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ABSTRACT

Quantitative structure activity relationship (QSAR) for 21 insecticides of phthalamides containing hydrazone
(PCH) was studied using multiple linear regression (MLR), principle component regression (PCR) and artificial
neural network (ANN). Five descriptors were included in the model for MLR and ANN analysis, and five latent
variables obtained from principle component analysis (PCA) were used in PCR analysis. Calculation of descriptors
was performed using semi-empirical PM6 method. ANN analysis was found to be superior statistical technique
compared to the other methods and gave a good correlation between descriptors and activity (r

2
= 0.84). Based on

the obtained model, we have successfully designed some new insecticides with higher predicted activity than those
of previously synthesized compounds, e.g. 2-(decalinecarbamoyl)-5-chloro-N’-((5-methylthiophen-2-yl)methylene)
benzohydrazide, 2-(decalinecarbamoyl)-5-chloro-N’-((thiophen-2-yl)-methylene) benzohydrazide and 2-(decaline
carbamoyl)-N’-(4-fluorobenzylidene)-5-chlorobenzohydrazide with predicted log LC50 of 1.640, 1.672, and 1.769
respectively.

Keywords: QSAR; phathalamide; hydrazone; multiple linear regression; principle component regression; artificial
neural network

ABSTRAK

Telah dilakukan kajian analisis Hubungan Kuantitatif Struktur Aktivitas (HKSA) insektisida baru turunan
ftalamida yang mengandung hidrazon (FMH) menggunakan metode regresi multilinear (MLR), regresi komponen
utama (PCR) dan jaringan syaraf tiruan (JST). Ada lima deskriptor yang masuk dalam model MLR dan JST, dan
lima variabel laten yang diperoleh dari analisis PCA yang digunakan dalam analisis PCR. Perhitungan deskriptor
dilakukan menggunakan metode semiempirik PM6. Hasil penelitian menunjukkan analisis JST merupakan metode
statistik paling baik yang ditunjukkan oleh nilai koefisien korelasi deskriptor dan aktivitas yang relatif tinggi (r

2
= 0,84).

Berdasarkan model yang diperoleh, telah dilakukan desain beberapa insektisida baru yang mempunyai aktivitas
prediksi yang lebih tinggi dari senyawa yang telah disintesis sebelumnya yaitu 2-(Dekalinkarbamoil)-5-kloro-N’-((5-
metiltiopen-2-il)metilen)benzohidrazid, 2-(Dekalinkarbamoil)-5-kloro-N’-((tiopen-2-yl)-metilen)benzohidrazid dan 2-
(Dekalinkarbamoil)-N’-(4-fluorobenzilidin)-5-klorobenzohidrazid dengan nilai log LC50 masing-masing sebesar 1,640,
1,672 dan 1,769.

Kata Kunci: HKSA; ftalamida; hidrazon; semiempirik; regresi multilinear; regresi komponen utama; jaringan syaraf
tiruan

INTRODUCTION

Computational Chemistry has grown so rapidly in
last two decades mainly due to its application in helping
to design molecules in silico. Computational chemistry
methods most widely used so far is the Quantitative
Structure Activity Relationship (QSAR). This method is

useful in understanding how chemical structure relates
to the biological activity and the toxicity of natural and
synthetic chemicals like pesticides. The use of QSAR
method have been reported by Mudasir et al. [1-2] who
studied the structure-activity relationships of
organophosphate insecticides and fungicides derived
from 1,2,4-Tiadizolin.
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Table 1. Insecticidal activities of PCH derivatives [4]
Substituent type

Compound
Ar R

LC50

(mg/L)
log LC50

1 2-chlorophenyl isopropyl 170.664 2.232
2 2-chlorophenyl cyclohexyl 148.396 2.171
3 2-fluorophenyl butyl 121.941 2.086
4 2-fluorophenyl cyclohexyl 276.113 2.441
5 4-fluorophenyl isopropyl 68.005 1.833
6 4-fluorophenyl butyl 309.938 2.491
7 4-(trifluoromethyl)phenyl butyl 130.043 2.114
8 4-hydroxyphenyl isopropyl 128.575 2.109
9 4-hydroxyphenyl cyclohexyl 244.229 2.388

10 2-furanyl isopropyl 161.476 2.208
11 2-furanyl butyl 234.069 2.369
12 2-furanyl cyclohexyl 221.334 2.345
13 2-methyl-5-furanyl isopropyl 121.636 2.085
14 2-methyl-5-furanyl cyclohexyl 271.415 2.434
15 2-thienyl isopropyl 70.515 1.848
16 2-thienyl butyl 124.039 2.094
17 2-thienyl cyclohexyl 113.217 2.054
18 3-methyl-2-thienyl isopropyl 124.447 2.095
19 3-methyl-2-thienyl cyclohexyl 58.903 1.770
20 5-methyl-2-thienyl isopropyl 76.178 1.882
21 5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl cyclohexyl 266.287 2.425

Fig 1. Chemical structure of PCH

This method can be use to help in searching new
insecticides with maximum activity against insect pest.
Research to obtain a new insecticide is highly required
with respect to the phenomenon of insecticide-resistant
cases of insect pests [3]. One type of insecticide that has
the potential to be developed is phthalamide derivatives
containing hydrazone (PCH). This insecticide has been
used against Myzus persicae [4]. Action mechanism of
these compounds is similar to flubendiamide, which is
active in the calcium release channel (ryanodine
receptors, RyR) in insects [5] and has the impact on the
modulation of of RyR on Ca

2+
pump [6]. The compound

caused several symptoms such as gradual contraction,
thickening and shortening of the insect body without
convulsions immediately after treatment, which can be
clearly distinguished from the symptoms caused by
conventional insecticides [7].

In this study, QSAR model of phthalamide
insecticides is derived from the data set of chemical

structure and biological activities using multiple linear
regressions (MLR and PCR) as well as artificial neural
network (ANN) methods. The best models obtained
from these methods were used to predict the biological
activity of new designed insecticides of PCH
derivatives.

Specifically, the purpose of this study was to
determine the physicochemical properties (descriptors)
of the compounds that influence the insecticidal activity
of PCH derivatives. The widely used calculation of
descriptors is AM1 and PM3. In this study, we used
semi-empirical PM6 method for the calculation of
descriptors. This method was selected because of
inadequate and the calculation is more accurate in
terms of the core-core interactions and hydrogen
bonding [8].

MATERIAL AND METHODS

Data Set

PMH derivatives insecticides were taken from
literature [4]. Lethal concentration values, represented
as LC50 were used as the dependent variable. The
lethal concentration fifty (LC50) was expressed in
milligram of toxicant per liter of body weight (see
Table 1).

Instrumentation

For this study, a PC equipped with Intel
®

Dual
Core Processor 2.66 GHz; RAM 2 GB and HDD 320 GB



Indo. J. Chem., 2014, 14 (1), 94 - 101

Adi Syahputra et al.

96

Table 2. Statistical parameters of 10 selected QSAR models of PCH derivatives of training-set compounds
Model Descriptors n r r

2
SE Fcal/Ftab

1 qC4, qN1, qC5, SA, Log P, qO1, qC2, MD, qC3, ELUMO,
qC6, qCl, qC1, qN3

16 0.997 0.995 0.062 0.054

2 qC4, qN1, qC5, SA, Log P, qO1, qC2, MD, qC3, ELUMO,
qC6, qCl, qN3

16 0.996 0.993 0.052 1.067

3 qC4, qN1, qC5, SA, Log P, qO1, qC2, MD, qC3, ELUMO,
qCl, qN3

16 0.994 0.988 0.053 2.436

4 qC4, qN1, qC5, SA, Log P, qO1, qC2, qC3, ELUMO, qCl,
qN3

16 0.987 0.974 0.068 2.329

5 qC4, qN1, qC5, SA, Log P, qO1, qC2, qC3, ELUMO, qN3 16 0.977 0.955 0.081 2.244
6 qC4, qN1, qC5, Log P, qO1, qC2, qC3, ELUMO, qN3 16 0.972 0.945 0.082 2.788
7 qC4, qN1, Log P, qO1, qC2, qC3, ELUMO, qN3 16 0.957 0.916 0.093 2.553
8 qC4, qN1, Log P, qO1, qC2, qC3, ELUMO 16 0.944 0.891 0.099 2.678
9 qC2, ELUMO, qC4, qN1, qO1, Log P 16 0.910 0.828 0.117 3.374

10 ELUMO, qC4, qN1, qO1, Log P 16 0.885 0.784 0.125 3.326

Table 3. Comparison between predicted and observed values of insecticidal activity for 5 compounds of test set
calculated by 9 selected candidate QSAR models

Predicted log LC50Observed
log LC50 2 3 4 5 6 7 8 9 10

2.109 2.379 2.274 2.615 2.506 2.192 2.171 2.184 2.199 2.165
2.369 2.304 2.192 2.535 2.569 2.390 2.178 2.159 2.361 2.392
1.848 2.112 1.933 2.268 2.157 1.908 1.908 1.879 1.803 1.861
2.095 1.759 1.656 1.944 1.890 1.601 1.552 1.525 1.489 1.502
2.425 3.169 2.871 3.300 3.091 2.890 2.936 2.911 2.941 2.982

PRESS 0.812 0.454 1.248 0.778 0.471 0.601 0.612 0.643 0.078

was used. The software programs extensively used in
this study were Gaussian

®
09W, HyperChem

TM
8.0.10,

statistical programs IBM
®

SPSS
®

Version 19 and
MATLAB 7.0.1.

Method

Calculation of descriptors
Descriptors used in this study were electronic

parameters, e.g. atomic net-charge (q), moment dipole
(μ), highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO) energy as
well as molecular parameters, i.e. partition coefficient
(log P), refractivity (R), polarizability, molecular weight
(MW), surface area (SA), volume (V) and hydration
energy (HE). Electronic parameters were taken from log
file of the optimized structure of insecticides (Fig. 1)
using semiempirical PM6 method within G09W package.
Molecular parameters were calculated using Hyperchem
package software.

Model development
Multiple linear regression. QSAR models derived from
MLR analysis was done by making regression analysis
between descriptors and log LC50 directly using the
backward method in SPSS version 19. Before analysis,
the data were separated into training data and test data,
consisting of 16 and 5 compounds, respectively. The

regression analysis was done according to the
following linear equation:
Log LC50 = α + β1X1 + … + βiXi + ε (1)
Equation (1) represents the general QSAR equation
model. The symbol α and β in the equations stand for a
constant and fitting coefficient of corresponding
descriptors (X), respectively and ε is error.
Principle component regression. QSAR models in
PCR analysis obtained by regressing insecticidal
activity with latent variables resulting from Principle
Component Analysis (PCA). PCA technique is useful in
summarizing the information from the structure and
also help in understanding the distribution of the
compound. PCA analysis was evaluated using SPSS
version 19. MLR between latent variables and log LC50

was conducted similar to MLR analysis process in
equation (1).
Generation QSAR model using Artificial Neural
network (ANN) analysis. ANN analysis was evaluated
using Matlab 7.0.1 program. In general, to build the
network three-layers were required, i.e. input layer,
hidden layer and output layer [9]. Input consisted of a
number of descriptors used. The number of neurons in
the hidden layer was set during the experiment. One
neuron in the output contains the sigmoid activation
function. Separation of training and test data was
carried out in the same way as for MLR analysis. For
learning neural network system, the data of the
insecticidal activity of 16 compounds of PCH derivatives
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Table 4. Statistical parameters of 5 selected QSAR models of PCH derivatives generated by PCR analysis
Model Descriptors r r

2
SE Fcal/Ftab

1 T5,T4,T3,T2,T1 0.521 0.271 0.214 0.385
2 T4,T3,T2,T1 0.521 0.271 0.207 0.496
3 T3,T2,T1 0.506 0.256 0.203 0.609
4 T2,T1 0.450 0.202 0.204 0.642
5 T2 0.382 0.146 0.206 0.741

(training-set compounds) were used. ANN models were
designed and trained using these data. The training-set
data were used in the ANN learning to recognize the
relationship between input and output. Finally, the
testing-set data consisting of five compounds were
prepared to validate the obtained model from the ANN
training before it was being applied to predict the activity
of new designed insecticides.
Design of new compounds. The new compounds of
PCH insecticides was designed with the guidance of the
best QSAR model obtained to maximize activity of the
designed compounds compared to those previously has
been synthesized. In designing new compounds, we
refer to the some synthesized compounds which
experimentally have been proven to exhibit high activity,
i.e. compounds number 5, 15, 19 and 20 in Table 1. The
design of the new molecules was focused on altering
substituents R and Ar and considering the availability of
precursors/reagents so that the obtained new molecules
will be possible to be synthesized in laboratory.

RESULT AND DISCUSSION

Multiple Linear Regression Analysis

To obtain the best QSAR model that correlates
independence variables and dependence variable,
multiple linear regression analysis using SPSS software
has been performed. All variables were included in the
model set-up. At the first step, all variables are included
in the model and the less relevant variables were
eliminated from the model by backward method
automatically. This procedure finally gives 10 candidates
of QSAR models as listed in Table 2. It is immediately
emerged from Table 2, that all selected models show a
good correlation (r ≈ 0.9) between biological activity and 
selected descriptors in the fitting process. Selection of
models are based on the statistical parameters such as
correlation coefficient (r), coefficient of determination (r

2
),

the calculation error (SE) and significance of the model
(Fcal/Ftab). It is clearly shown that one of the ten
candidate models have value of Fcal/Ftab less than 1,
therefore the model is automatically rejected and does
not included in the model validation.

Further selection of the model is done by looking at
the ability of the model to predict the activity of five test
compounds, i.e. insecticide compounds which are not

included in the model building. The best model is
chosen from those giving predictive activity close to the
insecticidal activity of experimental results as shown by
their PRESS (predictive residual sum of square) given
in Table 3. Based on the value of the PRESS, it is
evidenced that model-10 gives the smallest PRESS
value; therefore this model is finally selected as the
best MLR QSAR model.

Principle Component Regression Analysis

In this study, PCA method is used to obtain the
latent variables from all possible original
descriptors/variables, e.g. electronic and molecular
variables, for 21 compounds of PCH derivatives prior to
PCR analysis using SPSS. From PCA analysis, five
components of the matrix (latent variables) are
obtained, giving total information of representation
variants as much as 90.313%. The percentage
contribution of each component to the total information
of representation variants is 37.981; 22.309; 16.295;
8.302 and 5.426 for the components F1, F2, F3, F4
and F5, respectively.

By using latent variables, QSAR models has been
generated using PCR analysis that correlate
independence variables (five latent variables) and
dependence variable (log LC50) within SPSS software
package. At the beginning, all latent variables are
included in the model and then the variables which
have weak correlation with insecticidal activity will be
gradually excluded from the model by backward
method. From the PCR analysis, five models were
obtained as listed in Table 4. However, no single model
is satisfied from the statistical points of view because
the correlation coefficient (r) between log LC50 and
activity is considerably small (<0.521) and furthermore,
the significance of the five models is also very low, i.e.
less than 95% as can be seen from their Fcal/Ftab values
which are lower than unity. Thus, all PCR QSAR
models are not adequate and automatically eliminated
for further model validation.

Artificial Neural Network Analysis

QSAR model generated by artificial neural
network (ANN) analysis has been done by using
selected descriptors that has been obtained from
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Table 5. Comparison between predicted and observed values of insecticide activity obtained from ANN analysis
log LC50 log LC50Compound

observed predicted
Compound

observed predicted
Training set Test set

1 2.232 2.218 8 2.109 2.124
2 2.171 2.169 11 2.369 2.331
3 2.086 2.102 15 1.848 1.849
4 2.441 2.382 18 2.095 1.858
5 1.833 1.898 21 2.425 2.425
6 2.491 2.414 r 0.977
7 2.114 2.123 r

2
0.839

9 2.388 2.343
10 2.208 2.207
12 2.345 2.300
13 2.085 2.100
14 2.434 2.379
16 2.094 2.086
17 2.054 2.094
19 1.770 1.850
20 1.882 1.938
r 0.997
r
2

0.929

Fig 2. The best ANNs architecture (5-9-1)

previous MLR analysis as an input. The training set of
data is needed in ANN to help the system learn and
recognize the relationship between the input and output
data. Similar to those used in MLR and PCR analysis,
five compounds of insecticides are randomly separated
and used as testing-set compounds to validate the ANN
model prior to the application of the network in predicting
the activity of new designed insecticides.

From the ANN analysis, it is revealed that the best
architecture of neural network is 5-9-1 pattern as
illustrated in Fig. 2 with optimum learning rate of 0.2 and
5000 iterations operated on Matlab 7.0.1 for Windows

TM
.

Results of ANN analysis indicates a strong relationship
between descriptors and log LC50. The plot of observed
and calculated values for the training and test set of
insecticide compounds has linear regression coefficient
(r) of 0.997 and 0.977 respectively as listed in Table 5.
Clearly, it has been demonstrated that artificial neural

network results give the best result in building the
quantitative structure activity relationship models of
PCH insecticides. These results suggest that the
relationship between chemical structure this class of
insecticides and their biological activity is better to be
approached using non-linear function.

Analysis of Structure-Activity Relationship

Structure and activity relationship of PCH
derivatives that has been obtained may be explained
with respect to the number of electronic and
hydrophobic descriptors involved. It has been known
that electronic and structural properties as well as
hydrophobicity of the compounds are important factors
governing the protein-ligand interaction [10]. These
parameters are of critical importance in determining the
types of intermolecular forces that underlie drug-
receptor interactions [11]. In this study, electronic
descriptors as defined by net-atomic charges (q) and
ELUMO energy is important in describing the electronic
interaction and reactivity of these biologically active
molecules. Hydrophobic parameters play an essential
role with respect to the ability of the molecule to
penetrate the membrane cell [12] and it is directly
related to the solubility of the compounds in aqueous
phases, to their ability to pass membrane permeation,
and to its (merely entropic) contribution to ligand
binding at the receptor site [13]. Hydrophobic descriptor
which is commonly expressed by log P is also an
important parameter to describe transport of the
compound to the target.
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Table 6. Comparison between observed and predicted values of insecticide activity calculated by selected model of

MLR and ANN together with their values of 2_pred r and 2
mr

Predicted log LC50Observed
log LC50 MLR 2_pred r

2
mr ANN 2_pred r

2
mr

2.425 2.982 2.425
2.369 2.392 2.331
2.109 2.165 2.122
2.095 1.502 1.858
1.848 1.861

0.0779 0.3065

1.849

0.9201 0.7961

Table 7. New designed PCH insecticide molecules and predicted log LC50 calculated using the best QSAR model
Substituent type

Compd
Ar R

Predicted
log LC50

22 4-bromophenyl isopropyl 2.208
23 4-bromophenyl cyclohexyl 2.000
24 4-bromophenyl neopentyl 2.657
25 4-bromophenyl decaline 4.006
26 4-fluorophenyl neopentyl 2.431
27 4-fluorophenyl methyl 1.993
28 4-fluorophenyl decaline 1.769
29 2,3,5,6-fluorophenyl neopentyl 2.121
30 2,3,5,6-fluorophenyl methyl 3.071
31 2,3,5,6-fluorophenyl isopropyl 2.084
32 2,3,5,6-fluorophenyl isobutyl 2.114
33 2,3,5,6-fluorophenyl cyclohexyl 2.071
34 2,3,5,6-fluorophenyl decaline 3.112
34 4-chlorophenyl neopentyl 2.669
35 4-chlorophenyl decaline 2.905
37 2-thienyl decaline 1.672
38 2-thienyl methyl 2.012
39 2-thienyl neopentyl 1.790
40 pyridine cyclohexyl 3.980
41 pyridine isopropyl 2.521
42 pyridine methyl 2.384
43 pyridine decaline 2.425
44 3-methyl-2-thienyl decaline 2.095
45 3-methyl-2-thienyl neopentyl 1.705
46 3-methyl-2-thienyl phenyl 2.095
47 5-methyl-2-thienyl decaline 1.640
48 5-methyl-2-thienyl methyl 2.042
49 5-methyl-2-thienyl neopentyl 1.785

Model Validation

In this study, we need to compare the QSAR
models obtained from MLR and ANN analysis in order to
determine which one is the best model. The statistical
parameters used for this purpose are pred_r

2

and
2

mr . The pred_r
2

parameter is determined on the

basis of the following equation (2).

 

2

2
2

_ 1

i i

i mean

y y

pred r

y y

 
  

  






(2)

where yi, and y^i are respectively the experimental and
predicted activity of the i

th
molecule in the test set. ymean

is the average activity of all molecules in the training
set. The pred_r

2
value of greater than 0.5 is an

indicator of good external predictability [14].

The parameter 2
mr is determined by the following

equation (3).

2 2 2 2
01mr r r r

 
   

 
(3)

where r
2

and 2
0r respectively are the determination

coefficient of the plot between the observed and
predicted activities of the test set compounds
calculated with and without intercept. In general, r

2
and

2
0r would not differ significantly, and an 2

mr value of

greater than 0.5 is an indicator of good external
predictability [15]. By examining Table 6, it can be
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concluded that ANN QSAR model is the best model
because it gives the statistical parameters of pred_r

2
and

2
mr higher than those of MLR method. Detailed results of

pred_r
2

and 2
mr calculation are presented at in Table 6.

Based on these results, for further study, therefore, ANN
QSAR model is used as guidance in designing new
insecticide of the class.

Design of New Insecticide

The design of new insecticide of PCH derivatives
has been done on the basis of the best QSAR model
obtained and this equation model was then used to
predict their activity. In designing the structure of the
new insecticide molecule, R and Ar substituents
attached to the main structure were modified so that the
higher insecticide activity of the new designed molecule
compared to that of the previously synthesized
molecules was achieved.

For that purposes, R of electron donating
substituent has been selected to examine the influence
of electron distribution in the phenyl ring on insecticide
activity. Furthermore, variation of substituent at this
position will also influence the polarity of the molecule.
On the other hand, replacing Ar substituent with electron
withdrawing moeties is expected to give impact on the
electronegativity of the compound, resulting in high
activity of the molecule. Table 7 lists the detailed
structure/substituent of new insecticide molecule that
have been designed on the basis of the above
assumption along with their predicted activity values
calculated using the best QSAR model.

In this study, R has been replaced using more and
less bulkier substituent to evaluate the effect of electron
resonance and polarization on the insecticide activity.
The evaluation was done by comparing the predicted log
LC50 values of the corresponding compounds. Results of
the study show that there is a significant difference in the
value of predicted log LC50 when R is varied and Ar
substituent is kept the same. For example, compound
number 47 where R is decaline, the bulkier substituent
has predicted log LC50 of 1.640 while compound 48 with
R = methyl, less bulk substituent has predicted log LC50

of 2.042. This result indicates that bulkier substituent
enhances electron resonance so that the electron is
more distributed on the phenyl ring, resulting in the
higher solubility of the compound.

The effect of electron withdrawing substituent at Ar
position on the value of predicted activity has also been
investigated. Replacement of fluorine atom with bromine
where substitueny R kept constant has significant effect
on their predicted activity due to the differences in their
electronegativity. As clearly seen in Table 7, compound
number 24 (Ar = 4-bromophenyl) and 28 (Ar = 4-

fluorophenyl) have predicted log LC50 of 4.006 and
1.769 respectively. This suggests that more
electronegative substituent at Ar position increases the
activity of the molecule.

CONCLUSION

It has been demonstrated that semi-empirical
PM6 is good computational method for the calculation
of descriptors in QSAR analysis of PCH derivatives
such as electronic and hydrophobic parameters. From
QSAR equation model, it is revealed that electronic and
hydrophobic descriptors have significant contribution to
the insecticidal activity. The existence of non-linear
relationship between chemical structure and biological
activity of PCH derivatives is indicated by the best
statistical parameters of non-linear QSAR model
generated by ANN analysis. It is, therefore, clearly
shown that ANN analysis can be an alternative
approach when the relationship between activity and
descriptors could not be well fitted using the linear
regression analysis. Based on the best QSAR model
obtained, it has been designed some new insecticide
compounds which have predicted insecticidal activities
higher than those of the existing compounds. This new
designed compounds are suggested to be further
synthesized and then tested for their insecticidal
activity in the laboratory.
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