lapis Tipis TiO₂ Pada Substrat Grafit Secara Chemical Bath Deposition

Fitria Rahmawati^{*}, Sayekti Wahyuningsih and Pamularsih A.W

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami, Surakarta, Central Java

Received 20 February 2006; Accepted 16 March 2006

ABSTRACT

Thin film of TiO_2 on graphite substrat has been prepared by means of chemical bath deposition. Cetyltrimethylammonium Bromide served as linking agent of synthesized TiO_2 to graphite substrate. The optical microscope and Scanning Electron Microscope (SEM) indicate that surfactant concentration affects the pore morphology of thin film Surface Area Analysis (SAA) of thin film indicated that the pore of thin film included in mesopore category. The anatase phase of TiO_2 quantity arised as the surfactant concentration increase, gave high efficiency of induced photon conversion to current efficiency (% IPCE).

Keywords: thin film, TiO₂, deposition, graphite

PENDAHULUAN

Pembuatan lapis tipis semikonduktor pada suatu substrat merupakan inovasi untuk mendapatkan semikonduktor fotokatalisis yang mudah ditangani dalam aplikasi fotokatalisis dalam arti tidak mengalami kesulitan pemisahan semikonduktor dari larutan zat yang didegradasi sehingga memungkinkan penggunaan lebih dari satu kali karena pencucian mudah dilakukan. Pemilihan substrat yang bersifat konduktif merupakan cara untuk dapat dengan mudah melakukan modifikasi penempelan logam pada permukaan semikonduktor dengan metode elektrolisis. Semikonduktor lapis tipis bersubtrat juga memudahkan metode perendaman untuk melakukan modifikasi secara surface sensitizer (pemisahan bentuk semikonduktor bersubstrat dari larutan sensitizer lebih mudah dilakukan dibandingkan bentuk powder). Sebagian besar peneliti semikonduktor fotokatalis membuat lapisan tipis semikonduktor pada plat kaca Indium tin oksida (Indium tin oxide glass plate) dengan menggunakan metode seperti teknik spin coating [1], dan magnetron sputtering [2].

lapis Metode penempelan tipis dengan memanfaatkan sifat aktif antarmuka surfaktan merupakan inovasi metode penempelan lapis tipis yang relatif sederhana dan mudah dibandingkan metode pembuatan lapis tipis yang sudah ada, seperti magnetron sputtering dan vapor phase deposition. Yang, et al [3] berhasil menumbuhkan lapisan mesopori silika dari TEOS (Tetraorthosilicate) yang dihidrolisis dengan asam klorida (HCI) pada permukaan grafit yang difasilitasi oleh adanya lapisan monolayer surfaktan CTACI (Cetyltrimethylammonium Chloride) pada antarmuka grafit-larutan sintesis. Sintesis dilakukan dengan metode deposisi secara kimia pada suhu 80° C selama tujuh hari menggunakan konsentrasi surfaktan pada range 4 – 18 mM.

Penempelan lapis tipis semikonduktor TiO2 pada substrat grafit yang dilakukan pada penelitian ini menggunakan metode penempelan dengan memanfaatkan surfaktan CTABr (cetyltrimethylammonium bromida) sebagai agen penghubung antara substrat grafit dengan material TiO₂ yang terbentuk dari hidrolisis TiCl₄ dalam kondisi asam HCI dengan pelarut air dan metanol Dalam peran mempelajari surfaktan sebagai agen penghubung terhadap permukaan grafit dan sebagai pencetak pori (pore template) penelitian memvariasikan penggunaan konsentrasi surfaktan pada 4, 8, 12, 16 mM dengan pertimbangan, konsentrasi yang dipakai merupakan konsentrasi di atas konsentrasi kritis misel, sehingga surfaktan sudah dapat membentuk misel dalam perannya sebagai pencetak pori, dan kisaran konsentrasi yang dipakai diharapkan dapat mewakili bentuk-bentuk misel yang mungkin dari surfaktan CTABr yang dipakai.

METODE PENELITIAN

Bahan

Bahan-bahan yang digunakan meliputi batang grafit, titanium(IV) klorida (TiCl₄) p.a., CTABr p.a, asam klorida 37% p.a., *deionized aquades*, metanol absolut, I_2 p.a., kalium iodida (KI) p.al.

Alat

Peralatan yang digunakan dalam penelitian ini adalah: furnace *Thermolyne 48000*, alat pemotong

^{*} Corresponding author. Email address : fi_rahmawati@yahoo.com (F. Rahmawati)

grafit, pengaduk magnetik, UV-Vis spectrometer Double Beam Shimadzu UV-1601 PC, spektrofotometer X-ray diffraction Shimadzu XRD-6000, SEM (Scanning Electron Microscope), Analysis, Surface Area Spektrofotometer UV-Vis Seiki Ogawa ANA-72 V dengan lampu deuterium 100 mA dan 10 mV dan wolfram 100 mA dan 10 mV, Mikrospkop optik kamera Nikon Eclipse E-400, 1 set alat uji fotoelektrokimia, Sanwa Multimeter digital CD 751 (skala μ A, mV dan Ω), dan alat-alat gelas.

Prosedur Kerja

Sintesis grafit/TiO₂ dilakukan dalam sel sintesis pada temperatur 60 °C dengan larutan sintesis 1 M HCl : 0,1 M TiCl₄ dan CTABr dengan variasi konsentrasi 4, 8, 12, dan 16 mM, dan lama waktu sintesis 2, 3, dan 4 hari. Plat grafit yang sudah terlapisi TiO₂ dicuci dengan deionized aquades, dan dikalsinasi dalam furnace dengan pemanasan pada temperatur 450 °C selama 4 jam[3]. Lapis tipis hasil sintesis kemudian dikarakterisasi dengan XRD spectroscopy untuk mengetahui kristalinitas dan sistem kristal, UV-Vis spektrometer pada lapis tipis TiO₂/glass silika untuk mengetahui kisaran respon panjang gelombang pada daerah UVvisibel, mikrospkop optik yang dihubungkan dengan kamera untuk menganalisis morfologi lapis tipis pada permukaan silika gelas didukung dengan analisis SEM, surface area analisis untuk mengetahui luas permukaan serta distribusi pori material, serta uji fotoelektrokimia untuk menganalisis efisiensi konversi induksi foton ke arus listrik dan stabilitas fotokimia.

HASIL DAN PEMBAHASAN

Surfaktan CTABr yang digunakan dalam proses sintesis lapis tipis TiO₂ dari hidrolisis TiCl₄ dalam kondisi asam pada penelitian ini, berfungsi sebagai agen penghubung antara substrat grafit dengan TiO₂, dan sebagai media pencetak pori pada grafit. Interaksi hidrofobik antara rantai alkana surfaktan dengan grafit menyebabkan surfaktan terorientasi pada permukaan grafit. Kesesuaian geometris gugus metilen dalam rantai alkana dengan cincin aromatik karbon pada permukaan grafit, menyebabkan orientasi head-tohead dan tail-to-tail surfaktan sepanjang sumbu simetri grafit. Orientasi tersebut dipicu oleh gaya hidrofobik, gaya elektrostatik antar pasangan ion dan gaya antar dipole antara surfaktan dan permukaan grafit yang secara elektrik bersifat konduktif. Surfaktan ini kemudian berfungsi sebagai templat bagi penempelan TiO₂ pada permukaan grafit. Kalsinasi pada 450 °C selama 4 jam berfungsi untuk menghilangkan komponen surfaktan sehingga akan terbentuk pori-pori pada lapis tipis TiO₂.

Variasi konsentrasi surfaktan yang diterapkan pada sintesis semikonduktor lapis tipis berpengaruh pada morfologi lapisan TiO₂. Hasil foto dari mikroskop optik dapat dilihat pada Gambar 1. Dari Gambar 1 dapat diketahui bahwa semakin besar konsentrasi CTABr yang digunakan, morfologi pori makin tidak teratur. Hal ini dimungkinkan karena misel yang terjadi berubah bentuk dengan berubahnya konsentrasi surfaktan yang terlibat,didukung oleh hasil SEM (Gambar 2).

Gambar 1. Foto mikroskop optik TiO₂ dengan [CTABr] 4mM (A), 12 mM (B), dan 16 mM (C)

Gambar 2. Analisis SEM pada permukaan lapisan grafit/TiO2. a) 8 mM CTABr, b). 16 mM CTABr

Gambar 3 Spektrum XRD untuk grafit/TiO₂ pada 4 hari sintesis dengan [CTABr] 4 mM (a), 8 mM (b), 12 mM (c), 16 mM

Gambar 4 Spektrum XRD untuk grafit/TiO₂ pada 16 mM CTABr dengan waktu sintesis 2 hari (a) 3 hari(b) dan 4 hari (c)

Tabel 1 Kelimpahan fase rutil, anatase, dan CTABr dari hasil XRD sampel grafit/TiO₂ yang telah dibandingkan dengan standar JCPDS, dan ukuran kristal TiO_2

	<u> </u>		/			
[CTABr]	Waktu	0/ rutil	%	% CTABr	d (r	nm)
(mM)	perendaman (hari)	70 TUUI	anatase	/0 CTABI	anatase	rutil
4	4	56,87	31,69	11,45	18,705	10,001
8	4	58,50	33,88	7,62	39,311	11,721
12	4	64,21	33,83	1,96	10,153	9,667
16	4	63,52	36,11	0,37	32,947	9,829
16	3	60,39	36,31	3,30	31,714	11,619
16	2	58,96	35,29	5,75	53,438	11,878

Pada perbesaran yang sama (10.000 x), penggunaan surfaktan CTABr dengan konsentrasi 16 mM menghasilkan lapis tipis TiO₂ dengan ukuran pori yang lebih besar dibandingkan penggunaan surfaktan 8 mM. Hal ini dikarenakan terjadi perubahan bentuk dan ukuran misel dengan naiknya konsentrasi surfaktan. Konsentrasi mula – mula larutan surfaktan, dimana monomolekul berkumpul membentuk misel disebut KKM (konsentrasi kritis misel). Pada konsentrasi yang makin tinggi, misel akan mengalami perubahan bentuk dari fase sferis, silindris, heksagonal hingga lamellar [4].

Berdasarkan spektra XRD yang diperoleh (Gambar 3 dan 4), diketahui bahwa semikonduktor grafit/TiO2 hasil sintesis memiliki kristalinitas yang cukup bagus, dibuktikan dari adanya peak-peak yang muncul dengan cukup tajam. Diameter kristal TiO₂ rata-rata berdasarkan estimasi perhitungan menggunakan rumusan Scherrer [5], diperoleh ukuran kristal TiO₂ rutil berkisar antara 9,667 - 11,878 nm dan anatase pada kisaran 10,153 -53,438 nm. Perubahan ukuran kristal yang terjadi tidak menunjukkan tren tertentu dengan perubahan konsentrasi CTABr yang digunakan. Spektra yang terjadi juga tampak tidak berubah secara signifikan dengan adanya variasi konsentrasi CTABr maupun variasi lama waktu perendaman. Tidak terjadi kemunculan peak baru ataupun hilangnya peak yang pernah muncul pada spektra sampel lainnya. Perubahan spektra hanya

sedikit terjadi pada daerah $2\theta \pm 25 - 29$ *degree*. Perpecahan spektra yang terjadi pada daerah tersebut menunjukkan perpaduan antar sistem kristal anatase dan rutil yang sedikit berubah dengan berubahnya [CTABr]. Peak-peak pada 2θ : 16,4; 20,87; 23,90 *degree* merupakan peak dari CTABr yang masih ada dalam lapis tipis TiO₂.

Tabel 1 menunjukkan kelimpahan masing-masing fasa yang terkandung dalam sampel TiO₂ yang diperoleh dari persamaan (1). Dari Tabel 1 dapat diketahui bahwa variasi [CTABr] berpengaruh pada kemurnian fase rutil, anatase maupun CTABr.

%fasa =
$$\frac{\sum I(count), sesuai \ standar[\Delta d \ \pounds \ 0, 02nm]}{\sum I(count) \ total}$$
 (1)

CTABr yang tersisa sebagai pengotor makin menurun dengan pertambahan konsentrasi. Hal ini dimungkinkan karena perbedaan fase misel yang terjadi pada tiap konsentrasi. Pada [CTABr] 4 mM, misel masih berbentuk sferis (analog pada Gambar 1) sehingga ikatan antar molekul masih relatif kuat. Hal ini berakibat saat dikalsinasi CTABr masih banyak yang bertahan di dalam semikonduktor. Sementara pada [CTABr] 16 mM, misel dimungkinkan sudah bukan sferis lagi tetapi sudah berbentuk silindris, heksagonal, atau bahkan mungkin gabungan dari keduanya, sehingga ikatan antar molekul surfaktan relatif kurang kuat dan mudah lepas pada saat kalsinasi.

Penentuan luas permukaan dan distribusi ukuran pori menggunakan SAA (*Surface Area Analysis*) dilakukan pada material TiO₂ hasil sintesis dengan variasi konsentrasi CTABr untuk mengetahui pengaruh CTABr sebagai media pencetak pori dalam material. Luas permukaan spesifik untuk sampel TiO₂ dengan [CTABr] 4 mM adalah 15,0663 m²/g, dan berturut – turut untuk [CTABr] 8, 12, dan 16 mM masing – masing adalah 11,7104 m²/g, 16,5057 m²/g, dan 14,1473 m²/g.

Distribusi ukuran pori pada TiO₂ dengan [CTABr] 8 mM dan 16 mM banyak berada pada sekitar 45 angstrom (Gambar 5). Sementara pada [CTABr] 4 mM dan 12 mM memiliki distribusi yang relatif lebih heterogen, tidak terdistribusi pada diameter pori tertentu. Berdasarkan ukuran jari – jari porinya, material TiO₂ yang telah disintesis dengan variasi konsentrasi CTABr tersebut termasuk dalam kategori mesopori (ukuran pori berada di antara 20 Å dan 500 Å).

Pengukuran serapan tepi (*absorbance edge*), λ_{q} , dilakukan dengan mengukur absorbansi TiO₂ yang telah ditempelkan tipis pada kaca preparat menggunakan spektrofotometer UV-Vis. Hal ini dilakukan untuk meminimalisir aglomerasi partikel TiO2 yang mungkin teriadi. Menurut Chandler [6] untuk mencegah aglomerasi cluster pada semikonduktor koloid, hal yang dapat dilakukan adalah mencegah terjadinya kontak antar komponen cluster, yaitu dengan menempelkannya pada stabilizing media, seperti gelatin, kaca, atau material lainnya. Dengan demikian, pengukuran energi gap berdasarkan serapan tepi λ_{a} dihitung dengan persamaan Brus [7], dilakukan dengan menempelkan tipis TiO₂ pada kaca preparat, kemudian diukur serapannya terhadap sinar UV maupun visibel.

Berdasarkan data Tabel 2 dan 3, $E_g TiO_2 rata - rata dari semua sampel TiO_2 hasil penelitian dengan berbagai variasi konsentrasi CTABr maupun waktu perendaman, diperoleh sebesar 3,744 <u>+</u> 0,096 eV. Hal ini berbeda dengan <math>E_g TiO_2$ *bulk* yaitu sekitar 3,05 hingga 3,29 eV dengan ukuran partikel sekitar 100 nm [8]. Perbedaan yang cukup besar ini dimungkinkan karena TiO_2 yang disintesis pada penelitian ini memiliki ukuran partikel sangat kecil.

 $\begin{array}{c} \begin{array}{c} 0,8 \\ 0,6 \\ 0,4 \\ 0,2 \\ 0,0 \\ 25 \\ 35 \\ 45 \\ 55 \\ 65 \\ 75 \end{array} \end{array}$

Berdasarkan penelitian Chandler [6], yang mensistesis Cds dalam medium mikroemulsi, telah dibuktikan bahwa serapan tepi dari material bergeser ke energi yang lebih tinggi dengan makin kecilnya ω (rasio komposisi air dan surfaktan). Di mana makin kecil harga ω , menyebabkan ukuran partikel semakin kecil. Berdasarkan data XRD diketahui bahwa ukuran (diameter) kristal TiO₂ hasil sintesis berada pada range 9,667 nm hingga 53,438 nm, sehingga serapan tepinya berada di daerah energi lebih tinggi dari TiO₂ *bulk*.

Efektifitas fotokatalitik semikonduktor dapat diketahui dan dilihat dari efisiensi konversi foton ke arus listrik (%IPCE). Apabila suatu semikonduktor dikenai cahaya (hv) dengan energi yang sesuai, maka elektron (e^{-}) pada pita valensi akan pindah ke pita konduksi, dan meninggalkan lubang positif ($hole^{+}$, disingkat sebagai h^{+}) pada pita valensi. Sebagian besar pasangan e^{-} dan h^{+} ini akan berekombinasi kembali, baik di permukaan atau di dalam ruah partikel. Sementara itu sebagian pasangan e^{-} dan h^{+} dapat bertahan sampai pada permukaan semikonduktor, dimana h^{+} dapat menginisiasi reaksi oksidasi dan di lain pihak e^{-} akan menginisiasi reaksi reduksi zat kimia yang ada di permukaan semikonduktor.

Mekanisme fotokatalisis tersebut akan berimplikasi pada terjadinya aliran elektron dalam semikonduktor. Apabila elektron-elektron tersebut tertangkap oleh substrat konduktif, dalam hal ini grafit merupakan substrat konduktif, kemudian melewati sirkuit eksternal, maka arus listrik yang dapat terukur oleh amperemeter. Arus listrik tersebut menunjukkan jumlah konversi energi foton ke arus listrik (%IPCE). Pada pengukuran %IPCE, semikonduktor grafit/TiO₂ diberi energi cahaya pada panjang gelombang UV sampai dengan visibel, yaitu pada 300 hingga 700 nm. Arus yang terukur dicatat pada setiap perubahan λ 5 nm untuk mengetahui setiap perubahan yang terjadi secara teliti. %IPCE diperoleh dari besarnya arus terukur yang diolah menggunakan persamaan (2).

IPCE(%)=
$$\frac{I_{sc}(A/cm^2)}{I_{loc}(W/cm^2)}x\frac{1240}{\lambda(nm)}x100$$

Tabel 2. Data λ_q dan E	a berdasarkan	variasi [CTABr]					
pada 4 hari sintesis							

		pada 4 nan sintesis	j			
		[CTABr] (mM)	λ _q (nm)	E _g (eV)		
		4	341 <u>+</u> 1,414	3,630 <u>+</u> 0,015		
		8	337 <u>+</u> 2,828	3,673 <u>+</u> 0,031		
	12 mM	12	337 <u>+</u> 2,121	3,679 <u>+</u> 0,023		
	 8 mM	16	315 <u>+</u> 24,749	3,948 <u>+</u> 0,311		
	— ●— 4 mM	Tabel 3. Data λ	_a dan E _a dengan	variasi waktu		
	perendaman pada [CTABr] 16 mM					
		waktu perendama	an λ _q (nm)	E _g (eV)		
5 75		(hari)	0	-		
		2	335 <u>+</u> 0,000	3,695 <u>+</u> 0,000		
elisih volume pori		3	335 <u>+</u> 2,121	3,701 <u>+</u> 0,023		
		4	315 <u>+</u> 24,749	3,948 <u>+</u> 0,311		

Di mana Isc : arus yang terukur pada tiap panjang gelombang, Iinc : sinar yang diberikan pada elektroda lapis tipis TiO₂/grafit [9]. Gambar 6 menunjukkan bahwa lapis tipis grafit/TiO₂ menunjukkan aktivitas tinggi pada daerah ultra violet, dan aktivitasnya menurun pada daerah sinar tampak. Pada daerah lanjang gelombang 200-250 %IPCE tertinggi diperoleh nm dari semikonduktor dengan konsentrasi surfaktan paling besar yaitu 16 mM, kemudian mendekati paparan sinar visible, %IPCE dari keempat jenis lapis tipis tersebut relatif sama (berimpit). Pada daerah ultra violet, yang merupakan daerah aktif lapis tipis hasil sintesis, diketahui bahwa grafit/TiO2 yang disintesis dengan konsentrasi surfaktan cukup besar memberikan %IPCE vang lebih baik.

Gambar 6 menunjukkan bahwa penggunaan CTABr dengan konsentrasi 16 mM menghasilkan lapis tipis TiO₂ dengan %IPCE tertinggi pada daerah 200-250 nm. Pada konsentrasi CTABr yang cukup besar (8,12,16 mM), %TiO₂ secara umum lebih besar daripada penggunaan [CTABr] 4 mM, sebagaimana dapat dilihat dari data XRD (Tabel 1). Pada [CTABr] 16 mM, % TiO₂ dalam bentuk anatase dalam semikonduktor lebih banyak, yaitu 36,11%. Diketahui bahwa fase anatase

Gambar 6 % IPCE grafit/TiO $_2$ pada variasi waktu sintesis

Gambar 7 Stabilitas fotokimia grafit/TiO₂ hasil sintesis

memiliki aktivitas fotokatalitik yang bagus, sehingga makin banyak fase anatase TiO₂ yang terdapat dalam semikonduktor, kemampuan TiO₂ dalam merespon energi foton yang mengenainya makin bertambah sehingga hal ini berimplikasi pada efektifitas TiO₂ yang tampak pada %IPCE.

Stabilitas fotoelektrokimia semikonduktor grafit/TiO₂ ditentukan dengan metode yang sama dengan pengukuran arus untuk menentukan %IPCE. Pada pengukuran stabilitas ini arus hanya diukur pada panjang gelombang sinar tertentu saja, yaitu panjang gelombang serapan maksimum TiO₂. Sinar yang diberikan pada panjang gelombang maksimum material berfungsi sebagai sumber energi foton yang akan mengeksitasi elektron sehingga akan menghasilkan arus listrik. Hasil penelitian menunjukkan panjang gelombang serapan maksimum TiO₂ hasil sintesis terhadap sinar UV-Visibel jatuh pada daerah UV, vaitu pada 300 nm. Untuk mengetahui kestabilan semikonduktor di tempat gelap, arus juga diukur dengan mengkondisikan semikonduktor grafit/TiO₂ benar-benar terlindungi dari cahaya atau sinar apapun. Data stabilitas fotoelektrokimia grafit/TiO2 dengan waktu perendaman grafit dalam larutan sintesis selama 4 hari, dapat dilihat pada Gambar 7.

Secara teori, stabilitas fotoelektrokimia yang bagus ditunjukkan dengan arus yang besar tetapi kecil. slope Data memiliki yang Gambar 7 menunjukkan bahwa grafit/TiO2 yang disintesis dengan [CTABr]= 16 mM memberikan arus paling besar pada penyinaran dengan panjang gelombang 300 nm dan pada pengukuran selama 60 menit menunjukkan arus terukur yang relatif stabil, berkisar 26-29 uA. Material grafit/TiO₂ sebagai material fotokatalis ditunjukkan oleh besarnva pengaruh induksi foton pada besarnva arus vang terukur, hal ini terlihat pada Gambar 8, pada kondisi gelap arus yang terukur sangat kecil, bahkan setelah sekitar 12 menit arus yang terukur berada pada 0 μA. Arus yang terukur pada kondisi gelap (dark *current*) dimungkinkan terukur sebagai hasil pergerakan ion-ion elektrolit dalam sel pengukuran (ion-ion K^{\dagger} , I^{\dagger} , dan I_{3}^{-} yang mungkin sudah terbentuk).

KESIMPULAN

Lapis tipis semikonduktor grafit/TiO₂ dapat disintesis dengan metode *chemical bath deposition* (CBD) dari hidrolisis TiCl₄ pada kondisi asam HCl dengan memanfaatkan sifat antarmuka surfaktan CTABr sebagai agen penghubung ke permukaan grafit.

Konsentrasi surfaktan berpengaruh pada morfologi pori dari lapisan tipis TiO_2 . Pori-pori yang terbentuk berada dalam kategori mesopori. TiO_2 anatase meningkat dengan peningkatan konsentrasi surfaktan berakibat pada peningkatan %IPCE pada daerah aktif semikonduktor hasil sintesis yaitu daerah sinar ultra violet (200 – 250 nm) dengan kenaikan konsentrasi surfaktan.

UCAPAN TERIMA KASIH

Terima kasih penulis ucapkan kepada Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional atas pendanaan pada tahun I Proyek Hibah Bersaing XIII tahun 2005. Kepada Setyaningsih,S.Si dan Syarifah atas kerjasamanya selama masa penelitian.

DAFTAR PUSTAKA

- 1. Nasr, C., Kamat, P. V., and Hotchandani, S., 1998, *J. Phys. Chem. B.*, 102, 10047 – 10056.
- 2. Liu, F., Wang, T., Li, J.Q., and Yates, J.T., 1995, *Chem. Review*, 95, 735 – 758.
- 3. Yang, H., Coombs, N., Sokolov, I., and Ozin, G.A., 1997, *J. Mater. Chem*, 7(7), 1285-1290.
- 4. Moroi, Y., 1992, *Micelles : Theoretical and Applied Aspect*, Plenum Press, New York.
- 5. Manorama, S.V., Reddy, K.M., Reddy, C.V.G., Narayanan, S., Raja, P.R., and Chatterji, P.R., 2002, *J. Phys. & Chem. Solids*, 63, 135–143.
- 6. Chandler, R.R., Bigham, S.R., and Coffer, J.L., 1993, *J. Chem. Educ.*, 70.
- Nedeljkovic, J.M., Patel, R.C., Kaufman, P., Pruden, C.J., and O'Leary, N., 1993, *J. Chem. Educ.*, 70, 342 – 344.
- Li, Y., Hagen, J., Schaffrath, W., Otschik, P.,and Haarer, D., 1999, Solar Energy Mater. & Solar Cells, 56, 167-174
- Sicot, L., Fiorini, C., Lorin, A., Ramond, P., Sentein, C., and Nunzi, J.M., 2000, Solar Energy Mater. & Solar Cells, 63, 49 –60.