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 Abstract: Goat’s milk proteins can undergo hydrolysis during digestion, producing 
peptides that may inhibit α-amylase and help treat type 2 diabetes with minimal side 
effects. Identifying the amino acid composition of these peptides is essential for determining 
their inhibitory potential. Recent in silico digestion methods have been developed to 
generate specific peptides. This study aims to identify α-amylase inhibitory peptides from 
goat’s milk casein hydrolyzate using in silico digestion, followed by peptide synthesis and 
activity assay. Peptides were derived from goat’s milk casein hydrolyzed using in silico 
digestion. Molecular docking was employed to predict protein-peptide interactions 
utilizing the HADDOCK2.4 server, CABS-dock, and PepSite 2 server. Peptides EDVPSER 
and TNAIPYVR could inhibit α-amylase with IC50 values of 14.16 ± 0.65 and 
76.58 ± 2.13 μM, respectively. In vitro evaluation confirmed that EDVPSER from αS1-
casein exhibited α-amylase inhibitory potential. This peptide could be developed as a 
potential therapeutic agent for type 2 diabetes, offering a natural and targeted approach 
to α-amylase inhibition. Peptide EDVPSER may serve as a basis for further research and 
development of antidiabetic treatments derived from goat’s milk proteins. 
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■ INTRODUCTION 

Diabetes mellitus (DM) is known as a serious public 
health problem with a major impact on human life. 
Insufficient insulin secretion and insulin resistance are 
the metabolic disorders that cause DM [1], leading to high 
blood sugar levels. Type 2 diabetes (T2D) is the most 
common form of DM. In 2017, it affected approximately 
462 million people (6.28% of the global population) and 
rose from the 18th to the 9th among leading causes of death 
since 1990 [2]. 

Several factors, such as unhealthy eating, lack of 
physical activity, and being overweight are the common 
risk for developing T2D [3]. There is no effective cure for 
this metabolic disorder. Treatment of T2D commonly 
utilizes α-amylase inhibitors as antidiabetics [4]. Several 
general antidiabetic drugs (e.g., acarbose, metformin, and 
sulfonylurea) are commercially available to treat T2D, 

although they show undesired effects, including 
hypoglycemia, nausea, headache, and gastrointestinal 
damage [5-6]. Hence, the development of a novel α-
amylase inhibitor is urgently required with specific 
inhibition and minimum side effects. 

Several researches have been conducted to inhibit 
α-amylase performance using peptides from natural 
products. Recent research shows that the specificity of 
the peptide’s sequence plays an important role in 
inhibiting α-amylase with a lower IC50 value compared 
to unhydrolyzed protein [7]. Several peptides were 
investigated and predicted to be active against α-amylase 
through in silico and in vitro analyses [8]. The research 
findings revealed that peptides with amino acids 
sequence of isoleucine-proline-proline (IPP) showed 
inhibition of α-amylase with an IC50 value of 
763.5 ± 18.9 μM. The bioactivity of several peptides was 
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identified against α-amylase [9]. Peptide YFDEQNEQFR 
exhibited the highest activity among other peptides, with 
an IC50 value of 37.5 ± 1.1 μM.  

Milk holds advantages and impacts on the human 
body. Goat's milk contains a greater variety of nutrients, 
such as protein, lipids, water, lactose, vitamins, and 
minerals [10], compared to cow’s milk [11-12]. Casein is 
the predominant protein in goat’s milk, surpassing the 
amount of whey protein [13]. Its abundance makes goat’s 
milk a promising source of food-derived peptides. This 
protein contains potential bioactive peptides that could 
act as α-amylase inhibitors and warrant further 
development. 

In silico digestion analysis is a valuable alternative 
for designing or predicting peptide-based experiments. 
This analysis also serves as an alternative due to the high 
costs and time-consuming nature of peptide 
measurement and characterization. Consequently, the 
peptide content in natural materials or animal products is 
often neither thoroughly measured nor analyzed [14]. The 
identification of bioactive peptides is supported by 
bioinformatics, which has advanced rapidly, leading to 
the creation of integrated biological knowledge databases. 
BIOPEP primarily concentrates on peptides derived from 
food sources [15]. 

Detailed structural insights are required to 
understand the underlying molecular mechanism of 
protein-peptide interactions. However, experimental 
characterization has been hindered by the highly dynamic 
and transient nature of these interactions. As a result, 
computational methods, particularly protein-peptide 
docking, have been used as an alternative to predict 
binding structures [16]. High-Ambiguity Driven Docking 
(HADDOCK2.4) employs local docking, focusing on 
modeling and analyzing molecular interactions around 
specific regions of target proteins [17]. Software like 
AutoDock Vina, widely used in molecular simulations, 
does not yield optimal results for protein-peptide 
interaction predictions due to its energy-based 
calculations, limitations in handling complex molecules, 
and restricted receptor flexibility. In contrast, 
HADDOCK2.4, which utilizes experimental data, 
accommodates flexible protein-peptide docking. A 

comprehensive study by [16] demonstrated that 
HADDOCK2.4 outperformed AutoDock Vina in 
protein-peptide interaction predictions. The study also 
emphasizes the importance of using multiple initial 
peptide conformations to enhance docking 
performance, suggesting the need for additional tools to 
support and validate docking results. In this study, 
protein-peptide interactions were not predicted solely 
using HADDOCK2.4. Additional servers such as CABS-
dock and PepSite 2 were employed for global docking to 
validate the results [16-19]. The docking was carried out 
to predict peptide interactions with the catalytic triad of 
α-amylase, which consists of three coordinated amino 
acids at the enzyme’s active site. These residues, 
aspartate (Asp197 and Asp300) and glutamate (Glu233), 
play a key role in carbohydrate breakdown, making 
them potential inhibitory sites [20-23]. If the peptide 
interacts with this triad, it could inhibit the enzyme’s 
activity. 

■ EXPERIMENTAL SECTION 

Materials 

The initial protein casein derived from goat’s milk 
was utilized in this study. Several sequences of casein 
protein, including αS1-casein (UniProtKB P18626), αS2-
casein (UniProtKB P33049), β-casein (UniProtKB 
P33048), and κ-casein (UniProtKB P02670), were 
obtained from the UniProt Knowledgebase 
(www.uniprot.org, accessed in February 2024). The 
protein used for the molecular docking study was 
Porcine Pancreatic α-Amylase (PPA). Meanwhile, the 
three-dimensional (3D) structure was obtained from the 
Protein Data Bank database (www.rcsb.org, accessed in 
February 2024) with PDB ID: 1PIF. 

The materials and reagents utilized in this 
experiment included sodium phosphate dibasic 
dihydrate (Na2HPO4·2H2O, Merck), sodium phosphate 
monobasic monohydrate (NaH2PO4·H2O, Merck), 
acarbose solids (OGB Dexa), starch substrate solution 
(Merck), PPA (SRL Chemicals), peptide sample solids 
(90%, GL Biochem (Shanghai) Ltd.), hydrochloric acid 
(HCl, 1%, Mallinckrodt), and iodine solution (I2, 0.2%, 
Merck). The solvents used were distilled water (H2O, 
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Merck), and dimethyl sulfoxide solution (DMSO, Merck). 
All solvents were of analytical grade. 

Instrumentation 

The presence of amylum was analyzed using a UV-
vis spectrophotometer (Thermo Scientific Evolution). 

Procedure 

In silico digestion of goat’s milk casein 
The amino acid sequences of goat’s milk casein were 

obtained from the UniProtKB. There are four types of 
casein in goat’s milk: αS1-casein, αS2-casein, β-casein, and 
κ-casein. Each type of casein was then subjected to in silico 
digestion using the Expasy PeptideMass 
(web.expasy.org/peptide_mass, accessed in March 2024) 
with trypsin as the enzyme. The peptides containing 
between 4 to 10 amino acids were selected. The previous 
activity of these peptides was then identified using the 
BIOPEP-UWM 
(biochemia.uwm.edu.pl/biopep/sensory_data.php, 
accessed in March 2024). Subsequently, the peptides were 
scored using the PeptideRanker 
(distilldeep.ucd.ie/PeptideRanker, accessed in March 
2024) and the PepSite 2 (pepsite2.russelllab.org, accessed 
in March 2024). Those meeting the criteria from each 
server were predicted to be bioactive peptides. 

Preparation of protein and peptides 
The 3D structure of α-amylase (PDB ID: 1PIF, 

2.30 Å) was prepared using UCSF Chimera. The protein 
was cleaned from water molecules and native ligands. The 
peptides obtained through in silico methods were then 
utilized to design their three-dimensional structures. These 
de novo peptide structures were generated using the PEP-
FOLD4 (bioserv.rpbs.univ-paris-diderot.fr/services/PEP-
FOLD4, accessed in March 2024). The best peptide model 
was selected for docking analysis. The lowest Optimized 
Potential for Efficient Structure Prediction (sOPEP) score 
indicates the most favorable conformation of the peptide. 

Protein-peptide molecular docking 
Docking was performed using HADDOCK2.4 

(rascar.science.uu.nl/haddock2.4, accessed in March 
2024) [24-25] and CABS-dock 
(biocomp.chem.uw.edu.pl/CABSdock, accessed in March 

2024) [26]. Docking on the HADDOCK server required 
the amino acid sequences of the receptor protein's active 
site and the peptides as input data. Meanwhile, docking 
on the CABS-dock server required the 3D structure of 
protein and peptide sequence as input data. The best 
cluster was selected from both servers. Then, the binding 
affinity energy predictions from the docking results were 
performed using PRODIGY 
(rascar.science.uu.nl/prodigy, accessed in March 2024). 

Secondary structure analysis 
The Structure-based Empirical Spectrum 

Calculation Algorithm (SESCA) software was employed 
to analyse the secondary structure of the peptides. This 
analysis required protein and peptide sequences as 
input. SESCA was executed using Python 3.11 through a 
single script, SESCA_main. The SESCA data obtained 
were then processed to generate secondary structure 
prediction. 

Synthesis of peptides 
The peptide with the best docking results was 

selected for synthesis, which was performed by GL. 
Biochem (Shanghai) Ltd. using solid-state synthesis. 
Each peptide was synthesized in a quantity of 20 mg with 
a purity of over 90%. The physicochemical properties of 
the obtained peptides were examined using the Peptide 
Property Calculator (pepcalc.com, accessed in March 
2024) and Expasy ProtParam 
(web.expasy.org/protparam, accessed in March 2024). 

In vitro antidiabetic activity assay of α-amylase 
inhibitors 

The synthesized peptides were dissolved in 0.1 M 
phosphate buffer (Na2HPO4·2H2O and NaH2PO4·H2O at 
pH 6.9 and 1.0 mL of DMSO to achieve a final 
concentration of 500 ppm). The peptide sample solutions 
were prepared by diluting the 500 ppm to various 
concentrations: 400, 300, 200, 100, 50, and 25 ppm. The 
activity assay was conducted on different systems with 
identical treatments (S0, S1, blank, and control). 

The antidiabetic activity assay was carried out by 
mixing 100 μL of starch substrate with 20 μL of the 
peptide sample solution. Furthermore, 20 μL of α-
amylase solution was added to the mixture. The solution 
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was then incubated at 37 °C for 15 min. To terminate the 
reaction, 20 μL of 1% HCl was added, followed by 2 μL of 
0.2% I2 solution to each sample. The absorbance of the S0 
mixed solution was measured using a UV-vis 
spectrophotometer at a maximum wavelength of 540 nm 
with 3 replicates. The comparative solution used was 500 
ppm acarbose. The percentage inhibition was calculated 
using the following Eq. (1); 

0 1

amylase inhibition (%)=
Abs(blank control) Abs(S S )

100%
Abs(blank control)

α −
− − −

×
−

 (1) 

where S1 is the absorbance of the system containing the 
substrate, enzyme, and sample; S0 represents S1 without 
the enzyme, control corresponds to S1 without the sample; 
blank refers to the absorbance of the system containing 
only the substrate. The percentage inhibition of peptides 
at each concentration and each replicate was converted to 
IC50 value, at which inhibition reached 50%. The value 
obtained was expressed in μM to account for the peptide’s 
molecular weight. 

■ RESULTS AND DISCUSSION 

In Silico Digestion of Goat’s Milk Casein 

Casein was chosen as the source of bioactive 
peptides because it is the most abundant protein in goat's 
milk [13]. The discovery of bioactive peptides was 
predicted based on the number of peptides generated 
from in silico digestion and the specific molecular weight 
of peptides [14]. The main casein protein in goat’s milk 
comprises αS1-casein, αS2-casein, β-casein, and κ-casein. 
Table 1 provides information related to protein mass and 

the number of amino acids in each protein. According 
to Table 1, among the proteins, αS2-casein and κ-casein 
had the highest and lowest masses, respectively. Those 
proteins were then hydrolyzed by in silico digestion. As 
reported in Table 2, a total of 57 peptide fragments were 
obtained from αS1-casein, αS2-casein, β-casein, and κ-
casein. The results of the in silico digestion showed that 
each protein of αS1-casein, αS2-casein, β-casein, and κ-
casein generated 16, 20, 12, and 9 peptide fragments, 
respectively. It indicates that αS2-casein and κ-casein had 
the highest and lowest number of peptide fragments per 
molecule, respectively. 

A total of 24 peptides were chosen for molecular 
docking. Peptides with 4–10 amino acids were selected 
because smaller peptides often have higher bioactivity, 
e.g. neuropeptide [27], antioxidative [28], and even DPP 
IV inhibitor [29]. Furthermore, peptides with fewer than 
4 amino acids could not be used due to tool limitations. 
BIOPEP-UWM identified 8 peptides with known 
biological activity, while 16 had unknown activity. 
Peptides from αS2-casein showed no activity, and none of 
the peptides inhibited α-amylase. The active peptides are 
listed in Table 3. 

Table 1. Protein mass and number of amino acids in each 
casein protein 

Casein protein Mass (Da) The number of amino acids 
αS1-casein 24.290 214 
αS2-casein 26.389 223 
β-casein 24.865 222 
κ-casein 21.441 192 

Table 2. Number of peptide fragments obtained from in silico digestion of casein protein of goat’s milk 
Peptide mass (Da) Amino acids sequence Number of amino acids 
αS1-casein 
4,658.17 QFYQLDAYPSGAWYYLPLGTQYTDAPSFDIPNPIGSENSGK 42 
2,328.19 QPMIAVNQELAYFYPQLFR 19 
1,806.83 AGSSSSSEEIVPNSAEQK 18 
1,725.71 DIGSESTEDQAMEDAK 16 
1,694.08 LLILTCLVAVALARPK 16 
1,437.77 GLSPEVPNENLLR 13 
1,307.71 FVVAPFPEVFR 11 
1,299.73 YNVPQLEIVPK 11 
1,267.70 YLGYLEQLLR 10 
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Peptide mass (Da) Amino acids sequence Number of amino acids 
1,159.54 SAEEQLHSMK 10 

946.48 ENINELSK 8 
880.43 EGNPAHQK 8 
831.38 EDVPSER 7 
773.42 HPINHR 6 
748.37 TTMPLW 6 
551.32 YIQK 4 

αS2-casein 
2,693.38 FPQYLQYPYQGPIVLNPWDQVK 22 
2,280.08 MEHVSSSEEPINIFQEIYK 19 
1,591.73 SSSEESAEVAPEEIK 15 
1,556.89 FFIFTCLLAVALAK 14 
1,400.66 TIDMESTEVFTK 12 
1,367.69 ALNEINQFYQK 11 
1,251.57 EQLSTSEENSK 11 
1,239.57 LCTTSCEEVVR 11 
1,224.55 NANEEEYSIR 10 
1,173.60 NAGPFTPTVNR 11 
1,086.58 AMKPWTQPK 9 
1,052.56 FAWPQYLK 8 

933.51 TNAIPYVR 8 
929.47 ISQYYQK 7 
855.43 TVDQHQK 7 
838.43 NMAIHPR 7 
748.37 LTEEEK 6 
690.37 ITVDDK 6 
634.39 LNFLK 5 
575.29 HYQK 4 

β-casein 
5,330.90 IHPFAQAQSLVYPFTGPIPNSLPQNILPLTQTPVVVPPFLQP EIMGVPK 49 
4,155.23 LHLPLPLVQSWMHQPPQPLSPTVMFPPQSVLSLSQPK 37 
2,987.43 EQEELNVVGETVESLSSSEESITHINK 27 
2,186.17 DMPIQAFLLYQEPVLGPVR 19 
2,183.07 YPVEPFTESQSLTLTDVEK 19 
1,981.86 FQSEEQQQTEDELQDK 16 
1,438.92 VLILACLVALAIAR 14 

780.50 VLPVPQK 7 
748.37 EMPFPK 6 
742.45 GPFPILV 7 
704.36 ETMVPK 6 
570.34 AVPQR 5 

κ-casein 
5,569.67 TEVPAINTIASAEPTVHSTPTTEAIVNTVDNPEASSESIASASETNTAQVTSTEV 55 
4,066.10 YPSYGLNYYQQRPVALINNQFLPYPYYAKPVAVR 34 
3,479.79 SFFLVVTILALTLPFLGAQEQNQEQPICCEK 31 
1,978.08 SPAQTLQWQVLPNTVPAK 18 
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Peptide mass (Da) Amino acids sequence Number of amino acids 
1,608.85 HPHPHLSFMAIPPK 14 
1,251.71 YIPIQYVLSR 10 
1,219.57 SCQDQPTTLAR 11 

671.30 FFDDK 5 
505.22 DQDK 4 

 
Table 3. Peptides generated by in silico digestion and their 
activity in the human body 

Amino acids sequence Activity Ref. 
αS1-casein   
YLGYLEQLLR Anxiolytic-like [27] 

EDVPSER 
Osteoanabolic [30] 
Antioxidative [28] 

HPINHR DPP IV inhibitor [29] 

TTMPLW 
Antibacterial [31] 
Antifungal [31] 

β-casein   

VLPVPQK 

Antibacterial [32] 
Antioxidative [28] 
Osteoanabolic [30] 
Anti-apoptotic [33] 
DPP IV inhibitor [29] 
Stimulating [34] 

EMPFPK 
Stimulating [35] 
Antibacterial [32] 

GPFPILV DPP IV inhibitor [29] 
κ-casein   
YIPIQYVLSR Opioid antagonist [36] 

Bioactivity predictions for 24 peptides were carried 
out using PeptideRanker and PepSite 2. Those with low 
significance values were likely to bind to the α-amylase 
active site, blocking its activity. Table 4 exhibits the results 
of the screening. Six peptides with PeptideRanker scored 
above 0.5 were predicted to have bioactivity (ranging 

from 0.56 to 0.90). In addition, PepSite 2 analysis 
showed low p-values for these peptides, indicating 
strong binding potential. These peptides were predicted 
to be bioactive based on in silico screening. 

Protein-Peptide Molecular Interactions 

Docking simulations were performed on 24 
peptides from in silico digestion against α-amylase to 
evaluate their interactions. The α-amylase was used as 
the receptor due to its 90% similarity to human 
pancreatic α-amylase [22]. This enzyme has 496 amino 
acids divided into three domains: A (residues 1-99, 169-
404, with Cl−), B (residues 100-168, with Ca2+), and C 
(residues 405-496). It also includes pyroglutamic acid 
(PCA) as a small molecule residue. Fig. 1 shows the 3D 
structure of α-amylase visualized using DSV Biovia 2020. 

Molecular docking of 24 peptides produced 
clustering and HADDOCK scores. Table 5 demonstrates 
the best HADDOCK scores for each peptide. Docking 
results were validated through root mean square 
deviation (RMSD) and Z-score calculations, which aided 
in identifying the most accurate clusters [37]. The best 
clusters confirmed consistent peptide docking with α-
amylase under natural conditions. HADDOCK scores 
alone cannot determine the best peptide inhibitor for α-
amylase. They only identify the best conformations 
based  on  RMSD  values.   Low  RMSD   indicates  stable  

Table 4. Peptide bioactivity predicted by PeptideRanker and PepSite 2 

Amino acids sequence PeptideRanker score 
PepSite 2 

p-value Binding site 
FAWPQYLK 0.91 0.0019 6 of 8 amino acids 
GPFPILV 0.87 0.0712 4 of 7 amino acids 
EMPFPK 0.77 0.0031 5 of 6 amino acids 
FFDDK 0.75 0.0372 4 of 5 amino acids 
TTMPLW 0.74 0.0119 5 of 6 amino acids 
LNFLK 0.56 0.0147 4 of 5 amino acids 
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Fig 1. Visualization of the 3D structure of α-amylase and important amino acids in starch hydrolysis 

Table 5. Clustering of peptides based on HADDOCK score 
Amino acids sequence Cluster HADDOCK score RMSD (Å) Z-score 
αs1-casein 
YLGYLEQLLR 1 -81.4 ± 1.2 0.9 ± 0.0 -1.7 
SAEEQLHSMK 7 -81.1 ± 4.5 0.1 ± 0.1 -1.7 
ENINELSK 2 -63.1 ± 1.7 0.6 ± 0.1 -1.5 
EGNPAHQK 1 -67.2 ± 2.3 0.2 ± 0.1 -1.3 
EDVPSER 3 -62.7 ± 6.1 0.2 ± 0.1 -1.3 
HPINHR 2 -74.2 ± 2.6 0.9 ± 0.1 -1.6 
TTMPLW 1 -70.2 ± 4.4 0.2 ± 0.1 -1.9 
αs2-casein 
NANEEEYSIR 3 -72.4 ± 4.7 0.4 ± 0.2 -1.7 
AMKPWTQPK 4 -80.5 ± 3.7 1.4 ± 0.0 -1.2 
FAWPQYLK 1 -99.9 ± 1.9 0.2 ± 0.1 -1.5 
TNAIPYVR 2 -60.4 ± 0.5 1.2 ± 0.1 -1.8 
ISQYYQK 3 -89.1 ± 6.9 0.4 ± 0.2 -1.8 
TVDQHQK 6 -69.1 ± 4.0 0.1 ± 0.1 -1.8 
NMAIHPR 1 -72.3 ± 2.8 0.3 ± 0.2 -2.3 
LTEEEK 2 -62.2 ± 9.1 0.4 ± 0.2 -1.8 
ITVDDK 1 -59.1 ± 2.1 0.9 ± 0.1 -1.8 
LNFLK 1 -68.9 ± 0.4 0.5 ± 0.2 -1.5 
β-casein 
VLPVPQK 2 -74.5 ± 0.9 1.1 ± 0.0 -1.7 
EMPFPK 5 -78.4 ± 7.5 0.3 ± 0.2 -2.1 
GPFPILV 2 -63.0 ± 5.4 0.2 ± 0.1 -2.1 
ETMVPK 1 -50.4 ± 6.2 0.3 ± 0.2 -1.6 
AVPQR 9 -50.7 ± 4.3 0.2 ± 0.1 -1.8 
κ-casein 
YIPIQYVLSR 1 -79.8 ± 4.3 0.5 ± 0.1 -1.5 
FFDDK 6 -81.3 ± 5.4 0.2 ± 0.1 -1.3 
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conformations close to the reference model (optimization 
structure). Further analysis of binding affinity and 
protein-peptide interactions is needed to predict 
inhibitory activity. 

Table 6 presents the predicted binding affinity 
energies and hydrogen bond interactions between 
peptides and α-amylase. Out of 24 docked peptides, 19 
formed hydrogen bond interactions with the catalytic 
triad. The peptide TVDQHQK had the lowest binding 
affinity (ΔG = −10.9 kcal/mol) but formed only 4 
hydrogen bonds, none of which involved the catalytic 
triad. In contrast, peptides TNAIPYVR 
(ΔG = −9.3 kcal/mol) and EDVPSER 
(ΔG = −9.2 kcal/mol) formed 7 hydrogen bonds, three of 
which interacted with the catalytic triad. These peptides 
are predicted to bind stably and potentially inhibit α-
amylase. 

Peptides TNAIPYVR and EDVPSER were 
preferred over TVDQHQK, despite having higher 
binding affinity energies. Their selection was based on 
hydrogen bond interactions, as a greater number of 
interactions enhances the stability of the protein-peptide 
complex than a single and stronger hydrogen bond 
interaction [38]. Additionally, the ability of peptides to 
interact with the enzyme's active site is crucial for 
inhibition [6]. Further analysis of the protein-peptide 
interactions was conducted using additional supporting 
servers. 

Fig. 2 shows the molecular docking results for the 
peptide EDVPSER with α-amylase, revealing hydrogen 
bond interactions with 7 amino acid residues. The C-
terminal glutamic acid (E) interacted with Trp357 via its 
carbonyl oxygen. The hydroxyl hydrogen of serine (S) 
formed a bond  with His305.  Another glutamic acid (E)  

Table 6. Docking results of all peptides with α-amylase predicted by HADDOCK2.4 
Amino acids  
sequence ΔG (kcal/mol) Hydrogen bond 

Total of hydrogen 
bond 

αS1-casein  α-amylase  
YLGYLEQLLR −9.3 Trp59, Lys200, Gly238, Glu240, Asp300*, Asp356 6 
ENINELSK −10.6 Gln63, His101, Tyr151, Val163, Asp197*, His305 6 
EGNPAHQK −8.9 Lys200, Ile235, Asp300*, Glu352 4 
EDVPSER −9.2 Tyr151, Val163, Asp197*, Glu233*, Asp300*, His305, Trp357 7 
HPINHR −10.5 Tryr151, Asp197*, Glu240, Asp300*, Gly308 5 
TTMPLW −8.5 Val50, Trp58, Gln63, Asp300*, Asp356 5 
αS2-casein  α-amylase  
NANEEEYSIR −10.5 Val163, Gly238, Glu240, Asp300* 4 
FAWPQYLK −8.4 His305, Asp300* 2 
TNAIPYVR −9.3 Glu149, Asp197*, Glu233*, Asp300*, Glu352, Asp353, Asp356 7 
ISQYYQK −10.2 Tyr151, Glu240, Asp300*, His305, Gly306, Asp356 6 
TVDQHQK −10.9 Ile148, Glu240, Glu240, Ala307 4 
NMAIHPR −9.2 Ile148, Val163, Asp197*, Lys200, Glu233* 5 
LTEEEK −9.7 Tyr151, Val163, Asp197*, His201, Glu233*, Ala307 6 
LNFLK −8.2 Glu233* 1 
β-casein  α-amylase  
VLPVPQK −8.9 Asp300*, Gly306, Asp356 3 
EMPFPK −8.7 Asp300*, His305 2 
GPFPILV −7.6 Gln63, Asp300* 2 
AVPQR −9.3 Tyr151, His299, Asp300*, His305 4 
κ-casein  α-amylase  
YIPIQYVLSR −9.8 Trp58, Glu240, Asp300* 3 

*Catalytic triad of α-amylase 
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Fig 2. Interaction analysis of peptide EDVPSER with α-amylase from HADDOCK2.4 generated by DSV Biovia 2020: 
(a) 2D interaction map binding to the active site of α-amylase (Asp197, Glu233, and Asp300) and (b) 3D binding model 
of peptide EDVPSER in complex with α-amylase 
 
interacted with Tyr151 via its carbonyl oxygen, and the 
carboxyl oxygen bonded with Val163. The N-terminal 
arginine (R) formed three hydrogen bonds: two with 
Asp197 and one with Glu233 through its guanidine amine 
groups, while another amine group bonded with Asp300. 
These interactions included the catalytic triad. 

The prediction results of EDVPSER using PepSite 2 
are presented in Table 7. Based on these results, the 
peptide EDVPSER had the lowest p-value of 0.01245, with 
6 interacting amino acid residues including Asp2, Val3, 
Pro4, Ser5, Glu6, and Arg7. This prediction differed from 
the results produced by the HADDOCK2.4 server. 

The prediction results of EDVPSER using CABS-
dock are presented in Table 8. A total of 42 interactions 
were formed between the peptide EDVPSER and α-
amylase. Among these interactions, nine protein-peptide 
interactions were observed with the catalytic triad of α-

amylase. The amino acid residues of the peptide that 
interacted with the catalytic triad of α-amylase were 
Glu1, Pro4, Ser5, and Glu6. These interaction results 
varied from the predictions generated by the 
HADDOCK2.4 and PepSite 2 servers. 

Fig. 3 displays the molecular docking results for the 
peptide TNAIPYVR with α-amylase, revealing hydrogen 
bond interactions with 7 amino acid residues. The C-
terminal threonine (T) formed bonds with Glu233 
(hydroxyl hydrogen) and Asp197 (amine hydrogen). 
Alanine (A) formed a bond with Asp300 (amine 
hydrogen), while tyrosine (Y) bonded with Glu149 
(hydroxyl hydrogen). Meanwhile, the N-terminal arginine 
(R) formed three hydrogen bonds via its guanidine amine 
groups: two with Asp353, Glu352, and Asp356, and one 
with Asp356 and Glu352. In addition, interactions with 
the α-amylase catalytic triad were also observed. 

Table 7. Amino acid active sites of EDVPSER interacting with α-amylase predicted by PepSite 2 
p-value N 1 2 3 4 5 6 7 
0.01245 6 - Asp Val Pro Ser Glu Arg 

Table 8. Amino acid interactions of EDVPSER interacting with α-amylase predicted by CABS-dock 
Receptor residue Peptide residue Receptor residue Peptide residue Receptor residue Peptide residue 

Ala307 Asp2 Ala307 Ser5 Arg337 Glu6 
Asn301 Ser5 His305 Asp2 Gly306 Asp2 
Asp300* Pro4 Asp300* Ser5 Asp300* Glu6 
His299 Glu6 His299 Arg7 Asp300* Glu1 
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Receptor residue Peptide residue Receptor residue Peptide residue Receptor residue Peptide residue 
Thr254 Glu6 Asn298 Ser5 Asn298 Glu6 
Ile235 Val3 Ile235 Pro4 Ile235 Ser5 

Glu233* Ser5 Glu233* Glu6 Ile235 Asp2 
His201 Val3 His201 Pro4 Glu233* Pro4 

Asp197* Pro4 Ala198 Pro4 Ser199 Pro4 
Val163 Glu1 Arg195 Glu6 Arg195 Arg7 
Asp96 Arg7 Ile148 Val3 Tyr151 Val3 
Pro44 Arg7 Trp59 Glu1 Tyr62 Pro4 
Gln41 Arg7 Val42 Arg7 Ser43 Arg7 
His15 Arg7 Leu16 Arg7 Phe17 Arg7 

*Catalytic triad of α-amylase 

 
Fig 3. Interaction analysis of peptide TNAIPYVR with α-amylase from HADDOCK2.4 generated by DSV Biovia 2020: 
(a) 2D interaction map binding to the active site of α-amylase (Asp197, Glu233, and Asp300) and (b) 3D binding model 
of peptide TNAIPYVR in complex with α-amylase 

Table 9. Amino acid active sites of TNAIPYVR interacting with α-amylase predicted by PepSite 2 
p-value N 1 2 3 4 5 6 7 8 
0.03736 5 - Asn Ala - Pro Tyr - Arg 

 
The prediction of TNAIPYVR results obtained 

using PepSite 2 is presented in Table 9. It can be seen that 
the peptide TNAIPYVR had the lowest p-value of 
0.03736, with interactions involving five amino acid 
residues: Asn2, Ala3, Pro5, Tyr6, and Arg8. This 
prediction differed from the results acquired through the 
HADDOCK2.4 server. 

The prediction results of TNAIPYVR obtained 
using CABS-dock are presented in Table 10. A total of 36 

interactions were formed between the peptide 
TNAIPYVR and α-amylase. The results indicate that all 
amino acid residues of the peptide TNAIPYVR interact 
with residues from the receptor. Among these, 10 
protein-peptide interactions were formed with the 
catalytic triad of α-amylase. The amino acid residues of 
the peptide interacting with the catalytic triad of α-
amylase were Thr1, Asn2, Ala3, Ile4, and Pro5. These 
interaction results differed from the predictions generated  
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by the HADDOCK2.4 and PepSite 2 servers. 
The molecular docking results obtained using the 

HADDOCK2.4, CABS-dock, and PepSite 2 servers 
showed differing interaction patterns. These variations in 
results are due to the different protocols and algorithms 
employed by each server. However, based on these 
docking results, it can be concluded that the molecular 
docking of protein-peptides revealed hydrogen bond 
interactions with the catalytic triad amino acids of α-
amylase. Computationally, the inhibition is indicated by 
the interactions with these catalytic triad amino acids. 
Nevertheless, experimental validation in the laboratory is 
required to confirm their activity. 

Secondary Structure of Peptides Analysis 

Predicting the secondary structure of peptides is 
vital for understanding their three-dimensional 
conformation and protein-peptide interactions. Circular 
Dichroism (CD) spectroscopy, a widely used method, 
estimates secondary structures such as α-helix, β-sheet, 
and random coil by detecting wavelength differences in 
the absorption of circularly polarized light by optically 
active molecules [39]. Using SESCA, CD spectroscopy 
provides insights into peptide and protein backbone 
structures at 270–175 nm. 

Fig. 4 shows the predicted Circular Dichroism 
spectra for the peptides EDVPSER and TNAIPYVR, with 

Table 10. The predicted amino acid interactions between TNAIPYVR and α-amylase using CABS-dock 
Receptor residue Peptide residue Receptor residue Peptide residue Receptor residue Peptide residue 

Ala307 Ile4 His305 Arg8 Gly306 Pro5 
Asn301 Ile4 Asp300* Ile4 Asp300* Pro5 
Asp300* Ala3 Asp300* Thr1 Asp300* Asn2 
His299 Thr1 Asn298 Thr1 Asn298 Ile4 
Phe256 Ile4 Ile235 Arg8 Glu240 Arg8 
Ile235 Val7 Glu233* Pro5 Ile235 Ile4 

Glu233* Ile4 His201 Val7 Glu233* Ala3 
His201 Tyr6 Ala198 Tyr6 Lys200 Val7 

Asp197* Ala3 Arg195 Thr1 Asp197* Thr1 
Leu165 Tyr6 Leu162 Tyr6 Leu162 Val7 
Tyr151 Arg8 His101 Tyr6 Tyr151 Val7 
Asn100 Tyr6 Tyr62 Tyr6 Asp96 Thr1 
Ala307 Ile4 His305 Arg8 Gly306 Pro5 
Asn301 Ile4 Asp300* Ile4 Asp300* Pro5 

*Catalytic triad of α-amylase 

 
Fig 4. Predicted CD spectra of the EDVPSER and TNAIPYVR peptides 
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the predicted secondary structure based on previous 
research [40]. EDVPSER exhibited a positive peak at 
193 nm and negative peaks at 210 and 222 nm, 
characteristic of an α-helix, indicating 100% helicity. 
TNAIPYVR displayed a positive peak at 188 nm, typical 
of a random coil, along with negative peaks at 204 and 
222 nm, suggesting partial α-helix features with an 
estimated helicity of 20%. 

The visualization of the predicted secondary 
structure of the peptide EDVPSER is presented in Fig. 5. 
The secondary structure of the peptide was influenced by 
hydrogen bond interactions formed between the 
hydrogen atoms of amine groups and the oxygen atoms 
of carbonyl groups. These hydrogen bonds included an 
interaction between the carbonyl group of Val3 and the 

hydrogen atoms of the amine groups of Glu6 and Arg7. 
Additionally, hydrogen bond interactions were formed 
between the carbonyl group of Asp2 and the hydrogen 
atoms of the amine groups of Ser5 and Glu6. 

Fig. 6 presents the visualization of the predicted 
secondary structure of the peptide TNAIPYVR. 
Hydrogen bond interactions were formed between the 
carbonyl group of Ile4 and the hydrogen atoms of the 
amine groups of Val7 and Arg8. These hydrogen bonds 
contributed to the formation of the α-helix structure. 
However, the number of hydrogen bonds formed was 
fewer than those in the peptide EDVPSER. This 
difference influenced the secondary structure of the 
peptide, resulting in a secondary structure that was 
predominantly composed of random coils. 

 
Fig 5. Visualization of the predicted secondary structure of the peptide EDVPSER, highlighting hydrogen bond 
interactions: (a) at Val3, Glu6, and Arg7, and (b) at Asp2, Ser5, and Glu6 
 

 
Fig 6. Visualization of the predicted secondary structure 
of the peptide TNAIPYVR 

Synthesis of Peptides 

The peptides predicted to have α-amylase inhibitory 
activity were synthesized using solid-state synthesis to 

obtain the peptides in solid form. The resulting peptides 
were white, with a purity of over 90%. The 
physicochemical properties of the synthesized peptides 
were predicted using the Peptide Calculator server and 
confirmed through mass spectrometry and high-
performance liquid chromatography (HPLC), as 
detailed in the attached data. 

Table 11 displays the physicochemical properties 
of the peptides. The peptide EDVPSER exhibited a 
GRAVY value of −1.886, while TNAIPYVR had a value 
of −0.138. The GRAVY value reflects hydrophobicity, 
with higher values indicating greater hydrophobicity 
[41]. Based on these values, TNAIPYVR was more 
hydrophobic than EDVPSER. The hydrophobicity of 
these peptides was influenced by their amino acid 
composition:  EDVPSER was dominated  by hydrophilic  
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Table 11. Physicochemical properties of the synthesized peptides predicted through in silico analysis 
Amino acids sequence  Number of amino acids Molecular weight (g/mol) GRAVY 
EDVPSER 7 830.84 -1.886 
TNAIPYVR 8 933.06 -0.138 

 
amino acids, while TNAIPYVR contained more 
hydrophobic amino acids. Hydrophobicity impacted the 
stability of protein-peptide interactions. 

The synthesized peptides EDVPSER and 
TNAIPYVR showed molecular weights of 830.86 and 
933.08 g/mol, closely matching the in-silico predictions of 
830.84 and 933.06 g/mol, respectively. Chromatograms 
confirmed purities of 99.18% (EDVPSER) and 95.05% 
(TNAIPYVR). Both peptides were successfully 
synthesized with purities above 90%. 

In Vitro Antidiabetic Activity Assay of α-Amylase 
Inhibitors  

The hydrolysis of starch by α-amylase reduced 
starch-iodine complex formation, leading to a decrease in 
the blue color intensity of the solution. This is evident 
from the reduced absorbance when comparing a system 
with only the substrate to one with both enzyme and 
substrate. The peptide’s inhibitory activity can be assessed 
by the color produced in the solution. The solution will 
display a bluish-purple color if inhibition occurs, 
indicating reduced starch hydrolysis. The change in color 
intensity was measured quantitatively by absorbance at 
540 nm using a UV-vis spectrophotometer, where the 
bluish-purple color was absorbed. 

Based on the activity test results (Fig. 7), it was found 
that both peptides exhibited activity against α-amylase. 
This was demonstrated by the appearance of a purple 
color in the system solution when the iodine solution was 
added. The color change indicates the formation of a starch-
iodine complex, suggesting that the starch in the system 
was not hydrolyzed into simpler glucose molecules. 

The peptides obtained from in silico digestion were 
compared to a known α-amylase inhibitor bioactive 
peptide derived from plants, YFDEQNEQFR, has an 
IC50 value of 37.5 ± 1.1 μM [9]. According to Table 12, 
the peptide EDVPSER exhibited a lower IC50 value than 
YFDEQNEQFR, suggesting that the in silico digestion-
derived peptide could inhibit enzyme activity more 
effectively than YFDEQNEQFR. 

Starch was hydrolyzed into simpler glucose 
molecules through two stages. The first stage involved 
the interaction between the protein and starch to direct 
the glucose chain (oligosaccharide) toward the active site 
of α-amylase. Amino acids such as Trp59, Tyr62, and 
Tyr151 were involved in this stage. The second stage was 
hydrolysis, involving Asp197, Glu233, and Asp300. In 
addition to the catalytic triad, other amino acids like 
Trp59, Tyr62 [21], and Tyr151 [9] also played roles in 
starch hydrolysis. Inhibiting these amino acids could 
enhance the peptide's inhibitory effect on α-amylase. 

The inhibitory potential of the in-silico digestion-
derived  peptides  against  α-amylase  was  related  to  the  

 
Fig 7. The color changes in the solution system were as 
follows: (a) blank, (b) control, (c) S0, (d) S1 TNAIPYVR, 
and (e) S1 EDVPSER 

Table 12. IC50 values of acarbose and peptides 

Sample 
IC50 (μM) 

Average SD 
1 2 3 

Acarbose 57.11 58.70 57.20 57.67 0.73 
EDVPSER 13.24 14.62 14.62 14.16 0.65 
TNAIPYVR 78.17 78.01 73.58 76.58 2.13 
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enzyme inhibition mechanism. This mechanism is based 
on the peptide’s ability to form barriers through hydrogen 
bonding interactions with residues around the substrate-
binding region [6]. Hydrogen interactions are critical in 
protein-peptide interactions, as they are common in the 
formation of protein-peptide complexes and have a 
stronger effect compared to other intermolecular 
interactions. 

Molecular docking studies of the peptide EDVPSER 
with α-amylase revealed hydrogen bond interactions with 
non-catalytic triad amino acids, such as Tyr151, which 
played an important role in the starch hydrolysis 
mechanism. Interactions at Trp59 were identified as π-
alkyl interactions, and Van der Waals interactions were 
observed at Tyr62. Meanwhile, the peptide "TNAIPYVR" 
did not exhibit hydrogen bond interactions at Trp59, 
Tyr62, or Tyr151. The interactions formed at Trp59 were 
Van der Waals interactions, at Tyr62, π-cation 
interactions were found, and at Tyr151, π-alkyl and T-
shaped π-π interactions were observed. 

Previous studies on bioactive peptides indicate that 
certain amino acids in bioactive peptides play a crucial 
role in inhibiting the catalytic triad of α-amylase. Proline, 
leucine, and serine are three reactive amino acids in 
bioactive peptides [23]. In addition to hydrogen bonding 
interactions, Cα-H⋯π interactions (aromatic π, amide, or 
arginine) were also frequently found to explain the 
formation of protein-ligand complexes. However, this 
interaction was not observed in the molecular docking 
results, even though proline and serine were present in 
EDVPSER, and proline was present in TNAIPYVR. 

Although proline, leucine, and serine did not form 
Cα-H⋯π interactions, they still contribute to protein-
peptide stability [23]. Proline is hydrophobic, nonpolar, 
and aliphatic, while serine is hydrophilic, polar, and 
aliphatic. Hydrophobic amino acids interact stably with 
enzymes due to hydrophobic pockets, reducing 
susceptibility to degradation. Serine’s role is supported by 
its polar nature, which influences hydrogen bond 
formation. Additionally, the aliphatic nature of serine and 
proline contributes to stability by reducing steric 
hindrance and enhancing flexibility. 

The peptides EDVPSER and TNAIPYVR 
demonstrated effective interactions with α-amylase, as 
confirmed by in vitro assays. Peptide EDVPSER 
exhibited superior inhibitory activity, likely due to the 
active roles of proline and serine and its hydrogen bond 
interactions with key residues such as Tyr151. These 
findings highlight EDVPSER as a promising candidate 
for further research and development of antidiabetic 
treatments derived from goat milk proteins. 

■ CONCLUSION 

In silico protein cleavage efficiently identified 
bioactive peptides. In this study, peptides from goat milk 
casein were analyzed for α-amylase inhibition. The 
peptide EDVPSER (αs1-casein) showed strong inhibitory 
potential, supported by molecular docking revealing 
interactions with the catalytic triad. EDVPSER had a 
superior IC50 value compared to acarbose and 
YFDEQNEQFR. In contrast, TNAIPYVR (αs2-casein) 
exhibited lower activity. Hydrogen bonding at the 
catalytic triad was crucial for inhibition. This study 
highlighted in silico methods as effective tools for 
identifying and predicting bioactive peptides. 
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