INVESTIGATION OF MOLECULAR INTERACTION BETWEEN PHENYLACETYLENE AND HEXAMETHYLPHOSPHORIC TRIAMIDE BY ${ }^{13} \mathrm{C}$ NMR T_{1} RELAXATION TIME STUDIES AND AB INITIO QM CALCULATIONS

Parsaoran Siahaan ${ }^{1, *}$, Cynthia L. Radiman ${ }^{2}$, Susanto Imam Rahayu ${ }^{2}$, Muhamad A. Martoprawiro ${ }^{2}$, and Dieter Ziessow ${ }^{3}$
${ }^{1}$ Chemistry Study Program, Faculty of Mathematics and Natural Sciences, JI Ganesha 10 Bandung Indonesia
${ }^{2}$ Inorganic and Physical Chemistry, FMIPA ITB, JI Ganesha 10 Bandung Indonesia
${ }^{3}$ Stranski Laboratory for Physical and Theoretical Chemistry TU Berlin, Germany

Received 26 May 2007; Accepted 18 September 2007

Abstract

Intermolecular interactions and molecular translational and rotational mobility are key factors in molecular material sciences, e.g. liquid crystals. One of the important substructures is given by phenylacetylene, $P h-C=C H$. Its rotational behavior in its pure form and in high dilution in hexamethylphosphoric triamide $\mathrm{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}(H M P A)$ has been studied by means ${ }^{13} \mathrm{C}$ NMR T_{1} relaxation times at ambient temperature as measured by the inversion recovery method. HMPA is an exceptional solvent in that is has a quite large dipole moment but comparatively low relative dielectricity constant. From the molecular shape $\mathrm{Ph}-\mathrm{C} \equiv C H$ is expected to exhibit anisotropic rotational diffusion which in fact can be deduced from the measured set of T_{1} values of the ortho, meta and para carbon nuclei in the neat liquid as well as in the HMPA solution. This expected result rules the dominance of a linearly molecules pair Ph$C \equiv C H$...HMPA along their dipole moment axes as anticipated in view of the large HMPA dipole moment. In order to conform with the T_{1} data, a linear arrangement of $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH}$ via the interaction between its weakly acidic H -atom with negatively charge O -atom of HMPA molecules seems to lead to such an anisotropic rotational motion. This hypothesis is supported by ab initio QM calculations which come out with higher interaction energy for linear orientation than other geometries. These ab initio calculations were performed with the basis set of RHF/6-31G(d) for the single molecules of $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH}$ and HMPA as well as for their various geometries of the molecules pair. Molecular dynamics simulations need to be performed for further confirmation.

Keywords: Relaxation Times, HMPA, pheylacetylene, ab initio, intermolecular interaction, rotational diffusion

INTRODUCTION

To increase the beneficiaries of the information involved in NMR spectroscopy whether as images (in magnetic resonance imaging, MRI) or spectra it can be done by understanding of spin-lattice and spin-spin relaxation times. The mainly mechanism one of spinlattice relaxation is ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ dipole-dipole or dipolar interaction. So, molecular dynamics properties of local and the whole structure that partly determine the properties of the system are obtained by NMR method, which are known through the information that is indicated on the reorientation behaviour of dipole-dipole vector of nuclear spin in which one of them is ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ dipole-dipole. That information included in a data which is called ${ }^{13} \mathrm{C}$ NMR T_{1} relaxation times. Measurement of spin-lattice relaxation times can give the information of molecular dynamics. Because of the interaction can affect molecular dynamics, then this interaction can also be known from ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ dipole-dipole orientation of nuclear spin. If two or more of molecule interact, it will form what is called paired-molecule. It can be between solute-solute, solute-solvent, and solvent-solvent. The
preferred paired-molecule of this interaction becomes the key factor to determine the solution structure. In pairing-molecule, molecular polarity is important. Polarity can affect interaction energy, geometry, and its symmetry. Therefore, molecular geometry and symmetry of paired-molecule can be determined from ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ dipole-dipole reorientation of nuclear spin.

The different of melting point between benzene and its derivative of hydrogenation had been explained by different molecular orientation caused by different symmetry [1] although this compounds group has almost similar mass. Woessner [2] and Huntress [3] studied the effect of anisotropy on nuclear spin relaxation. Some of relaxation mechanisms were reported $[4,5]$ which included the study of hydrogen bonding by NMR [6]. The amount of chemical system which was studied by nuclear spin relaxation methods was increasing [7-10], benzene and its derivative included [8], and its theories also developed [11]. Some of factors such as steric effect on flexible molecule were studied [12], delocalised electron spin effect through sigma bonding on relaxation [13] and hydrogen bonding effect on anisotropic reorientation [14].

[^0]Although benzene liquid relaxation was studied, it was reviewed by Dolle [15]. The relaxation study was continued on simple system by synthesizing a compound model, although it had been done on more complex systems such as peptide [16].

Since molecular rotational dynamic sensitively is affected by their chemical environment, therefore, in order to obtain more accurately result of studies it is selected the molecule which has the mobility not too flexible and complex. For this purpose an appropriate molecule is monosubstituted benzene compounds. Phenylacetylene, $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$, which has a weakly acidic hydrogen, theoretically it can interact through oxygen with hexamethylphosphoric triamide (HMPA), OP $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. Based on these theoretically assuming properties of interaction, phenylacetylene in HMPA will show the anisotropic rotation motion, and it is interest to investigate whether it is.

Is there interaction between $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$ and HMPA through acidic hydrogen of $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$ with oxygen of hexamethylphosphoric triamide (HMPA)? What is effect of this interaction on rotational motion of $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH}$? Ph$\mathrm{C} \equiv \mathrm{CH}$ molecule has phenyl group which has similar structure with benzene, it is rigid and low flexibility. From the molecular shape, $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$ is expected to exhibit anisotropic rotational diffusion. HMPA molecule is an exceptional solvent in that is has a quite large dipole moment but comparatively low relative dielectricity constant. Therefore, $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$ molecule has a weakly acidic hydrogen which can linearly interact with HMPA. Then it is interest and important to investigate this kind of interaction. Whether the interaction through acidic hydrogen just only one possibility of configuration? In order to know which are the configurations are preferred, the $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}$ molecule in neat and in HMPA both will be investigated by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The data of relaxation time T_{1} will be determined and interpreted. Based on the pattern of relaxation time T_{1} the appropriate configurations of interaction between Ph $\mathrm{C}=\mathrm{CH}$ and HMPA will be obtained.

In order to support the result of NMR measurement, energy of interaction will calculated by $a b$ initio methods. Interaction energy will calculated by formula $\Delta E_{k}=E_{k A B}-\left(E_{A}+E_{B}\right)$ [17]. The preferred configurations of interaction between molecule $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH}$ and HMPA are determined based on the lowest energy of each their paired-molecule. The objective is investigation a deeper understanding of the behaviour of rotational motion of phenylacetylene molecule in HMPA solution through determination of $T_{1}^{13} \mathrm{C}$ spin-lattice time relaxation.

EXPERIMENTAL SECTION
 Materials

All materials are for NMR spectroscopy from MERCK. Phenylacetylene (pa), Ph-C $=\mathrm{CH}$, ($\mathrm{\rho}=0.930$;
purity 98%), hexamethyl-phosphoric triamide (HMPA), $\operatorname{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} \quad(\rho=1,030$; purity $99 \%)$, solution 3% phenylacetylene in HMPA.

Instrumentation

A set of distillation equipment, Mikro-KPGUbbelohde Viscometer and DMA 40 densitometer, a set of glasses and vacuum pump equipment, NMR Spectrometer of Bruker and Jeol 500 MHz , respectively, a set of software such as Gaussian 03 and Mathcad for calculation and analysis were used.

Procedure

Experiment of $T_{1}{ }^{13} \mathrm{C}$ relaxation time by NMR Neat phenylacetylene solution non-degassed

Dynamic viscosity, $\eta=\rho v$, was obtained after to measure kinematics viscocity, v, at 303 K. NMR spectrum was obtained by pulse methods at 302.5 K . Relative intensity, $\mathrm{Sn}(\mathrm{T})$, of each ${ }^{13} \mathrm{C}$ nuclei peak with variation of pulse delay time, T , was measured by pulse sequence $\pi-\pi-\pi / 2$ which is called inversion recovery sequence method [17]. $T_{1}{ }^{13} \mathrm{C}$ relaxation time each of carbon atom was calculated from the intercept value with T axis graphic of $\mathrm{Sn}(\mathrm{T})$ versus t through Bloch equation,
$M_{z}(\tau)=M_{o}\left\{1-2 e^{-\tau / T_{i}}\right\}$ or $S_{n}(\tau)=A+B e^{-C_{\tau}}$

Solution of phenylacetylene in HMPA nondegassed

It was done similarly to part (1) with in HMPA solvent.

Calculation molecular geometry

Firstly, molecular structure model of single molecule: $\mathrm{Ph}-\mathrm{C}=\mathrm{CH}, \mathrm{HMPT}$, paired-molecule: $\mathrm{Ph}-$ $\mathrm{C} \equiv \mathrm{CH} . . . \mathrm{Ph}-\mathrm{C} \equiv \mathrm{N}, \quad \mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH} . . . \mathrm{HMPT}$, with various configurations were made. Matrix Z of each models were constructed. Then, calculating of molecular geometry optimation was done by ab initio at theory level RHF/6-31G(d). The result of calculation was interpreted to confirm the T_{1}.

RESULT AND DISCUSSION

Determination of $T_{1}{ }^{13} \mathrm{C}$ relaxation time Neat phenylacetylene solution non-degassed

The T_{1} time relaxation of carbon $\mathrm{C}_{1}, \mathrm{C}_{2,6}, \mathrm{C}_{3,5}, \mathrm{C}_{4}$, C_{7} and C_{8} of neat phenylacetylene, Fig 3, was obtained In other word, it was happened interaction between phenylacetylene and HMPA molecule. Reduction was higher than four times in C_{4} and C_{8}. The reduction of relaxation time was happened only if paired-molecule between phenylacetylene molecule and HMPA was

Fig 1. Curve of Sn versus t for neat phenylacetylene

Fig 2. Curve of Sn versus T for solution phenylacetylene in HMPT

Table 1. $T_{1}{ }^{13} \mathrm{C}$ Relaxation time of neat phenylacetylene and solution in HMPT

Carbon	$T_{1}{ }^{13} \mathrm{C} /$ second	
	Neat	In HMPT
C_{1}	28,1817	6,6154
$\mathrm{C}_{2,6 \text { (ortho) }}$	9,8602	2,2281
$\mathrm{C}_{3,5 \text { (meta) }}$	9,8644	2,1764
C_{4} (para)	6,7179	1,0232
C_{7}	18,5519	2,9354
C_{8}	7,0550	1,0502

occurred. Therefore, $T_{1}^{13} \mathrm{C}$ relaxation time data by using equation-1 as an exponential regression was given in Fig 1. Data of T_{1} time relaxation listed in column 2 Table 1. Whereas the T_{1} time relaxation of carbon $\mathrm{C}_{1}, \mathrm{C}_{2,6}$, $\mathrm{C}_{3,5}, \mathrm{C}_{4}, \mathrm{C}_{7}$ and C_{8} of phenylacetylene in HMPT, was obtained by using equation-1 as an exponential regression of Fig 2. Data of T_{1} time relaxation listed in column 2 Table 1.

In neat phenylacetylene the carbon nuclear C1 and C_{7} have $T_{1}^{13} \mathrm{C}$ relaxation time longer than other where there is no hydrogen directly bonded. Whereas the similar $T_{1}^{13} \mathrm{C}$ relaxation time of orto and meta

Fig 3. Three possibility of rotation axis of phenylacetylene molecule
Table 2. The ab intio calculation of single and pairedmolecule between phenylacetylene and HMPA

Molecule	Energy E/Hartree	$\begin{gathered} \Delta E_{k} l \\ \text { kcal. } \mathrm{mol}^{-1} \end{gathered}$
Single:		
1. pa	-306,3783	
2. HMPA	-816,5731	192,255.10 ${ }^{3}$
paired:		
pa...pa	-612,7577	-0,7530
pa...HMPT linear		-50,8041
pa...HMPT orto	1123,0323	-49,3167
pa...HMPT meta	-	-48,9407
pa...HMPT para	1123,0299	-48,9829
pa...HMPT		-47.2502
Molecule	Dipole moment $\mu /$ Debye	Interaction distance r / A°
1. pa	0,6893	
2. HMPA	1,9926	
pa...pa	0,0004	3,1726
pa...HMPT linear	4,9521	$\left(r_{3,15}\right)$
pa...HMPT ortho	4,2139	2,1408
pa...HMPT meta	-	2,4200
pa...HMPT para	6,0083	-
pa...HMPT	-	2,3863

9,8602 and 9,8644 second, respectively, indicate the similar ${ }^{13} \mathrm{C}$-H vector orientation with static magnet field B_{0}. This happened if the $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{N}$ molecule, Fig 3, rotate in parallel axis (a) with $-\mathrm{C} \equiv \mathrm{CH}$ substituen.

Solution phenylacetylene in HMPA non-degassed

The $T_{1}^{13} \mathrm{C}$ relaxation time of carbon atom $\mathrm{C}_{2,6}$, $\mathrm{C}_{3,5}, \mathrm{C}_{4}$ was obtained included in column-3 Table 2. The $T_{1}^{13} \mathrm{C}$ relaxation time in HMPA solution was highly reduced. In HMPA solution the $T_{1}{ }^{13} \mathrm{C}$ relaxation time of carbon nuclear $\mathrm{C}_{2,6}$ and $\mathrm{C}_{3,5}$, reduced average approximately four times. Instead of their hydrogen directly bonded, the reduced of relaxation time indicate the lower mobility of phenylacetylene molecule.

(a)

(b)

Fig 4. Molecular geometry of phenylacetylene (a) values of parameters, (b) tree-dimensional structure.

(a)

(b)

Fig 5. Molecular geometry of HMPT (a) values of parameters, (b) tree-dimensional structure
suggested to forming $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH} . . . \mathrm{HMPApaired-molecule}$. From the molecular shape $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{CH}$ is expected to exhibit anisotropic rotational diffusion which in fact can be deduced from the different set of T_{1} values. In HMPA solution this set of T_{1} values of the ortho, meta and para carbon nuclei was also exhibit anisotropic rotational diffusion. It means the reorientation motion of phenylacetylene is anisotropic. If this is happened the paired-molecule seem lead to linearly shaped molecule. From the view of molecular shape of phenylacetylene and HMPA, which will also be calculated by ab initio,

(a)

(b)

(c)

(d)

Fig 6. Molecular configuration of paired-molecule and H -acidic and oxygen distances between phenylacetylene and HMPT (a) linearly: $r / \AA ̊=2.1408$, ortho: r/ which $=2.4200$, meta: $\mathrm{r} / \mathrm{which}=-$, para: $r / A^{\circ}=2.3863$.
this can only be happened for the linearly Ph$\mathrm{C} \equiv \mathrm{CH}$...HMPA paired-molecule orientation.

Energy and geometry optimation of molecule

The result of calculation of energy and other parameters are included in Table 2. Ph-C $\equiv \mathrm{CH} . .$. HMPA paired-molecule with linearly configuration had ΔE_{k} lower than others. So the linearly orientation, Fig 6(a),
conform to the T_{1} relaxation time data of phenylacetylene in HMPA. These results are also confirm by the properties of single molecule, Fig 4(a).

CONCLUSION

In the HMPT solution non-degassed, the ${ }^{13} \mathrm{C} T_{1}$ relaxation time of phenylacetylene was reduced four times. It means spectroscopycally that time measurement of ${ }^{13} \mathrm{C}$ NMR spectrum was also reduced.

In relation to the molecular mobility and its interaction, similarly with in the neat, rotational diffusion of phenylacetylene (pa) molecule in HMPA was anisotropic. Similarity ratio of ${ }^{13} \mathrm{C} T_{1}$ relaxation time $\mathrm{C}_{2,6}$ and $\mathrm{C}_{3,5}$ with C_{4} and C_{8} in HMPT explains that the linearly interaction through H -acidic of HMPT and oxygen in HMPT was occurred.

Linearly shaped paired-molecule structure pa...HMPA was preferred than others shaped of pairedmolecule configurations. This fact also confirmed by $a b$ initio calculation.

ACKNOWLEDGEMENT

This work was supported by the BPPS, DAADsupported Partnership TUB-ITB-UNDIP in Chemistry 2003-2006 scholarship. Hopefully, I gratefully acknowledge support for DAAD, Prof. Dieter Ziessow from Stranski Laboratory for Physical and Theoretical Chemistry, Institute of Chemistry, Technical University of Berlin, and Indonesia Government.

REFFERENCES

1. Deitz, V. and Andrews, D.H., Kirchner, 1933, J. Chem. Phys., 1, 62-67.
2. Woessner, D.E., 1962,J. Chem. Phys, 36(1), p. 1-4.
3. Huntress Jr, W.T., 1967, J. Chem. Phys, 48(8), p. 3524-3533.
4. Carrington, A. and McLachlan, A.D., 1967, Introduction to Magnetic Resonance: with

Applications to Chemistry and Chemical Physics, New York, Harper \& Row and John Weatherhill, Inc.
5. Huntress Jr., W.T., 1970, The Study of Anisotropic Rotation of Molecules in Liquids by NMR Quadrupolar Relaxation, Advances in Magnetic Resonance, editor: John S. Waugh, Vol.4, New York, Academic Press.
6. Davis Jr., J.C. and Deb, K.K., 1970, Analysis of Hydrogen Bonding and Related Association Equilibria by Nuclear Magnetic Resonance, Advances in Magnetic Resonance, editor: John S. Waugh, Vol.4, New York, Academic Press.
7. Levy, G.C. (editor), 1974, Topics in Carbon-13 NMR Spectroscopy, Vol. 1, New York, John Wiley \& Sons, Inc.
8. Levy, G.C. (editor), 1976, Topics in Carbon-13 NMR Spectroscopy, Vol. 2, New York, John Wiley \& Sons, Inc.
9. Abragam, A., 1978, The Principles of Nuclear Magnetism, The International Series of Monographs on Physics, editors: W.C. Marshall and D.H., Wilkinson, Oxford, Oxford University Press.
10. Yasukawa, T and Chachaty, C., 1976, Chem. Phys. Lett., 43(3), p. 565-567.
11. Yasukawa, T and Chachaty, C., 1977, Chem. Phys. Lett., 51(2), p. 311-314.
12. Kratochwill, A., Vold, R.L., Vold, R.R., 1979, J. Chem. Phys., 71(3), p. 1319-1324.
13. Dölle, A. and Suhm, M.A., and Weingartner, H., 1991, J.Chem.Phys., 94,3361-3365.
14. Abseher, R., Lüdemann, S., Schreiber, H., and Stein hauser, O., 1994, J. Am. Chem. Soc., 116, 4006-4018.
15. Kowalewski, J., and Widmalm, G., 1994, J. Phys. Chem., 98,28-34.
16. Martoprawiro, M.A. and Bacskay, G.B., 1995,Molecular Physics, 85(3), p. 573-585.
17. Sass, M. and Ziessow, D., 1977, J. Mag. Res., 25, 263-276.

[^0]: * Corresponding author.

 Email address : saorsudp@telkom.net

