Sorption Characteristics of 137Cs and 90Sr into Rembang and Sumedang Soils

Budi Setiawan1,*, Yusran Dani2, and Nurmaya Arofah2

1Center for Radioactive Waste Technology - National Nuclear Energy Agency
Kawasan PUSPIPTEK Bld 71, 3rd Floor, Serpong-Tangerang 15310, Indonesia

2Department of Chemistry, Faculty of Science and Technology, State Islamic University Syarif Hidayatullah
Jl. Ir. Haji Juanda No. 95, Ciputat, Tangerang Selatan, Banten 15412, Indonesia

Received February 12, 2016; Accepted April 26, 2016

ABSTRACT

In order to understand the sorption behavior of 137Cs and 90Sr into soil sample from Rembang and Subang, it is important to estimate the effect of contact time, ionic strength and concentration of metal ion in the solution. For this reason, the interaction of 137Cs and 90Sr with soil sample has been examined. The study performed at trace concentration (~10^{-8} M) of CsCl and SrCl$_2$, and batch method was used. NaCl has been selected as a representative of the ionic strength with 0.1, 0.5 and 1.0 M concentrations. Concentration of 10^{-8}~10^{-4} M CsCl and SrCl$_2$ were used for study the effect of Cs and Sr concentrations in solution. Apparent distribution coefficient was used to predict the sorption behavior. The sorption equilibrium of 137Cs and 90Sr into soil was attained after 5 days contacted with Kd value around 3300-4200 mL/g, where Kd was defined as the ratio of number of radionuclide activity absorbed in solid phase to the number of radionuclide activity remains in solution per-unit volume. Presence of NaCl as background salt in the solution affected Kd values due to competition among metal ions into soil samples. Increase of Cs or Sr concentration in solution made Kd value decreased drastically. This information is expected could provide an important input for the planning and design of radioactive waste disposal system in Java Island in the future.

Keywords: radioactive waste; host rock; cesium; strontium; sorption

INTRODUCTION

The first Indonesian nuclear power plant (NPP) will be constructed in Java Island to fulfill the electricity demands in Java and Sumatera Islands in the future. The energy source is planned to contribute to national energy mix system, by at least 5% of the total demand. Consequently, the plant will produce a huge quantity of radioactive waste especially in the form of low-medium level of solid radioactive waste. For example, the waste produced by a 1000 Mwe NPP is predicted to be about 400 drums of 200 L embedded waste annually [1-2]. These embedded waste drums will off course be sources of radiological risk to people and environment. To minimize those possible risks, waste disposal facilities need to be provided. Therefore, radwaste disposal in Java Island needs to be realized prior the construction of this first NPP. These disposal facilities are expected to be able to reduce or minimize the security risk of waste transportation from waste producing facility to disposal site.

* Corresponding author. Tel/Fax : +62-21-7563142/7560927
Email address : bravo@batan.go.id

Budi Setiawan et al.
The soil in Java Island has a distinctive feature with high cracking due to high intensity of annual rainfall [3]. Rock or soil with low hydraulic conductivity property (10-7 cm/s) such clay is considered to be suitable for the host rock for radioactive waste disposal facility. Such types of rock or soil site are expected to be able to prevent the spread of radionuclides contamination into the environment. From the previous survey, which has been completed based on geological and non-geological criteria, some potential safe areas as the site for waste disposal facilities in Java Island are Rembang and Sumedang that contain appropriate host rock for disposal site [4-6].

To demonstrate the suitability of those two sites, an experiment on the sorption test of radionuclides in solution into the soil samples need to be done. This experiment will be able to indicate the soil ability to retard radioactive contaminants from the radwaste disposal facility spreading in the environment. The sorption mechanisms will be determined through a series of sorption characteristic experiments with some affected parameters.

Cesium (\(^{137}\text{Cs}\)) and strontium (\(^{90}\text{Sr}\)) were used in the experiment as the metal ion model due to their existing in the low-level waste inventory, and long half-life. Meanwhile \(^{60}\text{Co}\) was used as radionuclide reference to demonstrate the interaction between low-level radioactive waste and rock or soil samples. Furthermore, because \(^{137}\text{Cs}\) was easy to be bound to soil, it used to study and predict soil erosion quantitatively by understanding its impact on the action of erosion control [7-8]. The objective of this study is to find the sorption characteristic of radionuclides -\(^{137}\text{Cs}\) and \(^{90}\text{Sr}\)- in the Rembang and Sumedang soils. Sorption indicator of \(^{137}\text{Cs}\) and \(^{90}\text{Sr}\) in the Rembang and Sumedang soils were determined by observing their distribution coefficient \((K_d)\), which was calculated from the initial and final activity of radionuclide remains in the solution using equation (1).

\[
K_d = \frac{C_s - C_i}{C_i} \frac{V}{m} \tag{1}
\]

where \(C_0\) and \(C_i\) are the initial and the final activity of \(^{137}\text{Cs}\) or \(^{90}\text{Sr}\) in the solution, \(V\) is the total volume of the solution in milliliters, \(m\) is the dry mass weight of the soil sample in gram and \(K_d\) is the distribution coefficient of \(^{137}\text{Cs}\) or \(^{90}\text{Sr}\) in the soil and the solution in the equilibrium state, respectively.

In this experiments, sorption characteristic of \(^{137}\text{Cs}\) and \(^{90}\text{Sr}\) has been determined at the trace concentration by evaluating four parameters i.e. contact time, desorption, ionic strength and concentration for both \(^{137}\text{Cs}\) and \(^{90}\text{Sr}\) in the solution.

EXPERIMENTAL SECTION

Materials

Determination of sampling locations as potential site was obtained from desktop and field works in Java Island geological map of central part section and Indonesian stratigraphic lexicon references [6,9]. Based on the siting criteria, Rembang and Sumedang have been selected to be potential sites. Clay soil from those two candidate sites was sampled and then brought to laboratory to be cleaned and sieved to 100 mesh particle size samples. The samples were then used in the experiment. All chemical reagents (CsCl, SrCl\(_2\) and NaCl) were used in the experiment from E. Merck production except the radioactive material \(^{137}\text{Cs}\) and \(^{90}\text{Sr}\) is from Eckert & Ziegler Isotope Production in 3.7MBq/5 mL sp. activity.

Instrumentation

To weight the soil samples have been used the Mettler series AE200 analytic scale unit. Heraeus Labofuge 400 centrifuge equipment has been used to separate the solid and liquid phases of samples, and Canberra multichannel analyzer (MCA) unit completed with HPGe detector eff. 20% and Perkin Elmer Tri-Carb 2910 TR liquid scintillation counter (LSC) has been used to determine the β-γ activities of radionuclides in the solution.

Procedure

Sorption-desorption

To determine the distribution coefficient \((K_d)\), the experiment was performed in a batch method, in which 0.1 g of soil sample was immersed into a 10 mL demineralized water containing CsCl which labeled with \(^{137}\text{Cs}\) or \(^{90}\text{Sr}\) in a 20 mL PE vial. Initial concentration of CsCl or SrCl\(_2\) was \(1 \times 10^{-6}\) M and then shakes with geological roller for 12 days. Solid and liquid phases were separated using a centrifuge equipment (2500 rpm, 10 min.). The β and γ-activity remaining in supernatant were measured using LSC and MCA radiometric units. \(^{137}\text{Cs}\) was measured at 661.6 keV, which was counted for about 10 min. The coefficient distribution \((K_d)\) was calculated using equation (1). A desorption experiment was conducted by changing the old solution with a fresh demineralized water. The procedure was similar to the previous sorption experiments.
Effects of ionic strength

In the ionic strength experiment, the experiment used the initial concentration of CsCl or SrCl$_2$ was 1 x 10$^{-8}$ M in 0.1 or 1.0 M NaCl solution, which was mixed with 0.1 g of soil samples. The next procedure was similar to the sorption experiments.

Effects of Cs or Sr concentrations

For the effect of CsCl or SrCl$_2$ concentrations, initial concentrations of CsCl or SrCl$_2$ was varied from 10$^{-8}$ to 10$^{-4}$ M. Experiment procedures were performed similar to the previous work [10].

Isotherm sorption

In this study, Freundlich isotherm was applied. This isotherm model is very widely applicable for describing non-linear model of sorption dependence on adsorbate concentration [11]. This model also represents properly the sorption data at low to intermediate concentration on heterogeneous surface of soil samples. The relationship of Freundlich isotherm is exponential and represented in eq. (2),

$$[C]_s = k [C]^n$$ \hspace{1cm} (2)

where $[C]_s$ is the amount of Cs or Sr sorbed on the solid phase at equilibrium, $[C]$ is the concentration of Cs or Sr remain in solution, k is a constant that is related to sorption capacity and n is an empirical parameter that varies with the degree of heterogeneity of the samples. Slope of n is resulted from the interception of plotting log$[C]_s$ and log$[C]$. The eq. (2) could be written in a logarithmic eq. as,

$$\log[C]_s = \log k + n \log[C]$$ \hspace{1cm} (3)

All experiments described above were carried out in the Chemistry Laboratory of Disposal Technology Division, Center for Radwaste Technology-National Nuclear Energy Agency of Indonesia in Serpong-Tangerang in year 2012.

RESULT AND DISCUSSION

Sorption-Desorption

Physically, clay samples taken from Rembang area have a brighter color than clay sample from Sumedang area. The mineralogical of the two samples are shown in Table 1. The carbonate, quartz and clay contents of the soil samples were determined qualitatively by X-ray diffraction method in the Directorate of Geology-Bandung.

Sorption kinetics results of 137Cs or 90Sr by Rembang and Sumedang soil were shown in Fig. 1. Uptake of Cs and Sr ions on soil samples increase sharply in the first 5 days contact and then slow down towards the saturation condition.

<table>
<thead>
<tr>
<th>Components</th>
<th>Rembang soil</th>
<th>Sumedang soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite, CaCO$_3$</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Quartz, SiO$_2$</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Magnetite, Fe$_3$O$_4$</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Muscovite, KAl(Si3Al${10}$O$_{10}$)(OH)$_2$</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nontronite, NaO$_0.33$Fe$_2$$(SiAl)3O{10}(OH)_2$.xH$_2$O</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Few(+), little bit (++), eaverage (+++), much (++++)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some parts of 137Cs or 90Sr from solution were removed by soil samples. The sorption process of radionuclide reached equilibrium state when soil samples become saturated with 137Cs or 90Sr [12-13]. At the beginning of the reaction, the sorption process of 137Cs or 90Sr into soil samples was relatively fast due to the domination of the sorption processes to the desorption processes. After 4-5 days of contact, the sorption process slows down and the sorption rate becomes equal to the rate of desorption. This condition is called a sorption equilibrium condition. Sorption equilibrium of 137Cs or 90Sr into soil samples was achieved after 5 days of contact with Kd was approximately about 3000-4200 mL/g. However, the result was little bit higher than other references due to the different experiment condition [14-15].

Desorption experiment was done, by replacing the solution containing 137Cs or 90Sr carrier in PE vials with fresh water and then gently shaking process continued again. The result is shown in Fig. 2. After 4-5 days contact between soil samples and fresh water, Kd values of 137Cs or 90Sr decreased and then stable at 3200-1500 mL/g. This is because some parts of 137Cs or 90Sr, which has been absorbed by soil.
samples, were back into solution again. Concentration of CsCl or SrCl₂ in solution went up and then the sorption reaction in soil sample slowly reached a new equilibrium. The sorption of Cs and Sr ions on soil samples were reversible, suggesting that ¹³⁷Cs or ⁹⁰Sr sorption in the soil samples were in a simple bonding mechanism and absorbed in reversible meaning [16].

Cesium and strontium absorbed on the samples is to balance the negative charge on the soil. It is compensated for by counter ions, such as Na⁺, K⁺, Ca²⁺ or Mg²⁺ sorbed on the soil surfaces. These counter ions can be exchanged by cesium and strontium. Calcite and quartz are dominant in both samples. The high concentration of calcite in Sumedang soil than in the Rembang soil is expected to distinguish the magnitude of Cs and Sr uptake to the soil samples.

Effects of Ionic Strength

Coefficient distribution value of ¹³⁷Cs or ⁹⁰Sr in soil sample in the presence of Na⁺ ion as background salt in solution was shown in Fig. 3. Kd of ¹³⁷Cs or ⁹⁰Sr decreased along with the increase Na⁺ concentrations in solution. This was caused by the competition between Cs⁺ or Sr²⁺ ions and Na⁺ ion around the solid boundary area of the interaction of the soil samples [17-18]. Na⁺ concentration was higher than Cs⁺ and Sr²⁺ concentration, Na⁺ ion was an effective competitor for the high-affinity sites at soil samples [19]. Increasing the Na ion concentration in solution has changed the electrostatic force in the surrounding of the soil samples, and this has led to reduce the metal ion selectivity in exchangeable of soil samples [17].

Effects of Cs or Sr Concentrations

Effect of CsCl or SrCl₂ concentrations in solution to ¹³⁷Cs or ⁹⁰Sr sorption in the soil samples were done with initial concentrations were ranged of 10⁻⁸ to 10⁻⁴ M, and the result was shown in Fig. 4. Increasing the CsCl or SrCl₂ concentration in the solution decreased the Kd values of ¹³⁷Cs or ⁹⁰Sr into Rembang and Sumedang soils. At low concentration, the changing of Kd value was not relatively affected by the concentration of Cs and Sr. However, at higher concentrations, the sorption process was non-linear or the uptake was not proportional to the Cs and Sr concentrations. The non-linear behavior means that the Kd value is only valid for
one concentration condition of Cs or Sr. This is indicated by the difference of their Kd values. With the increasing of concentration of Cs or Sr in the solution, the Kd value decreased [20-21]. It is clear that the two soil samples have the highest Kd values obtained at lower Cs or Sr concentrations. This suggests that more favorable sites exist in the soil samples with limited sorption capacity.

Isotherm Sorption of Cs and Sr

Sorption process considered involves a solid phase of soil samples and radionuclides (Cs and Sr) solution to be sorbed as a liquid phase. In the sorption isotherm are plotted the uptake of Cs or Sr ions in soil samples and the residual of Cs or Sr in solution.

The typical isotherm sorption results of experiment are shown in Fig. 5 (a) and (b) for Cs and Sr, respectively. In this study, we set the initial Cs and Sr concentrations from 10^-8 to 10^-4 M on while [C] values in Rembang soil samples decrease to be 2.23 x 10^-11, 2.37 x 10^-10, 3.96 x 10^-9, 1.64 x 10^-7, 4.17 x 10^-6 and 3 x 10^-10, 3.3 x 10^-9, 4.6 x 10^-8, 1.2 x 10^-6, 3.3 x 10^-5 of Cs and Sr concentration, respectively. In [C]s, the values become 1 x 10^-9, 1 x 10^-7, 1 x 10^-6, 9.8 x 10^-6, 9.6 x 10^-5 and 9.7 x 10^-9, 9.7 x 10^-8, 9.5 x 10^-7, 8.8 x 10^-6, 6.7 x 10^-5 of Cs and Sr concentration in Rembang soil samples, respectively. The same condition also happens to Sumedang soil samples. That is, increased initial concentration leads to decreased values of [C]s. Analysis of the region of higher saturation yields a slope slightly greater than one for strontium even in Rembang and Sumedang soils. The sorption of cesium tends to be independent of sorption at higher concentration. Those results suggest that cesium easier dispersed in the environment [22].

The presence of specific information on 137Cs or 90Sr sorption by Rembang and Sumedang soils will be able to give an overview of the ability of the soil from two areas to accommodate the 137Cs or 90Sr in solution, which eventually can be used to assess the level of reliability of soil of both areas against potential radiological risk to humans and the environment.

CONCLUSION

The results showed that sorption equilibrium of 137Cs or 90Sr into Rembang and Sumedang soils achieved after 5 days of the contact time with Kd values were 3000-4200 mL/g. Replacement contaminated solution with fresh distilled water had decreased Kd values of 137Cs or 90Sr into Rembang and Sumedang soils from 4200-3000 mL/g to 3200-1500 mL/g, and the presence of NaCl as background salt in solution also decreased Kd values due to the ionic competition between Na$^+$ and Cs$^+$ or Sr$^{2+}$ into soil samples. Increasing CsCl or SrCl$_2$ concentrations in solution decreased Kd values due to the limitation of sorption capacities of soil samples. The sorption of Cs and Sr ions into soil samples could be more effective when the ionic strength of solution is in a low concentration. All of information obtained from the experiment could give an important input to the decision makers and designer of radwaste disposal system in Java Island in the future.
ACKNOWLEDGEMENT

Thanks are to Mr. Sucipta, M.Si., Teddy Sumantry, B.Sc., and Ms. Wahyu Retno Prihatningsih, M.Si., of PTLR-BATAN for their assistance in soil sampling, chemical and radioactive materials preparation and also for using the liquid scintillation counter equipment during the experiment. Also to Dr. Julwan Hendry Purba of PTKRN-BATAN for the valuable suggestions.

REFERENCES