Elimination of ineffective inorganic salt component in medium for indole‐3‐acetic acid synthesis by Serratia plymuthica UBCF_13 and its effect on the growth of chili seedlings

https://doi.org/10.22146/ijbiotech.88774

Liza Aulia Yusfi(1), Djong Hon Tjong(2), Irawati Chaniago(3), Muhamad Irsyad(4), Jamsari Jamsari(5*)

(1) Doctoral Program of Agricultural Science, Faculty of Agriculture, Universitas Andalas, Padang 25163, West Sumatera, Indonesia
(2) Department of Biology, Faculty of Mathematics and Life Sciences, Universitas Andalas, Padang 25163, West Sumatra, Indonesia; Biotechnology Magister Program, Post Graduate School, Universitas Andalas, Padang 25163, West Sumatra, Indonesia
(3) Department of Agronomy Faculty of Agriculture, Universitas Andalas, Padang 25163, West Sumatra, Indonesia
(4) Department of Agronomy Faculty of Agriculture, Universitas Andalas, Padang 25163, West Sumatra, Indonesia
(5) Biotechnology Magister Program, Post Graduate School, Universitas Andalas, Padang 25163, West Sumatra, Indonesia; Department of Agronomy Faculty of Agriculture, Universitas Andalas, Padang 25163, West Sumatra, Indonesia
(*) Corresponding Author

Abstract


Indole‐3‐acetic acid (IAA) is an essential phytohormone that controls a variety of plant growth mechanisms. Bacteria can produce IAA to stimulate plant growth, with its production influenced by the culture conditions. Serratia plymuthica UBCF_13 is recognized as an IAA‐producing bacterium, exhibiting maximum IAA production in a yeast medium comprising yeast extract, sucrose, K2HPO4, MgSO4, NaCl, and CaCO3. However, prior studies optimizing individual inorganic salt components indicated minimal impact on IAA synthesis within this medium. This study aimed to eliminate the unnecessary inorganic salt components and the medium was then applied to investigate the IAA biosynthesis pathway and the plant growth‐promoting assay. The elimination assay consisted of yeast sucrose medium devoid of K2HPO4, MgSO4, NaCl, or CaCO3, and yeast sucrose medium containing only MgSO4 and CaCO3. Various indole compounds were then added to the revised medium composition to investigate the IAA biosynthesis pathway of UBCF_13 using high‐performance liquid chromatography (HPLC). Furthermore, the effect of UBCF_13 culture supernatant, cultivated in the new medium, on chili plant growth was evaluated. The highest IAA production (138.8 µg/mL) was observed in the yeast sucrose with CaCO3 and MgSO4 (elimination of K2HPO4 and NaCl). The presence of indole‐3‐acetamide (IAM) compound from the medium extracts, supplemented with multiple indole compounds, revealed that UBCF_13 may use the IAM pathway. The application of UBCF_13 supernatant enhanced the shoot, root length, fresh weight, and germination time of chili seeds by 37.7%, 49.3%, 204.3%, and 38.6%, respectively. This study demonstrated that eliminating K2HPO4 and NaCl provided a new culture medium composition conducive to IAA production by UBCF_13. Moreover, the UBCF_13 extract has the potential to promote plant growth.


Keywords


Biofertilizer; IAA; Inorganic salt; Medium optimization; Plant growth promoting bacteria

Full Text:

PDF


References

Aisyah SN, Maldoni J, Sulastri I, Suryati W, Marlisa Y, Herliana L, Syukriani L, Renfiyeni R, Jamsari J. 2019. Unraveling the optimal culture condition for the antifungal activity and iaa production of phylloplane Serratia plymuthica. Plant Pathol. J. 18(1):31–38. doi:10.3923/ppj.2019.31.38.

Baliyan N, Dhiman S, Dheeman S, Kumar S, Maheshwari DK. 2021. Optimization of indole­3­acetic acid using response surface methodology and its effect on vegetative growth of chickpea. Rhizosphere 17:100321. doi:10.1016/j.rhisph.2021.100321.

Bunsangiam S, Sakpuntoon V, Srisuk N, Ohashi T, Fujiyama K, Limtong S. 2019. Biosynthetic pathway of indole­3­acetic acid in basidiomycetous yeast Rhodosporidiobolus fluvialis. Mycobiology 47(3):292– 300. doi:10.1080/12298093.2019.1638672.

Bunsangiam S, Thongpae N, Limtong S, Srisuk N. 2021. Large scale production of indole­3­acetic acid and evaluation of the inhibitory effect of indole­3­ acetic acid on weed growth. Sci. Rep. 11(1):1–13. doi:10.1038/s41598­021­92305­w.

Chaudhary T, Yadav D, Chhabra D, Gera R, Shukla P. 2021. Low­cost media engineering for phosphate and IAA production by Kosakonia pseudosacchari TCPS­4 using Multi­objective Genetic Algorithm (MOGA) statistical tool. 3 Biotech 11(4):158. doi:10.1007/s13205­021­02690­2.

Chopra A, Kumar Vandana U, Rahi P, Satpute S, Mazumder PB. 2020. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. Biocatal. Agric. Biotechnol. 27:101610. doi:10.1016/j.bcab.2020.101610.

Cui S, Zhu D, Mao B, Ma F, Zhao J, Zhang H, Chen W. 2021. Rapid evaluation of optimal growth substrates and improvement of industrial production of Bifidobacterium adolescentis based on the automatic feedback feeding method. LWT 143:110960. doi:10.1016/j.lwt.2021.110960.

Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. 2022. Biofertilizer: The future of food security and food safety. Microorganisms 10(6):1220. doi:10.3390/microorganisms10061220.

De Fretes CE, Widianto D, Purwestri YA, Nuringtyas TR. 2021. Plant growth­promoting activity of endophytic bacteria from sweet sorghum (Sorghum bicolor (L.) Moench). Indones. J. Biotechnol. 26(4):190–196. doi:10.22146/ijbiotech.64893.

Emami S, Alikhani HA, Pourbabaei AA, Etesami H, Sarmadian F, Motessharezadeh B. 2019. Assessment of the potential of indole­3­acetic acid producing bacteria to manage chemical fertilizers application. Int. J. Environ. Res. 13(4):603–611. doi:10.1007/s41742­ 019­00197­6.

Facey JA, Violi JP, King JJ, Sarowar C, Apte SC, Mitrovic SM. 2022. The influence of micronutrient trace metals on microcystis aeruginosa growth and toxin production. Toxins (Basel). 14(11):812. doi:10.3390/toxins14110812.

Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. 2021. Plant growth­promoting rhizobacteria isolated from the jujube (Ziziphus lotus) plant enhance wheat growth, zn uptake, and heavy metal tolerance. Agric. 11(4):316. doi:10.3390/agriculture11040316.

Fan Y, Yu K, Zheng H, Chen Y, Zhao R, Li Y, Zheng Z. 2023. A high­yielding strain of indole­3­ acetic acid isolated from food waste compost: metabolic pathways, optimization of fermentation conditions, and application. Environ. Technol. (United Kingdom) 44(27):4199–4209. doi:10.1080/09593330.2022.2082889.

Feng J, Xu Y, Ding J, He J, Shen Y, Lu G, Qin W, Guo H. 2022. Optimal production of bioflocculant from Pseudomonas sp. GO2 and its removal characteristics of heavy metals. J. Biotechnol. 344:50–56. doi:10.1016/j.jbiotec.2021.12.012.

Figueredo EF, da Cruz TA, de Almeida JR, Batista BD, Marcon J, de Andrade PAM, Hayashibara CAdA, Rosa MS, Azevedo JL, Quecine MC. 2023. The key role of indole­3­acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR­Cas9 system. Microbiol. Res. 266:127218. doi:10.1016/j.micres.2022.127218.

Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1):192–195. doi:10.1104/pp.26.1.192.

Ham S, Yoon H, Park JM, Park YG. 2021. Optimization of fermentation medium for indole acetic acid production by Pseudarthrobacter sp. NIBRBAC000502770. Appl. Biochem. Biotechnol. 193(8):2567–2579. doi:10.1007/s12010­021­03558­ 0.

Hata EM, Yusof MT, Zulperi D. 2021. Induction of systemic resistance against bacterial leaf streak disease and growth promotion in rice plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8. Plant Pathol. J. 37(2):173–181. doi:10.5423/PPJ.OA.05.2020.0083.

Hossain MA, Hossain MS, Akter M. 2023. Challenges faced by plant growth­promoting bacteria in fieldlevel applications and suggestions to overcome the barriers. Physiol. Mol. Plant Pathol. 126:102029. doi:10.1016/j.pmpp.2023.102029.

Jahn L, Hofmann U, Ludwig­Müller J. 2021. Indole­ 3­acetic acid is synthesized by the endophyte cyanodermella asteris via a tryptophan­dependent andindependent way and mediates the interaction with a non­host plant. Int. J. Mol. Sci. 22(5):2651. doi:10.3390/ijms22052651.

Kaur T, Manhas RK. 2022. Evaluation of ACC deaminase and indole acetic acid production by Streptomyces hydrogenans DH16 and its effect on plant growth promotion. Biocatal. Agric. Biotechnol. 42:102321. doi:10.1016/j.bcab.2022.102321.

Lam VP, Lee MH, Park JS. 2020. Optimization of indole­3­acetic acid concentration in a nutrient solution for increasing bioactive compound accumulation and production of Agastache rugosa in a plant factory. Agric. 10(8):343. doi:10.3390/agriculture10080343.

Lebrazi S, Niehaus K, Bednarz H, Fadil M, Chraibi M, Fikri­Benbrahim K. 2020. Screening and optimization of indole­3­acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. J. Genet. Eng. Biotechnol. 18(1):71. doi:10.1186/s43141­020­00090­2.

Leontovyčová H, Trdá L, Dobrev PI, Šašek V, Gay E, Balesdent MH, Burketová L. 2020. Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole­3­pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Res. Microbiol. 171(5­6):174–184. doi:10.1016/j.resmic.2020.05.001.

Li R, Jin M, Du J, Li M, Chen S, Yang S. 2020. The magnesium concentration in yeast extracts is a major determinant affecting ethanol fermentation performance of Zymomonas mobilis. Front. Bioeng. Biotechnol. 8:957. doi:10.3389/fbioe.2020.00957.

Lin H, Li Y, Hill RT. 2022. Microalgal and bacterial auxin biosynthesis: Implications for algal biotechnology. Curr. Opin. Biotechnol. 73:300–307. doi:10.1016/j.copbio.2021.09.006.

Lin HR, Shu HY, Lin GH. 2018. Biological roles of indole­ 3­acetic acid in Acinetobacter baumannii. Microbiol. Res. 216:30–39. doi:10.1016/j.micres.2018.08.004.

Liu Z, Wang H, Xu W, Wang Z. 2020. Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD­1) for growth enhancement of rice seedling. Arch. Microbiol. 202(8):2169–2179. doi:10.1007/s00203­020­01934­ 8.

Lobo LLB, da Silva MSRdA, Carvalho RF, Rigobelo EC. 2023. The cadmium­tolerant plant growth­promoting bacteria curtobacterium oceanosedimentum improves growth attributes and strengthens antioxidant system in chili. J. Plant Growth Regul. 42:2317–2326. doi:10.1007/s00344­022­10706­1.

Morales­Borrell D, González­Fernández N, MoraGonzález N, Pérez­Heredia C, Campal­Espinosa A, Bover­Fuentes E, Salazar­Gómez E, MoralesEspinosa Y. 2020. Design of a culture medium for optimal growth of the bacterium Pseudoxanthomonas indica H32 allowing its production as biopesticide and biofertilizer. AMB Express 10(1):190. doi:10.1186/s13568­020­01127­y.

Nickzad A, Guertin C, Déziel E. 2018. Culture medium optimization for production of rhamnolipids by Burkholderia glumae. Colloids and Interfaces 2(4):49. doi:10.3390/colloids2040049.

Niu Z, Yue Y, Su D, Ma S, Hu L, Hou X, Zhang T, Dong D, Zhang D, Lu C, Fan X, Wu H. 2022. The characterization of Streptomyces alfalfae strain 11F and its effect on seed germination and growth promotion in switchgrass. Biomass and Bioenergy 158:106360. doi:10.1016/j.biombioe.2022.106360.

Patel M, Patel K, Al­Keridis LA, Alshammari N, Badraoui R, Elasbali AM, Al­Soud WA, Hassan MI, Yadav DK, Adnan M. 2022. Cadmium­tolerant plant growthpromoting bacteria Curtobacterium oceanosedimentum improves growth attributes and strengthens antioxidant system in chili (Capsicum frutescens). Sustain. 14(7):4335. doi:10.3390/su14074335.

Rupal K S, Raval VH, Saraf M. 2020. Biosynthesis and purification of indole­3­acetic acid by halotolerant rhizobacteria isolated from Little Runn of Kachchh. Biocatal. Agric. Biotechnol. 23(101435):1– 6. doi:10.1016/j.bcab.2019.101435.

Sandhibigraha S, Mandal S, Awasthi M, kanti Bandyopadhyay T, Bhunia B. 2020. Optimization of various process parameters for biodegradation of 4­chlorophenol using Taguchi methodology. Biocatal. Agric. Biotechnol. 24:101568. doi:10.1016/j.bcab.2020.101568.

Shah R, Amaresan N, Patel P, Jinal HN, Krishnamurthy R. 2020. Isolation and characterization of Bacillus spp. endowed with multifarious plant growth­promoting traits and their potential effect on tomato (Lycopersicon esculentum) seedlings. Arab. J. Sci. Eng. 45(6):4579–4587. doi:10.1007/s13369­020­04543­1.

Sun SL, Yang WL, Fang WW, Zhao YX, Guo L, Dai YJ. 2018. The plant growth­promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole­3­acetic acid synthesized from indole­3­acetonitrile. Appl. Environ. Microbiol. 84(16):1–14. doi:10.1128/aem.00298­18.

Sunera, Amna, Saqib S, Uddin S, Zaman W, Ullah F, Ayaz A, Asghar M, ur Rehman S, Munis MFH, Chaudhary HJ. 2020. Characterization and phytostimulatory activity of bacteria isolated from tomato (Lycopersicon esculentum Mill.) rhizosphere. Microb. Pathog. 140:103966. doi:10.1016/j.micpath.2020.103966.

Suresh A, Soundararajan S, Elavarasi S, Lewis Oscar F, Thajuddin N. 2019. Evaluation and characterization of the plant growth promoting potentials of two heterocystous cyanobacteria for improving food grains growth. Biocatal. Agric. Biotechnol. 17:647–652. doi:10.1016/j.bcab.2019.01.002.

Talukdar M, Swain DK, Bhadoria PBS. 2022. Effect of IAA and BAP application in varying concentration on seed yield and oil quality of Guizotia abyssinica (L.f.) Cass. Ann. Agric. Sci. 67(1):15–23. doi:10.1016/j.aoas.2022.02.002.

Tiwari P, Singh JS. 2017. A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol. Res. (Pavia). 8(2):7233. doi:10.4081/mr.2017.7233.

Wendel BM, Pi H, Krüger L, Herzberg C, Stülke J, Helmann JD. 2022. A central role for magnesium homeostasis during adaptation to osmotic stress. MBio 13(1):e00092–22. doi:10.1128/MBIO.00092­22.

Widnyana IK, Javandira C. 2016. Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agric. Agric. Sci. Procedia 9:419–423. doi:10.1016/j.aaspro.2016.02.158.

Yousef N. 2018. Capability of Plant Growth­Promoting Rhizobacteria ( PGPR ) for producing indole acetic acid ( IAA ) under extreme conditions. Eur. J. Biol. Res. 8(4):174–182.

Yusfi LA, Tjong DH, Chaniago I, Andini Z, Jamsari J. 2023a. Optimization of medium components and genes expression involved in indole­3­acetic acid biosynthesis by Serratia Plymuthica UBCF_13. Unpublished.

Yusfi LA, Tjong DH, Chaniago I, Jamsari J. 2021. Culture medium optimization for Indole­3­Acetic Acid production by Serratia plymuthica UBCF_13. In: IOP Conf. Ser. Earth Environ. Sci., volume 741. p. 012059. doi:10.1088/1755­1315/741/1/012059.

Yusfi LA, Tjong DH, Chaniago I, Jamsari J. 2023b. Screening the effect of YM media component and tryptophan levels on IAA production of Serratia plymuthica UBCF­13. In: AIP Conf. Proc., volume 2730. p. 080001. doi:10.1063/5.0127747.

Yusfi LA, Tjong DH, Chaniago I, Salsabilla A, Jamsari J. 2022. Growth phase influence the gene expression and metabolite production related to indole­3­ acetic acid (IAA) biosynthesis by Serratia plymuthica UBCF_13. Pakistan J. Biol. Sci. 25(12):1047–1057. doi:10.3923/pjbs.2022.1047.1057.

Zhang P, Jin T, Sahu SK, Xu J, Shi Q, Liu H, Wang Y. 2019. The distribution of tryptophan­dependent indole­3­acetic acid synthesis pathways in bacteria unraveled by large­scale genomic analysis. Molecules 24(7):1–14. doi:10.3390/molecules24071411.

Zhao YX, Guo LL, Sun SL, jing Guo J, Dai YJ. 2020. Bioconversion of indole­3­acetonitrile by the N2­fixing bacterium Ensifer meliloti CGMCC 7333 and its Escherichia coli­expressed nitrile hydratase. Int. Microbiol. 23(2):225–232. doi:10.1007/s10123­019­ 00094­0.



DOI: https://doi.org/10.22146/ijbiotech.88774

Article Metrics

Abstract views : 1650 | views : 1087

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.